brain metastases; leptomeningeal metastases; microenvironment; microglia and cytokines; reactive astrocytes; Medicine (miscellaneous); Biochemistry, Genetics and Molecular Biology (all); General Biochemistry, Genetics and Molecular Biology
Abstract :
[en] The central nervous system is the location of metastases in more than 40% of patients with lung cancer, breast cancer and melanoma. These metastases are associated with one of the poorest prognoses in advanced cancer patients, mainly due to the lack of effective treatments. In this review, we explore the involvement of cytokines, including interleukins and chemokines, during the development of brain and leptomeningeal metastases from the epithelial-to-mesenchymal cell transition and blood-brain barrier extravasation to the interaction between cancer cells and cells from the brain microenvironment, including astrocytes and microglia. Furthermore, the role of the gut-brain axis on cytokine release during this process will also be addressed.
Disciplines :
Oncology
Author, co-author :
{"lastName":"Marin", "firstNames":"Julie","affiliations":["Laboratory of Clinical and Experimental Oncology (LOCE), Institut Jules Bordet, Université Libre de Bruxelles (ULB), 1070 Brussels, Belgium"],"ids":["SC:57783306000""OR:0000-0003-1167-9613"]}
Journe, Fabrice ; Université de Mons - UMONS ; Laboratory of Clinical and Experimental Oncology (LOCE), Institut Jules Bordet, Université Libre de Bruxelles (ULB), 1070 Brussels, Belgium
Ghanem, Ghanem E; Laboratory of Clinical and Experimental Oncology (LOCE), Institut Jules Bordet, Université Libre de Bruxelles (ULB), 1070 Brussels, Belgium
{"lastName":"Awada", "firstNames":"Ahmad","affiliations":["Laboratory of Clinical and Experimental Oncology (LOCE), Institut Jules Bordet, Université Libre de Bruxelles (ULB), 1070 Brussels, Belgium","Department of Medical Oncology, Institut Jules Bordet, Université Libre de Bruxelles (ULB), 1070 Brussels, Belgium"],"ids":["SC:26643168900""OR:0000-0001-7412-9163"]}
Kindt, Nadège; Laboratory of Clinical and Experimental Oncology (LOCE), Institut Jules Bordet, Université Libre de Bruxelles (ULB), 1070 Brussels, Belgium
Language :
English
Title :
Cytokine Landscape in Central Nervous System Metastases.
R550 - Institut des Sciences et Technologies de la Santé
Funders :
Fund for Scientific Research
Funding text :
Acknowledgments: This work was supported by ‘Amis de l’Institut Bordet’.J.M. is supported by a research grant from Fonds De La Recherche Scientifique‐FNRS (Télévie), number 7.4505.21.
Liu, Q.; Tong, X.; Wang, J. Management of Brain Metastases: History and the Present. Chin. Neurosurg. J. 2019, 5, 1. https://doi.org/10.1186/s41016‐018‐0149‐0.
Palmer, J.D.; Trifiletti, D.M.; Gondi, V.; Chan, M.; Minniti, G.; Rusthoven, C.G.; Schild, S.E.; Mishra, M.V.; Bovi, J.; Williams, N.; et al. Multidisciplinary Patient‐Centered Management of Brain Metastases and Future Directions. Neurooncol. Adv. 2020, 2, vdaa034. https://doi.org/10.1093/noajnl/vdaa034.
Wang, N.; Bertalan, M.S.; Brastianos, P.K. Leptomeningeal Metastasis from Systemic Cancer: Review and Update on Management. Cancer 2018, 124, 21–35. https://doi.org/10.1002/cncr.30911.
Franzoi, M.A.; Hortobagyi, G.N. Leptomeningeal Carcinomatosis in Patients with Breast Cancer. Crit. Rev. Oncol. Hematol. 2019, 135, 85–94. https://doi.org/10.1016/j.critrevonc.2019.01.020.
Roelz, R.; Reinacher, P.; Jabbarli, R.; Kraeutle, R.; Hippchen, B.; Egger, K.; Weyerbrock, A.; Machein, M. Surgical Ventricular Entry Is a Key Risk Factor for Leptomeninge…..eal Metastasis of High Grade Gliomas. Sci. Rep. 2015, 5, 17758. https://doi.org/10.1038/srep17758.
Valiente, M.; Ahluwalia, M.S.; Boire, A.; Brastianos, P.K.; Goldberg, S.B.; Lee, E.Q.; Le Rhun, E.; Preusser, M.; Winkler, F.; Soffietti, R. The Evolving Landscape of Brain Metastasis. Trends Cancer 2018, 4, 176–196. https://doi.org/10.1016/j.trecan.2018.01.003.
Kartikasari, A.E.R.; Huertas, C.S.; Mitchell, A.; Plebanski, M. Tumor‐Induced Inflammatory Cytokines and the Emerging Diagnostic Devices for Cancer Detection and Prognosis. Front. Oncol. 2021, 11, 692142. https://doi.org/10.3389/fonc.2021.692142.
Dranoff, G. Cytokines in Cancer Pathogenesis and Cancer Therapy. Nat. Rev. Cancer 2004, 4, 11–22. https://doi.org/10.1038/nrc1252.
Kawaguchi, K.; Sakurai, M.; Yamamoto, Y.; Suzuki, E.; Tsuda, M.; Kataoka, T.R.; Hirata, M.; Nishie, M.; Nojiri, T.; Kumazoe, M.; et al. Alteration of Specific Cytokine Expression Patterns in Patients with Breast Cancer. Sci. Rep. 2019, 9, 2924. https://doi.org/10.1038/s41598‐019‐39476‐9.
Chattopadhyay, I.; Ambati, R.; Gundamaraju, R. Exploring the Crosstalk between Inflammation and Epithelial‐Mesenchymal Transition in Cancer. Mediat. Inflamm. 2021, 2021, 9918379. https://doi.org/10.1155/2021/9918379.
Rejniak, K.A. Circulating Tumor Cells: When a Solid Tumor Meets a Fluid Microenvironment. Adv. Exp. Med. Biol. 2016, 936, 93–106. https://doi.org/10.1007/978‐3‐319‐42023‐3_5.
Motallebnejad, P.; Rajesh, V.V.; Azarin, S.M. Evaluating the Role of IL‐1β in Transmigration of Triple Negative Breast Cancer Cells Across the Brain Endothelium. Cell. Mol. Bioeng. 2022, 15, 99–114. https://doi.org/10.1007/s12195‐021‐00710‐y.
Sirkisoon, S.R.; Carpenter, R.L.; Rimkus, T.; Doheny, D.; Zhu, D.; Aguayo, N.R.; Xing, F.; Chan, M.; Ruiz, J.; Metheny‐Barlow, L.J.; et al. TGLI1 Transcription Factor Mediates Breast Cancer Brain Metastasis via Activating Metastasis‐Initiating Cancer Stem Cells and Astrocytes in the Tumor Microenvironment. Oncogene 2020, 39, 64–78. https://doi.org/10.1038/s41388‐019‐0959‐3.
Sayyad, M.R.; Puchalapalli, M.; Vergara, N.G.; Wangensteen, S.M.; Moore, M.; Mu, L.; Edwards, C.; Anderson, A.; Kall, S.; Sullivan, M.; et al. Syndecan‐1 Facilitates Breast Cancer Metastasis to the Brain. Breast Cancer Res. Treat. 2019, 178, 35–49. https://doi.org/10.1007/s10549‐019‐05347‐0.
Curtaz, C.J.; Schmitt, C.; Herbert, S.‐L.; Feldheim, J.; Schlegel, N.; Gosselet, F.; Hagemann, C.; Roewer, N.; Meybohm, P.; Wöckel, A.; et al. Serum‐Derived Factors of Breast Cancer Patients with Brain Metastases Alter Permeability of a Human Blood‐Brain Barrier Model. Fluids Barriers CNS 2020, 17, 31. https://doi.org/10.1186/s12987‐020‐00192‐6.
Chang, G.; Shi, L.; Ye, Y.; Shi, H.; Zeng, L.; Tiwary, S.; Huse, J.T.; Huo, L.; Ma, L.; Ma, Y.; et al. YTHDF3 Induces the Translation of M6A‐Enriched Gene Transcripts to Promote Breast Cancer Brain Metastasis. Cancer Cell. 2020, 38, 857‐871.e7. https://doi.org/10.1016/j.ccell.2020.10.004.
Liu, T.; Miao, Z.; Jiang, J.; Yuan, S.; Fang, W.; Li, B.; Chen, Y. Visfatin Mediates SCLC Cells Migration across Brain Endothelial Cells through Upregulation of CCL2. Int. J. Mol. Sci. 2015, 16, 11439–11451. https://doi.org/10.3390/ijms160511439.
Rai, S.; Nejadhamzeeigilani, Z.; Gutowski, N.J.; Whatmore, J.L. Loss of the Endothelial Glycocalyx Is Associated with Increased E‐Selectin Mediated Adhesion of Lung Tumour Cells to the Brain Microvascular Endothelium. J. Exp. Clin. Cancer Res. 2015, 34, 105. https://doi.org/10.1186/s13046‐015‐0223‐9.
Rodrigues, G.; Hoshino, A.; Kenific, C.M.; Matei, I.R.; Steiner, L.; Freitas, D.; Kim, H.S.; Oxley, P.R.; Scandariato, I.; Casanova‐ Salas, I.; et al. Tumour Exosomal CEMIP Protein Promotes Cancer Cell Colonization in Brain Metastasis. Nat. Cell. Biol. 2019, 21, 1403–1412. https://doi.org/10.1038/s41556‐019‐0404‐4.
Wu, D.; Deng, S.; Li, L.; Liu, T.; Zhang, T.; Li, J.; Yu, Y.; Xu, Y. TGF‐Β1‐Mediated Exosomal Lnc‐MMP2‐2 Increases Blood‐Brain Barrier Permeability via the MiRNA‐1207‐5p/EPB41L5 Axis to Promote Non‐Small Cell Lung Cancer Brain Metastasis. Cell Death Dis. 2021, 12, 721. https://doi.org/10.1038/s41419‐021‐04004‐z.
Hajal, C.; Shin, Y.; Li, L.; Serrano, J.C.; Jacks, T.; Kamm, R.D. The CCL2‐CCR2 Astrocyte‐Cancer Cell Axis in Tumor Extravasation at the Brain. Sci. Adv. 2021, 7, eabg8139. https://doi.org/10.1126/sciadv.abg8139.
Doron, H.; Amer, M.; Ershaid, N.; Blazquez, R.; Shani, O.; Lahav, T.G.; Cohen, N.; Adler, O.; Hakim, Z.; Pozzi, S.; et al. Inflammatory Activation of Astrocytes Facilitates Melanoma Brain Tropism via the CXCL10‐CXCR3 Signaling Axis. Cell Rep. 2019, 28, 1785–1798.e6. https://doi.org/10.1016/j.celrep.2019.07.033.
Glitza, I.C.; Smalley, K.S.M.; Brastianos, P.K.; Davies, M.A.; McCutcheon, I.; Liu, J.K.C.; Ahmed, K.A.; Arrington, J.A.; Evernden, B.R.; Smalley, I.; et al. Leptomeningeal Disease in Melanoma Patients: An Update to Treatment, Challenges, and Future Directions. Pigment. Cell Melanoma Res. 2020, 33, 527–541. https://doi.org/10.1111/pcmr.12861.
Boire, A.; Zou, Y.; Shieh, J.; Macalinao, D.G.; Pentsova, E.; Massagué, J. Complement Component 3 Adapts the Cerebrospinal Fluid for Leptomeningeal Metastasis. Cell 2017, 168, 1101–1113.e13. https://doi.org/10.1016/j.cell.2017.02.025.
Shen, Y.; Zhang, B.; Wei, X.; Guan, X.; Zhang, W. CXCL8 Is a Prognostic Biomarker and Correlated with TNBC Brain Metastasis and Immune Infiltration. Int. Immunopharmacol. 2022, 103, 108454. https://doi.org/10.1016/j.intimp.2021.108454.
Hozhabri, H.; Ghasemi Dehkohneh, R.S.; Razavi, S.M.; Razavi, S.M.; Salarian, F.; Rasouli, A.; Azami, J.; Ghasemi Shiran, M.; Kardan, Z.; Farrokhzad, N.; et al. Comparative Analysis of Protein‐Protein Interaction Networks in Metastatic Breast Cancer. PLoS ONE 2022, 17, e0260584. https://doi.org/10.1371/journal.pone.0260584.
Hinton, C.V.; Avraham, S.; Avraham, H.K. Role of the CXCR4/CXCL12 Signaling Axis in Breast Cancer Metastasis to the Brain. Clin. Exp. Metastasis 2010, 27, 97–105. https://doi.org/10.1007/s10585‐008‐9210‐2.
Safarulla, S.; Madan, A.; Xing, F.; Chandrasekaran, A. CXCR2 Mediates Distinct Neutrophil Behavior in Brain Metastatic Breast Tumor. Cancers 2022, 14, 515. https://doi.org/10.3390/cancers14030515.
Zhang, C.; Zhang, F.; Tsan, R.; Fidler, I.J. Transforming Growth Factor‐Beta2 Is a Molecular Determinant for Site‐Specific Melanoma Metastasis in the Brain. Cancer Res. 2009, 69, 828–835. https://doi.org/10.1158/0008‐5472.CAN‐08‐2588.
Dohm, A.; Su, J.; McTyre, E.R.; Taylor, J.M.; Miller, L.D.; Petty, W.J.; Xing, F.; Lo, H.‐W.; Metheny‐Barlow, L.J.; O’Neill, S.; et al. Identification of CD37, Cystatin A, and IL‐23A Gene Expression in Association with Brain Metastasis: Analysis of a Prospective Trial. Int. J. Biol. Markers 2019, 34, 90–97. https://doi.org/10.1177/1724600818803104.
Li, J.; Zhang, L.; Zhang, J.; Wei, Y.; Li, K.; Huang, L.; Zhang, S.; Gao, B.; Wang, X.; Lin, P. Interleukin 23 Regulates Proliferation of Lung Cancer Cells in a Concentration‐Dependent Way in Association with the Interleukin‐23 Receptor. Carcinogenesis 2013, 34, 658–666. https://doi.org/10.1093/carcin/bgs384.
Quail, D.F.; Joyce, J.A. The Microenvironmental Landscape of Brain Tumors. Cancer Cell. 2017, 31, 326–341. https://doi.org/10.1016/j.ccell.2017.02.009.
Burda, J.E.; Sofroniew, M.V. Reactive Gliosis and the Multicellular Response to CNS Damage and Disease. Neuron 2014, 81, 229– 248. https://doi.org/10.1016/j.neuron.2013.12.034.
Xing, F.; Liu, Y.; Sharma, S.; Wu, K.; Chan, M.D.; Lo, H.‐W.; Carpenter, R.L.; Metheny‐Barlow, L.J.; Zhou, X.; Qasem, S.A.; et al. Activation of the C‐Met Pathway Mobilizes an Inflammatory Network in the Brain Microenvironment to Promote Brain Metastasis of Breast Cancer. Cancer Res. 2016, 76, 4970–4980. https://doi.org/10.1158/0008‐5472.CAN‐15‐3541.
Chen, Q.; Boire, A.; Jin, X.; Valiente, M.; Er, E.E.; Lopez‐Soto, A.; Jacob, L.; Patwa, R.; Shah, H.; Xu, K.; et al. Carcinoma‐Astrocyte Gap Junctions Promote Brain Metastasis by CGAMP Transfer. Nature 2016, 533, 493–498. https://doi.org/10.1038/nature18268.
Priego, N.; Zhu, L.; Monteiro, C.; Mulders, M.; Wasilewski, D.; Bindeman, W.; Doglio, L.; Martínez, L.; Martínez‐Saez, E.; Ramón Y Cajal, S.; et al. STAT3 Labels a Subpopulation of Reactive Astrocytes Required for Brain Metastasis. Nat. Med. 2018, 24, 1024– 1035. https://doi.org/10.1038/s41591‐018‐0044‐4.
Henrik Heiland, D.; Ravi, V.M.; Behringer, S.P.; Frenking, J.H.; Wurm, J.; Joseph, K.; Garrelfs, N.W.C.; Strähle, J.; Heynckes, S.; Grauvogel, J.; et al. Tumor‐Associated Reactive Astrocytes Aid the Evolution of Immunosuppressive Environment in Glioblastoma. Nat. Commun. 2019, 10, 2541. https://doi.org/10.1038/s41467‐019‐10493‐6.
Wu, K.; Fukuda, K.; Xing, F.; Zhang, Y.; Sharma, S.; Liu, Y.; Chan, M.D.; Zhou, X.; Qasem, S.A.; Pochampally, R.; et al. Roles of the Cyclooxygenase 2 Matrix Metalloproteinase 1 Pathway in Brain Metastasis of Breast Cancer. J. Biol. Chem. 2015, 290, 9842– 9854. https://doi.org/10.1074/jbc.M114.602185.
Monteiro, C.; Miarka, L.; Perea‐García, M.; Priego, N.; García‐Gómez, P.; Álvaro‐Espinosa, L.; de Pablos‐Aragoneses, A.; Yebra, N.; Retana, D.; Baena, P.; et al. Stratification of Radiosensitive Brain Metastases Based on an Actionable S100A9/RAGE Resistance Mechanism. Nat. Med. 2022, 28, 752–765. https://doi.org/10.1038/s41591‐022‐01749‐8.
Hussen, B.M.; Hidayat, H.J.; Salihi, A.; Sabir, D.K.; Taheri, M.; Ghafouri‐Fard, S. MicroRNA: A Signature for Cancer Progression. Biomed. Pharmacother. 2021, 138, 111528. https://doi.org/10.1016/j.biopha.2021.111528.
Sirkisoon, S.R.; Wong, G.L.; Aguayo, N.R.; Doheny, D.L.; Zhu, D.; Regua, A.T.; Arrigo, A.; Manore, S.G.; Wagner, C.; Thomas, A.; et al. Breast Cancer Extracellular Vesicles‐Derived MiR‐1290 Activates Astrocytes in the Brain Metastatic Microenvironment via the FOXA2→CNTF Axis to Promote Progression of Brain Metastases. Cancer Lett. 2022, 540, 215726. https://doi.org/10.1016/j.canlet.2022.215726.
Salter, M.W.; Stevens, B. Microglia Emerge as Central Players in Brain Disease. Nat. Med. 2017, 23, 1018–1027. https://doi.org/10.1038/nm.4397.
Orihuela, R.; McPherson, C.A.; Harry, G.J. Microglial M1/M2 Polarization and Metabolic States. Br. J. Pharmacol. 2016, 173, 649– 665. https://doi.org/10.1111/bph.13139.
Wu, S.‐Y.; Sharma, S.; Wu, K.; Tyagi, A.; Zhao, D.; Deshpande, R.P.; Watabe, K. Tamoxifen Suppresses Brain Metastasis of Estrogen Receptor‐Deficient Breast Cancer by Skewing Microglia Polarization and Enhancing Their Immune Functions. Breast Cancer Res. 2021, 23, 35. https://doi.org/10.1186/s13058‐021‐01412‐z.
Jin, Y.; Kang, Y.; Wang, M.; Wu, B.; Su, B.; Yin, H.; Tang, Y.; Li, Q.; Wei, W.; Mei, Q.; et al. Targeting Polarized Phenotype of Microglia via IL6/JAK2/STAT3 Signaling to Reduce NSCLC Brain Metastasis. Signal. Transduct. Target Ther. 2022, 7, 52. https://doi.org/10.1038/s41392‐022‐00872‐9.
Economopoulos, V.; Pannell, M.; Johanssen, V.A.; Scott, H.; Andreou, K.E.; Larkin, J.R.; Sibson, N.R. Inhibition of Anti‐ Inflammatory Macrophage Phenotype Reduces Tumour Growth in Mouse Models of Brain Metastasis. Front. Oncol. 2022, 12, 850656. https://doi.org/10.3389/fonc.2022.850656.
Gan, D.‐X.; Wang, Y.‐B.; He, M.‐Y.; Chen, Z.‐Y.; Qin, X.‐X.; Miao, Z.‐W.; Chen, Y.‐H.; Li, B. Lung Cancer Cells‐Controlled Dkk‐ 1 Production in Brain Metastatic Cascade Drive Microglia to Acquire a Pro‐Tumorigenic Phenotype. Front. Cell. Dev. Biol. 2020, 8, 591405. https://doi.org/10.3389/fcell.2020.591405.
Chen, P.; Liu, R.; Yu, Z.; Cui, G.; Zong, W.; Wang, M.; Xie, M.; Qu, W.; Wang, W.; Luo, X. MiR196a‐5p in Extracellular Vesicles Released from Human Nasopharyngeal Carcinoma Enhance the Phagocytosis and Secretion of Microglia by Targeting ROCK1. Exp. Cell. Res. 2022, 411, 112988. https://doi.org/10.1016/j.yexcr.2021.112988.
Matejuk, A.; Ransohoff, R.M. Crosstalk Between Astrocytes and Microglia: An Overview. Front. Immunol. 2020, 11, 1416. https://doi.org/10.3389/fimmu.2020.01416.
Kim, S.; Son, Y. Astrocytes Stimulate Microglial Proliferation and M2 Polarization In Vitro through Crosstalk between Astrocytes and Microglia. Int. J. Mol. Sci. 2021, 22, 8800. https://doi.org/10.3390/ijms22168800.
Ogiya, R.; Niikura, N.; Kumaki, N.; Yasojima, H.; Iwasa, T.; Kanbayashi, C.; Oshitanai, R.; Tsuneizumi, M.; Watanabe, K.‐I.; Matsui, A.; et al. Comparison of Immune Microenvironments between Primary Tumors and Brain Metastases in Patients with Breast Cancer. Oncotarget 2017, 8, 103671–103681. https://doi.org/10.18632/oncotarget.22110.
Lee, M.; Heo, S.‐H.; Song, I.H.; Rajayi, H.; Park, H.S.; Park, I.A.; Kim, Y.‐A.; Lee, H.; Gong, G.; Lee, H.J. Presence of Tertiary Lymphoid Structures Determines the Level of Tumor‐Infiltrating Lymphocytes in Primary Breast Cancer and Metastasis. Mod. Pathol. 2019, 32, 70–80. https://doi.org/10.1038/s41379‐018‐0113‐8.
Vilariño, N.; Bruna, J.; Bosch‐Barrera, J.; Valiente, M.; Nadal, E. Immunotherapy in NSCLC Patients with Brain Metastases. Understanding Brain Tumor Microenvironment and Dissecting Outcomes from Immune Checkpoint Blockade in the Clinic. Cancer Treat. Rev. 2020, 89, 102067. https://doi.org/10.1016/j.ctrv.2020.102067.
Croft, P.K.; Chittoory, H.; Nguyen, T.H.; Saunus, J.M.; Kim, W.G.; McCart Reed, A.E.; Lim, M.; De Luca, X.M.; Ferguson, K.; Niland, C.; et al. Characterization of Immune Cell Subsets of Tumor Infiltrating Lymphocytes in Brain Metastases. Biology 2021, 10, 425. https://doi.org/10.3390/biology10050425.
Mustafa, D.A.M.; Pedrosa, R.M.S.M.; Smid, M.; van der Weiden, M.; de Weerd, V.; Nigg, A.L.; Berrevoets, C.; Zeneyedpour, L.; Priego, N.; Valiente, M.; et al. T Lymphocytes Facilitate Brain Metastasis of Breast Cancer by Inducing Guanylate‐Binding Protein 1 Expression. Acta Neuropathol. 2018, 135, 581–599. https://doi.org/10.1007/s00401‐018‐1806‐2.
Friebel, E.; Kapolou, K.; Unger, S.; Núñez, N.G.; Utz, S.; Rushing, E.J.; Regli, L.; Weller, M.; Greter, M.; Tugues, S.; et al. Single‐ Cell Mapping of Human Brain Cancer Reveals Tumor‐Specific Instruction of Tissue‐Invading Leukocytes. Cell 2020, 181, 1626‐ 1642.e20. https://doi.org/10.1016/j.cell.2020.04.055.
Hamilton, A.; Sibson, N.R. Role of the Systemic Immune System in Brain Metastasis. Mol. Cell Neurosci. 2013, 53, 42–51. https://doi.org/10.1016/j.mcn.2012.10.004.
Coffelt, S.B.; Wellenstein, M.D.; de Visser, K.E. Neutrophils in Cancer: Neutral No More. Nat. Rev. Cancer 2016, 16, 431–446. https://doi.org/10.1038/nrc.2016.52.
Ng, L.G.; Ostuni, R.; Hidalgo, A. Heterogeneity of Neutrophils. Nat. Rev. Immunol. 2019, 19, 255–265. https://doi.org/10.1038/s41577‐019‐0141‐8.
Lin, Y.‐J.; Wei, K.‐C.; Chen, P.‐Y.; Lim, M.; Hwang, T.‐L. Roles of Neutrophils in Glioma and Brain Metastases. Front. Immunol. 2021, 12, 701383. https://doi.org/10.3389/fimmu.2021.701383.
Fares, J.; Ulasov, I.; Timashev, P.; Lesniak, M.S. Emerging Principles of Brain Immunology and Immune Checkpoint Blockade in Brain Metastases. Brain 2021, 144, 1046–1066. https://doi.org/10.1093/brain/awab012.
Klemm, F.; Maas, R.R.; Bowman, R.L.; Kornete, M.; Soukup, K.; Nassiri, S.; Brouland, J.‐P.; Iacobuzio‐Donahue, C.A.; Brennan, C.; Tabar, V.; et al. Interrogation of the Microenvironmental Landscape in Brain Tumors Reveals Disease‐Specific Alterations of Immune Cells. Cell 2020, 181, 1643‐1660.e17. https://doi.org/10.1016/j.cell.2020.05.007.
Cacho‐Díaz, B.; Cortes‐Ortega, M.D.; Reynoso‐Noverón, N.; Wegman‐Ostrosky, T.; Arriaga‐Canon, C.; Bargalló‐Rocha, J.E. Association of the Neutrophil‐to‐Lymphocyte Ratio with Brain Metastases in Hispanic Breast Cancer Patients. Cancer Treat. Res. Commun. 2021, 29, 100452. https://doi.org/10.1016/j.ctarc.2021.100452.
Chi, Y.; Remsik, J.; Kiseliovas, V.; Derderian, C.; Sener, U.; Alghader, M.; Saadeh, F.; Nikishina, K.; Bale, T.; Iacobuzio‐Donahue, C.; et al. Cancer Cells Deploy Lipocalin‐2 to Collect Limiting Iron in Leptomeningeal Metastasis. Science 2020, 369, 276–282. https://doi.org/10.1126/science.aaz2193.
Ansari, K.I.; Bhan, A.; Saotome, M.; Tyagi, A.; De Kumar, B.; Chen, C.; Takaku, M.; Jandial, R. Autocrine GMCSF Signaling Contributes to Growth of HER2+ Breast Leptomeningeal Carcinomatosis. Cancer Res. 2021, 81, 4723–4735. https://doi.org/10.1158/0008‐5472.CAN‐21‐0259.
Bhan, A.; Ansari, K.I.; Chen, M.Y.; Jandial, R. Inhibition of Jumonji Histone Demethylases Selectively Suppresses HER2+ Breast Leptomeningeal Carcinomatosis Growth via Inhibition of GMCSF Expression. Cancer Res. 2021, 81, 3200–3214. https://doi.org/10.1158/0008‐5472.CAN‐20‐3317.
Kemmerer, C.L.; Schittenhelm, J.; Dubois, E.; Neumann, L.; Häsler, L.M.; Lambert, M.; Renovanz, M.; Kaeser, S.A.; Tabatabai, G.; Ziemann, U.; et al. Cerebrospinal Fluid Cytokine Levels Are Associated with Macrophage Infiltration into Tumor Tissues of Glioma Patients. BMC Cancer 2021, 21, 1108. https://doi.org/10.1186/s12885‐021‐08825‐1.
Low, S.Y.Y.; Bte Syed Sulaiman, N.; Tan, E.E.K.; Ng, L.P.; Kuick, C.H.; Chang, K.T.E.; Tang, P.H.; Wong, R.X.; Looi, W.S.; Low, D.C.Y.; et al. Cerebrospinal Fluid Cytokines in Metastatic Group 3 and 4 Medulloblastoma. BMC Cancer 2020, 20, 554. https://doi.org/10.1186/s12885‐020‐07048‐0.
Hanahan, D. Hallmarks of Cancer: New Dimensions. Cancer Discov. 2022, 12, 31–46. https://doi.org/10.1158/2159‐8290.CD‐21‐ 1059.
Li, R.; Zhou, R.; Wang, H.; Li, W.; Pan, M.; Yao, X.; Zhan, W.; Yang, S.; Xu, L.; Ding, Y.; et al. Gut Microbiota‐Stimulated Cathepsin K Secretion Mediates TLR4‐Dependent M2 Macrophage Polarization and Promotes Tumor Metastasis in Colorectal Cancer. Cell Death Differ. 2019, 26, 2447–2463. https://doi.org/10.1038/s41418‐019‐0312‐y.
Cryan, J.F.; Dinan, T.G. Mind‐Altering Microorganisms: The Impact of the Gut Microbiota on Brain and Behaviour. Nat Rev Neurosci 2012, 13, 701–712. https://doi.org/10.1038/nrn3346.
Dehhaghi, M.; Kazemi Shariat Panahi, H.; Heng, B.; Guillemin, G.J. The Gut Microbiota, Kynurenine Pathway, and Immune System Interaction in the Development of Brain Cancer. Front. Cell. Dev. Biol. 2020, 8, 562812. https://doi.org/10.3389/fcell.2020.562812.
Platten, M.; Weller, M.; Wick, W. Shaping the Glioma Immune Microenvironment through Tryptophan Metabolism. CNS Oncol. 2012, 1, 99–106. https://doi.org/10.2217/cns.12.6.
Johnson, S.; Morad, G.; Ajami, N.; Wargo, J.; Wong, M.; Lastrapes, M. 838 The Role of Microbiota in Metastatic Brain Tumors. J. Immunother. Cancer 2021, 9 (Suppl. 2), A879. https://doi.org/10.1136/jitc‐2021‐SITC2021.838.
Klemm, F.; Möckl, A.; Salamero‐Boix, A.; Alekseeva, T.; Schäffer, A.; Schulz, M.; Niesel, K.; Maas, R.R.; Groth, M.; Elie, B.T.; et al. Compensatory CSF2‐Driven Macrophage Activation Promotes Adaptive Resistance to CSF1R Inhibition in Breast‐to‐Brain Metastasis. Nat. Cancer 2021, 2, 1086–1101. https://doi.org/10.1038/s43018‐021‐00254‐0.
Németh, T.; Sperandio, M.; Mócsai, A. Neutrophils as Emerging Therapeutic Targets. Nat. Rev. Drug Discov. 2020, 19, 253–275. https://doi.org/10.1038/s41573‐019‐0054‐z.
Shaul, M.E.; Fridlender, Z.G. Tumour‐Associated Neutrophils in Patients with Cancer. Nat. Rev. Clin. Oncol. 2019, 16, 601–620. https://doi.org/10.1038/s41571‐019‐0222‐4.
Briukhovetska, D.; Dörr, J.; Endres, S.; Libby, P.; Dinarello, C.A.; Kobold, S. Interleukins in Cancer: From Biology to Therapy. Nat. Rev. Cancer 2021, 21, 481–499. https://doi.org/10.1038/s41568‐021‐00363‐z.
Mandal, P.K.; Biswas, S.; Mandal, G.; Purohit, S.; Gupta, A.; Majumdar Giri, A.; Roy Chowdhury, S.; Bhattacharyya, A. CCL2 Conditionally Determines CCL22‐Dependent Th2‐Accumulation during TGF‐β‐Induced Breast Cancer Progression. Immunobiology 2018, 223, 151–161. https://doi.org/10.1016/j.imbio.2017.10.031.
Zhou, L.; Jiang, Y.; Liu, X.; Li, L.; Yang, X.; Dong, C.; Liu, X.; Lin, Y.; Li, Y.; Yu, J.; et al. Promotion of Tumor‐Associated Macrophages Infiltration by Elevated Neddylation Pathway via NF‐ΚB‐CCL2 Signaling in Lung Cancer. Oncogene 2019, 38, 5792–5804. https://doi.org/10.1038/s41388‐019‐0840‐4.
Kindt, N.; Preillon, J.; Kaltner, H.; Gabius, H.‐J.; Chevalier, D.; Rodriguez, A.; Johnson, B.D.; Megalizzi, V.; Decaestecker, C.; Laurent, G.; et al. Macrophage Migration Inhibitory Factor in Head and Neck Squamous Cell Carcinoma: Clinical and Experimental Studies. J. Cancer Res. Clin. Oncol. 2013, 139, 727–737. https://doi.org/10.1007/s00432‐013‐1375‐7.