[en] Non-pathogenic Neisseria are a reservoir of antimicrobial resistance genes for pathogenic Neisseria meningitidis and Neisseria gonorrhoeae. Men who have sex with men (MSM) are at risk of co-colonization with resistant non-pathogenic and pathogenic Neisseria. We assessed if the antimicrobial susceptibility of non-pathogenic Neisseria among MSM differs from a general population and if antimicrobial exposure impacts susceptibility. We recruited 96 participants at our center in Belgium: 32 employees, 32 MSM who did not use antibiotics in the previous 6 months, and 32 MSM who did. Oropharyngeal Neisseria were cultured and identified with MALDI-TOF-MS. Minimum inhibitory concentrations for azithromycin, ceftriaxone and ciprofloxacin were determined using E-tests® and compared between groups with non-parametric tests. Non-pathogenic Neisseria from employees as well as MSM were remarkably resistant. Those from MSM were significantly less susceptible than employees to azithromycin and ciprofloxacin (p < 0.0001, p < 0.001), but not ceftriaxone (p = 0.3). Susceptibility did not differ significantly according to recent antimicrobial exposure in MSM. Surveilling antimicrobial susceptibility of non-pathogenic Neisseria may be a sensitive way to assess impact of antimicrobial exposure in a population. The high levels of antimicrobial resistance in this survey indicate that novel resistance determinants may be readily available for future transfer from non-pathogenic to pathogenic Neisseria.
Disciplines :
Laboratory medicine & medical technology
Author, co-author :
Laumen, Jolein Gyonne Elise; Department of Clinical Sciences, Institute of Tropical Medicine Antwerp, Nationalestraat 155, 2000, Antwerp, Belgium ; Laboratory of Medical Microbiology, University of Antwerp, Wilrijk, Belgium
Van Dijck, Christophe; Department of Clinical Sciences, Institute of Tropical Medicine Antwerp, Nationalestraat 155, 2000, Antwerp, Belgium ; Laboratory of Medical Microbiology, University of Antwerp, Wilrijk, Belgium
Abdellati, Saïd; Department of Clinical Sciences, Institute of Tropical Medicine Antwerp, Nationalestraat 155, 2000, Antwerp, Belgium
De Baetselier, Irith; Department of Clinical Sciences, Institute of Tropical Medicine Antwerp, Nationalestraat 155, 2000, Antwerp, Belgium
Serrano, Gabriela; Department of Microbiology, Laboratoire Hospitalier Universitaire de Bruxelles, Pôle Hospitalier Universitaire de Bruxelles, Université Libre de Bruxelles, Brussels, Belgium
Manoharan-Basil, Sheeba Santhini; Department of Clinical Sciences, Institute of Tropical Medicine Antwerp, Nationalestraat 155, 2000, Antwerp, Belgium
Bottieau, Emmanuel; Department of Clinical Sciences, Institute of Tropical Medicine Antwerp, Nationalestraat 155, 2000, Antwerp, Belgium
Martiny, Delphine ; Université de Mons - UMONS ; Department of Microbiology, Laboratoire Hospitalier Universitaire de Bruxelles, Pôle Hospitalier Universitaire de Bruxelles, Université Libre de Bruxelles, Brussels, Belgium
Kenyon, Chris ; Department of Clinical Sciences, Institute of Tropical Medicine Antwerp, Nationalestraat 155, 2000, Antwerp, Belgium. ckenyon@itg.be ; Department of Medicine, University of Cape Town, Cape Town, South Africa. ckenyon@itg.be
Language :
English
Title :
Antimicrobial susceptibility of commensal Neisseria in a general population and men who have sex with men in Belgium.
Unemo, M. & Shafer, W. M. Antimicrobial resistance in Neisseria gonorrhoeae in the 21st Century: Past, evolution, and future. Clin. Microbiol. Rev. 27, 587–613 (2014). DOI: 10.1128/CMR.00010-14
Chen, M. et al. Evolution of sequence type 4821 clonal complex hyperinvasive and quinolone-resistant meningococci. Emerg. Infect. Dis. 27, 1110–1122 (2021). DOI: 10.3201/eid2704.203612
Zapun, A., Morlot, C. & Taha, M. K. Resistance to β-lactams in Neisseria ssp due to chromosomally encoded penicillin-binding proteins. Antibiotics 5, 1–12 (2016). DOI: 10.3390/antibiotics5040035
Banhart, S. et al. The mosaic mtr locus as major genetic determinant of azithromycin resistance of Neisseria gonorrhoeae, Germany, 2018. J. Infect. Dis. 10.1093/infdis/jiab091 (2021). DOI: 10.1093/infdis/jiab091
Wadsworth, C. B., Arnold, B. J., Sater, M. R. A. A. & Grad, Y. H. Azithromycin resistance through interspecific acquisition of an epistasis-dependent efflux pump component and transcriptional regulator in Neisseria gonorrhoeae. MBio 9, 1–17 (2018). DOI: 10.1128/mBio.01419-18
Hanao, M. et al. Molecular characterization of Neisseria gonorrhoeae isolates collected through a national surveillance programme in Japan, 2013: Evidence of the emergence of a ceftriaxone-resistant strain from a ceftriaxone-susceptible lineage. J. Antimicrob. Chemother. 76, 1769–1775 (2021). DOI: 10.1093/jac/dkab104
Chen, M., Zhang, C., Zhang, X. & Chen, M. Meningococcal quinolone resistance originated from several commensal neisseria species. Antimicrob. Agents Chemother. 64, e01494–19 (2020).
Dong, H. V. et al. Decreased cephalosporin susceptibility of oropharyngeal neisseria species in antibiotic-using men who have sex with men in Hanoi, Vietnam. Clin. Infect. Dis. 70, 1169–1175 (2020). DOI: 10.1093/cid/ciz365
Fiore, M. A., Raisman, J. C., Wong, N. H., Hudson, A. O. & Wadsworth, C. B. Exploration of the neisseria resistome reveals resistance mechanisms in commensals that may be acquired by N. Gonorrhoeae through horizontal gene transfer. Antibiotics 9, 1–12 (2020).
Manoharan-Basil, S. S. et al. Evidence of horizontal gene transfer of 50S ribosomal genes rplB, rplD, and rplY in Neisseria gonorrhoeae. Front. Microbiol. 12, 1–17 (2021). DOI: 10.3389/fmicb.2021.683901
Gernert, K. M. et al. Azithromycin susceptibility of Neisseria gonorrhoeae in the USA in 2017: A genomic analysis of surveillance data. Lancet Microbe 1, e154–e164 (2020). DOI: 10.1016/S2666-5247(20)30059-8
Kenyon, C., Laumen, J. & Manoharan-Basil, S. Choosing new therapies for gonorrhoea: We need to consider the impact on the Pan-Neisseria Genome. A viewpoint. Antibiotics 10, 515 (2021). DOI: 10.3390/antibiotics10050515
Goytia, M., Thompson, S. T., Jordan, S. V. L. & King, K. A. Antimicrobial resistance profiles of human commensal neisseria species. Antibiotics 10, 538 (2021).
Shen, Y. & Chen, M. Prevalence, sequence type, and quinolone resistance of Neisseria lactamica carried in children younger than 15 years in Shanghai, China. J. Infect. 80, 61–68 (2020). DOI: 10.1016/j.jinf.2019.08.020
Takei, H. et al. Bacteriological analysis of Neisseria lactamica isolated from the respiratory tract in Japanese children. J. Infect. Chemother. 27, 65–69 (2021). DOI: 10.1016/j.jiac.2020.08.011
Laumen, J. G. E. et al. Markedly reduced azithromycin and ceftriaxone susceptibility in commensal neisseria species in clinical samples from belgian men who have sex with men. Clin. Infect. Dis. 72, 363–364 (2021). DOI: 10.1093/cid/ciaa565
Dong, H. V. et al. Reply to Laumen et al. Clin. Infect. Dis. 10.1093/cid/ciaa568 (2020). DOI: 10.1093/cid/ciaa568
Kirkcaldy, R. D. et al. Neisseria gonorrhoeae antimicrobial resistance among men who have sex with men and men who have sex exclusively with women: The gonococcal isolate surveillance project, 2005–2010. Ann. Intern. Med. 158, 321–328 (2013). DOI: 10.7326/0003-4819-158-5-201303050-00004
Lewis, D. A. The role of core groups in the emergence and dissemination of antimicrobial-resistant N. gonorrhoeae. Sex. Transm. Infect. 89, iv47–iv51 (2013).
Kenyon, C. R. & Schwartz, I. S. Effects of sexual network connectivity and antimicrobial drug use on antimicrobial resistance in neisseria gonorrhoeae. Emerg. Infect. Dis. 24, 1195–1203 (2018). DOI: 10.3201/eid2407.172104
Ngai, S. et al. Carriage of neisseria meningitidis in men who have sex with men presenting to public sexual health clinics, New York City. Sex. Transm. Dis. 47, 541–548 (2020). DOI: 10.1097/OLQ.0000000000001205
Tinggaard, M. et al. Oral and anal carriage of Neisseria meningitidis among sexually active HIV-infected men who have sex with men in Denmark 2014–2015. Int. J. Infect. Dis. 105, 337–344 (2021). DOI: 10.1016/j.ijid.2021.02.062
García, S. D. et al. Neisseria meningitidis aislada de muestras de hombres que tienen sexo con hombres. Rev. Argent. Microbiol. 10.1016/j.ram.2019.03.009 (2019). DOI: 10.1016/j.ram.2019.03.009
Janda, W. M., Bohnhoff, M., Morello, J. A. & Lerner, S. A. Prevalence and site-pathogen studies of Neisseria meningitidis and N. gonorrhoeae in Homosexual Men. JAMA J. Am. Med. Assoc. 244, 2060–2064 (1980). DOI: 10.1001/jama.1980.03310180026026
Vuylsteke, B. et al. Daily and event-driven pre-exposure prophylaxis for men who have sex with men in Belgium: Results of a prospective cohort measuring adherence, sexual behaviour and STI incidence. J. Int. AIDS Soc. 22, 1–9 (2019). DOI: 10.1002/jia2.25407
Hoornenborg, E. et al. Sexual behaviour and incidence of HIV and sexually transmitted infections among men who have sex with men using daily and event-driven pre-exposure prophylaxis in AMPrEP: 2 year results from a demonstration study. Lancet HIV 6, e447–e455 (2019). DOI: 10.1016/S2352-3018(19)30136-5
Van Dijck, C. et al. Antibacterial mouthwash to prevent sexually transmitted infections in men who have sex with men taking HIV pre-exposure prophylaxis (PReGo): A randomised, placebo-controlled, crossover trial. Lancet Infect. Dis. 3099, 657–667 (2021).
Bennett, J. S. et al. A genomic approach to bacterial taxonomy: An examination and proposed reclassification of species within the genus Neisseria. Microbiology 158, 1570–1580 (2012). DOI: 10.1099/mic.0.056077-0
Olesen, S. W. et al. Azithromycin susceptibility among Neisseria gonorrhoeae isolates and seasonal macrolide use. J. Infect. Dis. 219, 619–623 (2019). DOI: 10.1093/infdis/jiy551
Kenyon, C., Baetselier, I. D. & Wouters, K. Screening for STIs in PrEP cohorts results in high levels of antimicrobial consumption. Int. J. STD AIDS 10.1177/0956462420957519 (2020). DOI: 10.1177/0956462420957519
Kenyon, C., Manoharan-Basil, S. S. & van Dijck, C. Is there a resistance-threshold for macrolide consumption? Positive evidence from an ecological analysis of resistance data from Streptococcus pneumoniae, Treponema pallidum and Mycoplasma genitalium. medRxiv 00, 10–12 (2020).
Vanbaelen, T. et al. Screening for STIs is one of the main drivers of macrolide consumption in PrEP users. Int. J. STD AIDS. 095646242110259 32(12), 1183–1184 (2021).
Berger, U. & Paepcke, E. Untersuchungen über die asaccharolytischen Neisserien des menschlichen Nasopharynx. Zeitschrift für Hyg. und Infekt. 148, 269–281 (1962). DOI: 10.1007/BF02161323
Sâez, J. A., Carmen, N. & Vinde, M. A. Multicolonization of human nasopharynx due to Neisseria spp. Int. Microbiol. 1, 59–63 (1998).
Arreaza, L. What about antibiotic resistance in Neisseria lactamica?. J. Antimicrob. Chemother. 49, 545–547 (2002). DOI: 10.1093/jac/49.3.545
Karch, A., Vogel, U. & Claus, H. Role of penA polymorphisms for penicillin susceptibility in Neisseria lactamica and Neisseria meningitidis. Int. J. Med. Microbiol. 305, 729–735 (2015). DOI: 10.1016/j.ijmm.2015.08.025
Watanabe, Y., Takahashi, C., Ohya, H., Okazaki, N. & Onoue, Y. Antibiotic susceptibility of Neisseria meningitidis from healthy and diseased persons in Japan. Kansenshogaku Zasshi 81, 669–674 (2007). DOI: 10.11150/kansenshogakuzasshi1970.81.669
Klein, E. Y. et al. Global increase and geographic convergence in antibiotic consumption between 2000 and 2015. Proc. Natl. Acad. Sci. USA 115, E3463–E3470 (2018). DOI: 10.1073/pnas.1717295115
ESAC. European Surveillance of Antimicrobial Consumption Program, Antimicrobial consumption database (ESAC-Net).
Knapp, J. S. & Hook, E. W. Prevalence and persistence of Neisseria cinerea and other Neisseria spp. in adults. J. Clin. Microbiol. 26, 896–900 (1988). DOI: 10.1128/jcm.26.5.896-900.1988
de Block, T. et al. Wgs of commensal neisseria reveals acquisition of a new ribosomal protection protein (Msrd) as a possible explanation for high level azithromycin resistance in Belgium. Pathogens. 10, 384 (2021).
Peterson, M. E. et al. Serogroup-specific meningococcal carriage by age group: A systematic review and meta-analysis. BMJ Open 9, 1–9 (2019). DOI: 10.1136/bmjopen-2019-030833
Diallo, K. et al. Pharyngeal carriage of Neisseria species in the African meningitis belt. J. Infect. 72, 667–677 (2016). DOI: 10.1016/j.jinf.2016.03.010
Antignac, A. et al. Correlation between alterations of the penicillin-binding protein 2 and modifications of the peptidoglycan structure in Neisseria meingitidis with reduced susceptibility to penicillin G. J. Biol. Chem. 278, 31529–31535 (2003). DOI: 10.1074/jbc.M304607200
Bash, M. C. & Matthias, K. Antibiotic resistance in Neisseria. Antimicrob. Drug Resistance Clin. Epidemiol. Aspects. 2, 843 (2017). DOI: 10.1007/978-3-319-47266-9_6
Aral, S. O. Determinants of STD epidemics: Implications for phase appropriate intervention strategies. Sex. Transm. Infect. 78, i3–i13 (2002).
So, M. & Rendón, M. A. Tribal warfare: Commensal Neisseria kill pathogen Neisseria gonorrhoeae using its DNA. Microb. Cell 6, 544–546 (2019). DOI: 10.15698/mic2019.12.701
Oliver, K. J. et al. Neisseria lactamica protects against experimental meningococcal infection. Infect. Immun. 70, 3621–3626 (2002). DOI: 10.1128/IAI.70.7.3621-3626.2002
Gold, R., Goldschneider, I., Lepow, M. L., Draper, T. F. & Randolph, M. Carriage of neisseria meningitidis and neisseria lactamica in infants and children. J. Infect. Dis. 137, 112–121 (1978). DOI: 10.1093/infdis/137.2.112
Deasy, A. M. et al. Nasal inoculation of the commensal Neisseria lactamica inhibits carriage of Neisseria meningitidis by young adults: A controlled human infection study. Clin. Infect. Dis. 60, 1512–1520 (2015). DOI: 10.1093/cid/civ098
Ando, N. et al. Modified self-obtained pooled sampling to screen for Chlamydia trachomatis and Neisseria gonorrhoeae infections in men who have sex with men. Sex. Transm. Infect. 10.1136/sextrans-2020-054666 (2020). DOI: 10.1136/sextrans-2020-054666