Chemistry (all); Chemical Engineering (all); General Chemical Engineering; General Chemistry
Abstract :
[en] During the past years, the synthesis of polymer prodrug structures, based on natural phytochemical compounds with a great range of valuable biological properties, has become a promising solution in cancer prevention, imaging, and detection. Curcumin (Curc) remains one of the most studied natural products, due to the impressive palette of biological properties and the possibility to be easily loaded in various micro- and nanostructures and chemically modified. In this study, pegylated curcumin derivatives were prepared by a direct esterification reaction between poly(ethylene glycol)diacid (PEG of 600 g/mol molar mass, PEG600) and Curc in the presence of N,N'-dicyclohexylcarbodiimide (PEG600-Curc). The successful reaction resulted in a water-soluble stable product that was characterized by infrared spectroscopy (Fourier transform infrared (FT-IR)) and proton (1H) and carbon (13C) NMR. The effect of the pH values of buffer solutions on PEG600-Curc spectral properties (absorption and photoluminescence) was investigated by UV-vis and fluorescence spectrophotometry. Based on the biological tests, it was confirmed that PEG600-Curc exhibits cytotoxic activity against Graffi cell lines, as a function of the Curc concentration in the conjugate and the incubation time. PEG600-Curc antibacterial activity was validated in microbiological tests against pathogenic microorganisms such as Staphylococcus aureus. Most importantly, despite the covalent attachment of Curc to PEG and the slight reduction in the therapeutic index of the conjugate, both the anticancer and antimicrobial activities remain the highest reported, thus opening the gate for further, more clinically oriented studies.
Research center :
CIRMAP - Centre d'Innovation et de Recherche en Matériaux Polymères
Disciplines :
Materials science & engineering
Author, co-author :
Yakub, Guldjan; Laboratory of Bioactive Polymers, Institute of Polymers, Bulgarian Academy of Sciences, Acad. G. Bonchev St, Bl. 103A, BG-1113Sofia, Bulgaria
Manolova, Nevena E; Laboratory of Bioactive Polymers, Institute of Polymers, Bulgarian Academy of Sciences, Acad. G. Bonchev St, Bl. 103A, BG-1113Sofia, Bulgaria
Rashkov, Iliya B; Laboratory of Bioactive Polymers, Institute of Polymers, Bulgarian Academy of Sciences, Acad. G. Bonchev St, Bl. 103A, BG-1113Sofia, Bulgaria
Markova, Nadya; Institute of Microbiology, Bulgarian Academy of Sciences, Acad. G. Bonchev St, bl. 26, BG-1113Sofia, Bulgaria
Toshkova, Reneta; Institute of Experimental Morphology, Pathology and Anthropology with Museum, Bulgarian Academy of Sciences, Acad. G. Bonchev St, bl. 25, 1113Sofia, Bulgaria
Georgieva, Ani; Institute of Experimental Morphology, Pathology and Anthropology with Museum, Bulgarian Academy of Sciences, Acad. G. Bonchev St, bl. 25, 1113Sofia, Bulgaria
R400 - Institut de Recherche en Science et Ingénierie des Matériaux
Funders :
F?d?ration Wallonie-Bruxelles European Regional Development Fund Fonds De La Recherche Scientifique - FNRS
Funding text :
The authors gratefully acknowledge the bilateral cooperation between the Bulgarian Academy of Sciences and WBI/FRS-FNRS-Belgium. The members of the SMPC laboratory A.T., R.M., J.-M.R., and P.D. also acknowledge the support from Wallonia and the European Community (FEDER) for general support in the frame of LCFM-BIOMAT. J.-M.R is a F.R.S.-FNRS Maître de recherches.
GLOBOCAN. Global Cancer Observatory. Age-Standardized (World) Incidence and Mortality Rates, Top 10 Cancer, 2020. https://gco.iarc.fr/today/data/factsheets/populations/900-world-fact-sheets.pdf.
Vasan, N.; Baselga, J.; Hyman, D. M. A view on drug resistance in cancer. Nature 2019, 575, 299-309, 10.1038/s41586-019-1730-1
Hong, W. K.; Sporn, M. B. Recent advances in chemoprevention of cancer. Science 1997, 278, 1073-1077, 10.1126/science.278.5340.1073
Choudhari, A. S.; Mandave, P. C.; Deshpande, M.; Ranjekar, P.; Prakash, O. Phytochemicals in cancer treatment: from preclinical studies to clinical practice. Front. Pharmacol. 2020, 10, 1614 10.3389/fphar.2019.01614
Naz, S.; Jabeen, S.; Ilyas, S.; Manzoor, F.; Aslam, F.; Ali, A. Antibacterial activity of Curcuma longa varieties against different strains of bacteria. Pak. J. Bot. 2010, 42, 455-462
Kim, D.-C.; Ku, S.-K.; Bae, J.-S. Anticoagulant activities of curcumin and its derivative. BMB Rep. 2012, 45, 221-226, 10.5483/BMBRep.2012.45.4.221
Zhao, J.; Zhao, Y.; Zhang, Y.; Chen, W. Anti-tumor effect of curcumin on human cervical carcinoma HeLa cells in vitro and in vivo. Chin. J. Cancer Res. 2007, 19, 32-36, 10.1007/s11670-007-0032-6
Tang, H.; Murphy, C. J.; Zhang, B.; Shen, Y.; Van Kirk, E. A.; Murdoch, W. J.; Radosz, M. Curcumin polymers as anticancer conjugates. Biomaterials 2010, 31, 7139-7149, 10.1016/j.biomaterials.2010.06.007
Menon, V. P.; Sudheer, A. R. Antioxidant and Anti-Inflammatory Properties of Curcumin. The Molecular Targets and Therapeutic Uses of Curcumin in Health and Disease, Advances in Experimental Medicine and Biology; Springer, 2007; Vol. 595, pp 105-125.
Kohli, K.; Ali, J.; Ansari, M. J.; Raheman, Z. Curcumin: A natural antiinflammatory agent. Indian J. Pharmacol. 2005, 37, 141-147, 10.4103/0253-7613.16209
Prasad, S.; Tyagi, A.; Aggarwal, B. Recent developments in delivery, bioavailability, absorption and metabolism of curcumin: the golden pigment from golden spice. Cancer Res. Treat. 2014, 46, 2-18, 10.4143/crt.2014.46.1.2
Ma, Z.; Wang, N.; He, H.; Tang, X. Pharmaceutical strategies of improving oral systemic bioavailability of curcumin for clinical application. J. Controlled Release 2019, 316, 359-380, 10.1016/j.jconrel.2019.10.053
Heger, M.; van Golen, R. F.; Broekgaarden, M.; Michel, M. C. The molecular basis for the pharmacokinetics and pharmacodynamics of curcumin and its metabolites in relation to cancer. Pharmacol. Rev. 2014, 66, 222-307, 10.1124/pr.110.004044
Ratnatilaka Na Bhuket, P.; El-Magboub, A.; Haworth, I. S.; Rojsitthisak, P. Enhancement of curcumin bioavailability via the prodrug approach: challenges and prospects. Eur. J. Drug Metab. Pharmacokinet. 2017, 42, 341-353, 10.1007/s13318-016-0377-7
Safavy, A.; Raisch, K. P.; Mantena, S.; Sanford, L. L.; Sham, S. W.; Krishna, R.; Bonner, J. A. Design and development of water-soluble curcumin conjugates as potential anticancer agents. J. Med. Chem. 2007, 50, 6284-6288, 10.1021/jm700988f
Wichitnithad, W.; Nimmannite, U.; Callery, P.; Rojsitthisak, P. Effects of different carboxylic ester spacers on chemical stability, release characteristics, and anticancer activity of mono-pegylated curcumin conjugates. J. Pharm. Sci. 2011, 100, 5206-5218, 10.1002/jps.22716
Qiao, H.; Fang, D.; Chen, J.; Sun, Y.; Kang, C.; Di, L.; Li, J.; Chen, Z.; Chen, J.; Gao, Y. Orally delivered polycurcumin responsive to bacterial reduction for targeted therapy of inflammatory bowel disease. Drug Delivery 2017, 24, 233-242, 10.1080/10717544.2016.1245367
Li, J.; Wang, Y.; Yang, C.; Wang, P.; Oelschlager, D. K.; Zheng, Y.; Tian, D.-A.; Grizzle, W. E.; Buchsbaum, D. J.; Wan, M. Polyethylene glycosylated curcumin conjugate inhibits pancreatic cancer cell growth through inactivation of Jab1. Mol. Pharmacol. 2009, 76, 81-90, 10.1124/mol.109.054551
Gao, M.; Chen, C.; Fan, A.; Zhang, J.; Kong, D.; Wang, Z.; Zhao, Y. Covalent and non-covalent curcumin loading in acid-responsive polymeric micellar nanocarriers. Nanotechnology 2015, 26, 275101 10.1088/0957-4484/26/27/275101
Wang, Z.; Chen, C.; Zhang, Q.; Gao, M.; Zhang, J.; Kong, D.; Zhao, Y. Tuning the architecture of polymeric conjugate to mediate intracellular delivery of pleiotropic curcumin. Eur. J. Pharm. Biopharm. 2015, 90, 53-62, 10.1016/j.ejpb.2014.11.002
Zhang, H.-Y.; Sun, C.-Y.; Adu-Frimpong, M.; Yu, J.-N.; Xu, X.-M. Glutathione-sensitive PEGylated curcumin prodrug nanomicelles: Preparation, characterization, cellular uptake and bioavailability evaluation. Int. J. Pharm. 2019, 555, 270-279, 10.1016/j.ijpharm.2018.11.049
Zhang, H.; Chen, B.; Zhu, Y.; Sun, C.; Adu-Frimpong, M.; Deng, W.; Yu, J.; Xu, X. Enhanced oral bioavailability of self-assembling curcumin-vitamin E prodrug-nanoparticles by conanoprecipitation with vitamin E TPGS. Drug. Dev. Ind. Pharm. 2020, 46, 1800-1808, 10.1080/03639045.2020.1821049
Li, M.; Gao, M.; Fu, Y.; Chen, C.; Meng, X.; Fan, A.; Kong, D.; Wang, Z.; Zhao, Y. Acetal-linked polymeric prodrug micelles for enhanced curcumindelivery. Colloids Surf., B 2016, 140, 11-18, 10.1016/j.colsurfb.2015.12.025
Cao, Y.; Gao, M.; Chen, C.; Fan, A.; Zhang, J.; Kong, D.; Wang, Z.; Peer, D.; Zhao, Y. Triggered-release polymeric conjugate micelles for on-demand intracellular drug delivery. Nanotechnology 2015, 26, 115101 10.1088/0957-4484/26/11/115101
Meng, X.; Gao, M.; Deng, J.; Lu, D.; Fan, A.; Ding, D.; Kong, D.; Wang, Z.; Zhao, Y. Self-immolative micellar drug delivery: the linker matters. Nano Res. 2018, 11, 6177-6189, 10.1007/s12274-018-2134-5
Banerjee, S. S.; Aher, N.; Patil, R.; Khandare, J. Poly(ethylene glycol)-prodrug conjugates: concept, design, and applications. J. Drug Delivery 2012, 2012, 1-17, 10.1155/2012/103973
Veronese, F. M.; Mero, A. The impact of PEGylation on biological therapies. BioDrugs 2008, 22, 315-329, 10.2165/00063030-200822050-00004
Vargason, A. M.; Anselmo, C.; Mitragotri, S. The evolution of commercial drug delivery technologies. Nat. Biomed. Eng. 2021, 5, 951-967, 10.1038/s41551-021-00698-w
Kim, C. Y.; Bordenave, N.; Ferruzzi, M. G.; Safavy, A.; Kim, K.-H. Modification of curcumin with polyethylene glycol enhances the delivery of curcumin in preadipocytes and its antiadipogenic property. J. Agric. Food Chem. 2011, 59, 1012-1019, 10.1021/jf103873k
Shiraishi, K.; Yokoyama, M. Toxicity and immunogenicity concerns related to PEGylated-micelle carrier systems: a review. Sci. Technol. Adv. Mater. 2019, 20, 324-336, 10.1080/14686996.2019.1590126
Kobylinska, L.; Patereha, I.; Finiuk, N.; Mitina, N.; Riabtseva, A.; Kotsyumbas, I.; Stoika, R.; Zaichenko, A.; Vari, G. Comb-like PEGcontaining polymeric composition as low toxic drug nanocarrier. Cancer Nanotechnol. 2018, 9, 11 10.1186/s12645-018-0045-5
Ahmed, H. A.; Petroni, M. L.; Abu-Hamdiyyah, M.; Jazrawi, R. P.; Northfield, T. C. Hydrophobic/hydrophilic balance of proteins: a major determinant of cholesterol crystal formation in model bile. J. Lipid Res. 1994, 35, 211-219, 10.1016/S0022-2275(20)41209-X
Mosmann, T. Rapid colorimetric assay for cellular growth and survival: application to proliferation and cytotoxicity assays. J. lmmunol. Methods 1983, 65, 55-63, 10.1016/0022-1759(83)90303-4
Wang, Y.-J.; Pan, M.; Cheng, A.; Lin, L.; Ho, Y.; Hsieh, C.; Lin, J. Stability of curcumin in buffer solutions and characterization of its degradation products. J. Pharm. Biomed. Anal. 1997, 15, 1867-1876, 10.1016/S0731-7085(96)02024-9
Yakub, G.; Toncheva, A.; Manolova, N.; Rashkov, I.; Kussovski, V.; Danchev, D. Curcumin-loaded poly(l-lactide-co-D,l-lactide) electrospun fibers: Preparation and antioxidant, anticoagulant, and antibacterial properties. J. Bioact. Compat. Polym. 2014, 29, 607-627, 10.1177/0883911514553508
Chhouk, K.; Wahyudiono; Kanda, H.; Kawasaki, S.-I.; Goto, M. Micronization of curcumin with biodegradable polymer by supercritical anti-solvent using micro swirl mixer. Front. Chem. Sci. Eng. 2018, 12, 184-193, 10.1007/s11705-017-1678-3
Matos, R. L.; Lu, T.; Prosapio, V.; McConville, C.; Leeke, G.; Ingram, A. Coprecipitation of curcumin/PVP with enhanced dissolution properties by the supercritical antisolvent process. J. CO2Util. 2019, 30, 48-62, 10.1016/j.jcou.2019.01.005
Kharat, M.; Du, Z.; Zhang, G.; McClements, D. J. Physical and chemical stability of curcumin in aqueous solutions and emulsions: Impact of pH, temperature, and 3 molecular environment. J. Agric. Food Chem. 2016, 65, 1525-1532, 10.1021/acs.jafc.6b04815
Wulandari, A.; Sunarti, T. C.; Fahma, F.; Enomae, T. The potential of bioactives as biosensors for detection of pH. IOP Conf. Ser.: Earth Environ. Sci. 2020, 460, 012034 10.1088/1755-1315/460/1/012034
Anand, P.; Kunnumakkara, A. B.; Newman, R. A.; Aggarwal, B. Bioavailability of curcumin problems and promises. Mol. Pharm. 2007, 4, 807-818, 10.1021/mp700113r
Tonnesen, H.; Karlsen, J. Studies on curcumin and curcuminoids V alkaline degradation of curcumin. Z. Lebensm.-Unters.-Forsch. 1985, 180, 132-134, 10.1007/BF01042637
Stankovic, I. In CURCUMIN. Chemical and Technical Assessment, 61st JECFA, 2004; pp 1-8.
Pourreza, N.; Golmohammadi, H. Application of curcumin nanoparticles in a lab-on-paper device as a simple and green pH probe. Talanta 2015, 131, 136-141, 10.1016/j.talanta.2014.07.063
Sunarti, T. C.; Fahma, F.; Enomae, T. The potential of bioactives as biosensors for detection of pH. IOP Conf. Ser.: Earth Environ. Sci. 2020, 460, 012034 10.1088/1755-1315/460/1/012034
Nagahama, K.; Kumano, T.; Oyama, N.; Kawakami, J. Curcumisome nanovesicles generated by self-assembly of curcumin amphiphiles toward cancer theranostics. Biomater. Sci. 2015, 3, 1566-1578, 10.1039/C5BM00212E
Jankun, J.; Wyganowska-Świątkowska, M.; Dettlaff, K.; Jelińska, A.; Surdacka, A.; Wątróbska-Świetlikowska, D.; Skrzypczak-Jankun, E. Determining whether curcumin degradation/condensation is actually bioactivation (Review). Int. J. Mol. Med. 2016, 37, 1151-1158, 10.3892/ijmm.2016.2524
Goyal, P.; Kumar, P.; Gupta, A. Amphipathic methoxypolyethylene glycol-curcumin conjugate as effective drug delivery system useful for colonic diseases. Colloid Polym. Sci. 2021, 299, 1757-1766, 10.1007/s00396-021-04892-9
Moustapha, A.; Pérétout, P. A.; Rainey, N. E.; Sureau, F.; Geze, M.; Petit, J.-M.; Dewailly, E.; Slomianny, C.; Petit, P. X. Curcumin induces crosstalk between autophagy and apoptosis mediated by calcium release from the endoplasmic reticulum, lysosomal destabilization and mitochondrial events. Cell Death Discovery 2015, 1, 15017 10.1038/cddiscovery.2015.17
Haukvik, T.; Bruzell, E.; Kristensen, S.; Tønnesen, H. H. Photokilling of bacteria by curcumin in selected polyethylene glycol 400 (PEG 400) preparations Studies on curcumin and curcuminoids. Pharmazie 2010, 65, 600-606
Dahl, T. A.; McGowan, W. M.; Shand, M. A.; Srinivasan, V. S. Photokilling of bacteria by the natural dye curcumin. Arch. Microbiol. 1989, 151, 183-185, 10.1007/BF00414437
Dovigo, L. N.; Pavarina, A. C.; Ribeiro, A. P. D.; Brunetti, I. L.; Costa, C. A. d. S.; Jacomassi, D. P.; Bagnato, V. S.; Kurachi, C. Investigation of the photodynamic effects of curcumin against Candida albicans. Photochem. Photobiol. 2011, 87, 895-903, 10.1111/j.1751-1097.2011.00937.x
Greenwald, R. B.; Pendri, A.; Bolikal, D. Highly water soluble taxol derivatives: 7 Polyethylene glycol carbamates and carbonates. J. Org. Chem. 1995, 60, 331-336, 10.1021/jo00107a010