back-gate voltage polarity; field-effect transistor sensor; gas detection; graphene; polypyrrole; Analytical Chemistry; Physical and Theoretical Chemistry
Abstract :
[en] This work introduces a new measurement methodology for enhancing gas detection by tuning the magnitude and polarity of back-gate voltage of a field-effect transistor (FET)-based sensor. The aim is to simultaneously strengthen the sensor response and accelerate the sensor recovery. In addition, this methodology can consume less energy compared with conventional measurements by direct current bias. To illustrate the benefits of the proposed methodology, we fabricated and characterized a polypyrrole/graphene (PPy/G) FET sensor for ammonia (NH3) detection. Our experiment, simulation and calculation results demonstrated that the redox reaction between the NH3 molecules and the PPy/G sensitive layer could be controlled by altering the polarity and the magnitude of the back-gate voltage. This proof-of-principle measurement methodology, which solves the inherent contradiction between high response and slow recovery of the chemiresistive sensor, could be extended to detect other gases, so as to improve global gas measurement systems. It opens up a new route for FET-based gas sensors in practical applications.
Research center :
CRIM - Ingénierie des matériaux
Disciplines :
Materials science & engineering
Author, co-author :
Tang, Xiaohui; Institute of Information and Communication Technologies, Electronics and Applied Mathematics (ICTEAM), Université Catholique de Louvain (UCLouvain), Louvain-la-Neuve, Belgium
Raskin, Jean-Pierre; Institute of Information and Communication Technologies, Electronics and Applied Mathematics (ICTEAM), Université Catholique de Louvain (UCLouvain), Louvain-la-Neuve, Belgium
Reckinger, Nicolas ; Institute of Condensed Matter and Nanosciences/Nanoscopic Physics (IMCN/NAPS), Université Catholique de Louvain (UCLouvain), Louvain-la-Neuve, Belgium
Yan, Yiyi ; Institute of Information and Communication Technologies, Electronics and Applied Mathematics (ICTEAM), Université Catholique de Louvain (UCLouvain), Louvain-la-Neuve, Belgium
André, Nicolas ; Institute of Information and Communication Technologies, Electronics and Applied Mathematics (ICTEAM), Université Catholique de Louvain (UCLouvain), Louvain-la-Neuve, Belgium
Lahem, Driss ; Université de Mons - UMONS > Unités externes > Materia Nova ASBL ; Materia Nova ASBL, Mons, Belgium
R400 - Institut de Recherche en Science et Ingénierie des Matériaux
Funders :
European Regional Development Fund
Funding text :
This research was funded by the European Regional Development Fund (ERDF); the Walloon Region of Belgium through the Micro + project (No. 675781-642409) and the AGROSENSOR project (Wagralim No.8127).We thank the Wallonia Infrastructure for nano fabrication (WINFAB) and the Wallonia electronics and communications measurements (WELCOME) platforms for access to the experimental facilities. We also thank the China Scholarship Council (CSC) program for the support.
Li H. Shi W. Song J. Jang H.-J. Dailey J. Yu J. Katz H.E. Chemical and Biomolecule Sensing with Organic Field-Effect Transistors Chem. Rev. 2019 119 3 35 10.1021/acs.chemrev.8b00016
Zhang C. Chen P. Hu W. Organic field-effect transistor-based gas sensors Chem. Soc. Rev. 2015 44 2087 2107 10.1039/C4CS00326H
Yoshizumi T. Miyahara Y. Field-Effect Transistors for Gas Sensing Different Types of Field-Effect Transistors—Theory and Applications Pejovic M.M. Pejovic M.M. InTech London, UK 2017 10.5772/intechopen.68481
Liu Y. Lin S. Lin L. A versatile gas sensor with selectivity using a single graphene transistor Proceedings of the 2015 Transducers—2015 18th International Conference on Solid-State Sensors, Actuators and Microsystems (TRANSDUCERS) Anchorage, AK, USA 21–25 June 2015 961 964 10.1109/TRANSDUCERS.2015.7181084
Tang X. Debliquy M. Lahem D. Yan Y. Raskin J.-P. A Review on Functionalized Graphene Sensors for Detection of Ammonia Sensors 2021 21 1443 10.3390/s21041443
Schedin F. Geim A.K. Morozov S.V. Hill E.W. Blake P. Katsnelson M.I. Novoselov K.S. Detection of individual gas molecules adsorbed on graphene Nat. Mater. 2007 6 652 655 10.1038/nmat1967
Dua V. Surwade S.P. Ammu S. Agnihotra S.R. Jain S. Roberts K.E. Park S. Ruoff R.S. Manohar S.K. All-Organic Vapor Sensor Using Inkjet-Printed Reduced Graphene Oxide Angew. Chem. Int. Ed. 2010 49 2154 2157 10.1002/anie.200905089
Tabata H. Sato Y. Oi K. Kubo O. Katayama M. Bias- and Gate-Tunable Gas Sensor Response Originating from Modulation in the Schottky Barrier Height of a Graphene/MoS2 van der Waals Heterojunction ACS Appl. Mater. Interfaces 2018 10 38387 38393 10.1021/acsami.8b14667
Kumar B. Min K. Bashirzadeh M. Farimani A.B. Bae M.-H. Estrada D. Kim Y.D. Yasaei P. Park Y.D. Pop E. et al. The Role of External Defects in Chemical Sensing of Graphene Field-Effect Transistors Nano Lett. 2013 13 1962 1968 10.1021/nl304734g
Wang H. Wu Y. Cong C. Shang J. Yu T. Hysteresis of Electronic Transport in Graphene Transistors ACS Nano 2010 4 7221 7228 10.1021/nn101950n
Kulkarni G.S. Reddy K. Zhong Z. Fan X. Graphene nanoelectronic heterodyne sensor for rapid and sensitive vapour detection Nat Commun. 2014 5 4376 10.1038/ncomms5376
Mackin C. Schroeder V. Zurutuza A. Su C. Kong J. Swager T.M. Palacios T. Chemiresistive Graphene Sensors for Ammonia Detection ACS Appl. Mater. Interfaces 2018 10 16169 16176 10.1021/acsami.8b00853
Zhang C. Geng X. Olivier M. Liao H. Debliquy M. Solution precursor plasma-sprayed tungsten oxide coatings for nitrogen dioxide detection Ceram. Int. 2014 40 11427 11431 10.1016/j.ceramint.2014.03.109
Geng X. Luo Y. Zheng B. Zhang C. Photon assisted room-temperature hydrogen sensors using PdO loaded WO3 nanohybrids Int. J. Hydrogen Energy 2017 42 6425 6434 10.1016/j.ijhydene.2016.12.117
Ahmed A.Y. Baskaran F.M.F. Rabih A.A.S. Dennis J.O. Khir M.H.M. Elmaleeh M.A.A. Design, Modeling and Simulation of Microhotplate for Application in Gas Detection Proceedings of the 2018 International Conference on Intelligent and Advanced System (ICIAS) Kuala Lumpur, Malaysia 13–14 August 2018 1 5 10.1109/ICIAS.2018.8540620
Prades J.D. Jimenez-Diaz R. Hernandez-Ramirez F. Barth S. Cirera A. Romano-Rodriguez A. Mathur S. Morante J.R. Equivalence between thermal and room temperature UV light-modulated responses of gas sensors based on individual SnO2 nanowires Sens. Actuators B Chem. 2009 140 337 341 10.1016/j.snb.2009.04.070
Salehi-Khojin A. Lin K.Y. Field C.R. Masel R.I. Nonthermal Current-Stimulated Desorption of Gases from Carbon Nanotubes Science 2010 329 1327 1330 10.1126/science.1194210
Novak J.P. Snow E.S. Houser E.J. Park D. Stepnowski J.L. McGill R.A. Nerve agent detection using networks of single-walled carbon nanotubes Appl. Phys. Lett. 2003 83 4026 4028 10.1063/1.1626265
Rumyantsev S. Liu G. Shur M.S. Potyrailo R.A. Balandin A.A. Selective Gas Sensing with a Single Pristine Graphene Transistor Nano Lett. 2012 12 2294 2298 10.1021/nl3001293
Snow E.S. Chemical Detection with a Single-Walled Carbon Nanotube Capacitor Science 2005 307 1942 1945 10.1126/science.1109128
Kulkarni G.S. Zang W. Zhong Z. Nanoelectronic Heterodyne Sensor: A New Electronic Sensing Paradigm Acc. Chem. Res. 2016 49 2578 2586 10.1021/acs.accounts.6b00329
Liu H. Liu Y. Chu Y. Hayasaka T. Joshi N. Cui Y. Wang X. You Z. Lin L. AC phase sensing of graphene FETs for chemical vapors with fast recovery and minimal baseline drift Sens. Actuators B Chem. 2018 263 94 102 10.1016/j.snb.2018.01.244
Tang X. Lahem D. Raskin J.-P. Gerard P. Geng X. Andre N. Debliquy M. A Fast and Room-Temperature Operation Ammonia Sensor Based on Compound of Graphene With Polypyrrole IEEE Sens. J. 2018 18 9088 9096 10.1109/JSEN.2018.2869203
Tang X. Raskin J.-P. Kryvutsa N. Hermans S. Slobodian O. Nazarov A.N. Debliquy M. An ammonia sensor composed of polypyrrole synthesized on reduced graphene oxide by electropolymerization Sens. Actuators B Chem. 2020 305 127423 10.1016/j.snb.2019.127423
Decroly A. Krumpmann A. Debliquy M. Lahem D. Nanostructured TiO2 Layers for Photovoltaic and Gas Sensing Applications Green Nanotechnology—Overview and Further Prospects Larramendy M.L. Soloneski S. InTech Rijeka, Croatia 2016 Available online: http://www.intechopen.com/books/green-nanotechnology-overview-and-further-prospects/nanostructured-tio2-layers-for-photovoltaic-and-gas-sensing-applications (accessed on 28 July 2016)
Antonov R.D. Johnson A.T. Subband Population in a Single-Wall Carbon Nanotube Diode Phys. Rev. Lett. 1999 83 3274 3276 10.1103/PhysRevLett.83.3274
Cristoloveanu S. Lee K.H. Park H. Parihar M.S. The concept of electrostatic doping and related devices Solid-State Electron. 2019 155 32 43 10.1016/j.sse.2019.03.017
Colinge J.-P. Conduction Mechanisms in Thin-Film Accumulation-Mode SO1 p-Channel MOSFET’s IEEE Trans. Electron Devices 1990 37 718 723 10.1109/16.47777
Krishnaswamy S. Ragupathi V. Raman S. Panigrahi P. Nagarajan G.S. Study of optical and electrical property of NaI-doped PPy thin film with excellent photocatalytic property at visible light Polym. Bull. 2019 76 5213 5231 10.1007/s00289-018-2650-1
Irfan M. Shakoor A. Structural, Electrical and Dielectric Properties of Dodecylbenzene Sulphonic Acid Doped Polypyrrole/Nano-Y2O3 Composites J. Inorg. Organomet. Polym. Mater. 2020 30 1287 1292 10.1007/s10904-019-01287-w
Flandre D. Teraot A. Extended Theoretical Analysis of the Steady-State Linear Behavior of Accumulation-Mode, Long-Channel p-MOSFETs on SOI Substrates Solid-State Electron. 1992 35 1085 1092 10.1016/0038-1101(92)90009-2