Grindy, S.C., Learsch, R., Mozhdehi, D., Cheng, J., Barrett, D.G., Guan, Z., Messersmith, P.B., Holten-Andersen, N., Control of hierarchical polymer mechanics with bioinspired metal-coordination dynamics. Nature Mater. 14:12 (2015), 1210–1216.
Liu, J., Zhang, S., Zhang, L., Liu, L., Bai, Y., Uniaxial stretching of polylactide with different initial crystalline morphologies and temperature effect. Eur. Polym. J. 61 (2014), 83–92.
Sun, T.L., Kurokawa, T., Kuroda, S., Ihsan, A.B., Akasaki, T., Sato, K., Haque, M.A., Nakajima, T., Gong, J.P., Physical hydrogels composed of polyampholytes demonstrate high toughness and viscoelasticity. Nature Mater. 12:10 (2013), 932–937.
Potaufeux, J.-E., Odent, J., Notta-Cuvier, D., Lauro, F., Raquez, J.-M., A comprehensive review of the structures and properties of ionic polymeric materials. Polym. Chem. 11:37 (2020), 5914–5936.
Wang, W., Zhang, Y., Liu, W., Bioinspired fabrication of high strength hydrogels from non-covalent interactions. Prog. Polym. Sci. 71 (2017), 1–25.
Nkhwa, S., Kemal, E., Gurav, N., Deb, S., Dual polymer networks: a new strategy in expanding the repertoire of hydrogels for biomedical applications. J. Mater. Sci., 30(10), 2019, 114.
Yuan, T., Cui, X., Liu, X., Qu, X., Sun, J., Highly Tough, Stretchable, Self-Healing, and Recyclable Hydrogels Reinforced by in Situ-Formed Polyelectrolyte Complex Nanoparticles. Macromolecules 52:8 (2019), 3141–3149.
Odent, J., Raquez, J.M., Dubois, P., Giannelis, E.P., Ultra-stretchable ionic nanocomposites: from dynamic bonding to multi-responsive behavior. J. Mater. Chem. A 5:26 (2017), 13357–13363.
Potaufeux, J.-E., Odent, J., Notta-Cuvier, D., Delille, R., Barrau, S., Giannelis, E.P., Lauro, F., Raquez, J.-M., Mechanistic insights on ultra-tough polylactide-based ionic nanocomposites. Compos. Sci. Technol., 2020, 108075.
Banerjee, S.L., Swift, T., Hoskins, R., Rimmer, S., Singha, N.K., A muscle mimetic polyelectrolyte–nanoclay organic–inorganic hybrid hydrogel: its self-healing, shape-memory and actuation properties. J. Mater. Chem. B 7:9 (2019), 1475–1493.
Zhong, M., Liu, Y.-T., Xie, X.-M., Self-healable, super tough graphene oxide–poly(acrylic acid) nanocomposite hydrogels facilitated by dual cross-linking effects through dynamic ionic interactions. J. Mater. Chem. B 3:19 (2015), 4001–4008.
Gardette, J.-L., Rivaton, A., Therias, S., Photodegradation processes in polymeric materials. N.S. Allen Photochemistry and Photophysics of Polymer Materials, 2010, John Wiley & Sons, Inc., Hoboken, NJ, USA, 569–601.
Cangialosi, D., Boucher, V.M., Alegría, A., Colmenero, J., Physical aging in polymers and polymer nanocomposites: recent results and open questions. Soft Matter, 9(36), 2013, 8619.
Jacobs, D.S., Huang, S.-R., Cheng, Y.-L., Rabb, S.A., Gorham, J.M., Krommenhoek, P.J., Yu, L.L., Nguyen, T., Sung, L., Surface degradation and nanoparticle release of a commercial nanosilica/polyurethane coating under UV exposure. J Coat Technol Res 13:5 (2016), 735–751.
Sung, L., Stanley, D., Gorham, J.M., Rabb, S., Gu, X., Yu, L.L., Nguyen, T., A quantitative study of nanoparticle release from nanocoatings exposed to UV radiation. J Coat Technol Res 12:1 (2015), 121–135.
Nguyen, T., Pellegrin, B., Bernard, C., Rabb, S., Stuztman, P., Gorham, J.M., Gu, X., Yu, L.L., Chin, J.W., Characterization of surface accumulation and release of nanosilica during irradiation of polymer nanocomposites by ultraviolet light. J Nanosci Nanotechnol 12:8 (2012), 6202–6215.
Watanabe, R., Sugahara, A., Hagihara, H., Sakamoto, K., Nakajima, Y., Naganawa, Y., Polypropylene-based nanocomposite with enhanced aging stability by surface grafting of Silica Nanofillers with a silane coupling agent containing an antioxidant. ACS Omega 5:21 (2020), 12431–12439.
Amanuel, S., Gaudette, A.N., Sternstein, S.S., Enthalpic relaxation of silica-polyvinyl acetate nanocomposites. J. Polym. Sci., Part B: Polym. Phys. 46:24 (2008), 2733–2740.
Flory, A.L., Ramanathan, T., Brinson, L.C., Physical aging of single wall carbon nanotube polymer nanocomposites: effect of functionalization of the nanotube on the enthalpy relaxation. Macromolecules 43:9 (2010), 4247–4252.
Cheraghian, G., Wistuba, M.P., Ultraviolet aging study on bitumen modified by a composite of clay and fumed silica nanoparticles. Sci. Rep., 10(1), 2020, 11216.
Morlat, S., Mailhot, B., Gonzalez, D., Gardette, J.-L., Photo-oxidation of polypropylene/montmorillonite nanocomposites. 1. Influence of Nanoclay and Compatibilizing agent. Chem. Mater. 16:3 (2004), 377–383.
Falcão, G.A.M., Almeida, T.G., Bardi, M.A.G., Carvalho, L.H., Canedo, E.L., PBAT/organoclay composite films—part 2: effect of UV aging on permeability, mechanical properties and biodegradation. Polym. Bull. 76:1 (2019), 291–301.
Cangialosi, D., Boucher, V.M., Alegría, A., Colmenero, J., Enhanced physical aging of polymer nanocomposites: the key role of the area to volume ratio. Polymer 53:6 (2012), 1362–1372.
Guo, Y., Zhang, C., Lai, C., Priestley, R.D., D'Acunzi, M., Fytas, G., Structural relaxation of polymer nanospheres under soft and hard confinement: isobaric versusIsochoric conditions. ACS Nano 5:7 (2011), 5365–5373.
Harton, S.E., Kumar, S.K., Yang, H., Koga, T., Hicks, K., Lee, H., Mijovic, J., Liu, M., Vallery, R.S., Gidley, D.W., Immobilized polymer layers on spherical nanoparticles. Macromolecules 43:7 (2010), 3415–3421.
Berriot, J., Montes, H., Lequeux, F., Long, D., Sotta, P., Evidence for the shift of the glass transition near the particles in silica-filled elastomers. Macromolecules 35:26 (2002), 9756–9762.
Łasińska, A.K., Marzantowicz, M., Dygas, J.R., Krok, F., Florjańczyk, Z., Tomaszewska, A., Zygadło-Monikowska, E., Żukowska, Z., Lafont, U., Study of ageing effects in polymer-in-salt electrolytes based on poly(acrylonitrile-co-butyl acrylate) and lithium salts. Electrochimica Acta 169 (2015), 61–72.
Akimoto, H., Kanazawa, T., Yamada, M., Matsuda, S., Shonaike, G.O., Murakami, A., Impact fracture behavior of ethylene ionomer and structural change after stretching. J. Appl. Polym. Sci. 81:7 (2001), 1712–1720.
Perthué, A., Gorisse, T., Silva, H.Santos, Bégué, D., Rivaton, A., Wantz, G., Influence of traces of oxidized polymer on the performances of bulk heterojunction solar cells. Mater. Chem. Front. 3:8 (2019), 1632–1641.
Li, Z., Wu, Z., Mo, G., Xing, X., Liu, P., A Small-Angle X-Ray scattering station at beijing synchrotron radiation facility. Instrument Sci Technol 42:2 (2014), 128–141.
Liu, C.-Y., He, J., Keunings, R., Bailly, C., New linearized relation for the universal viscosity−temperature behavior of polymer melts. Macromolecules 39:25 (2006), 8867–8869.
Morlat, S., Gardette, J.-L., Phototransformation of water-soluble polymers. I: photo- and thermooxidation of poly(ethylene oxide) in solid state. Polymer 42:14 (2001), 6071–6079.
Wilhelm, C., Gardette, J.-L., Infrared analysis of the photochemical behaviour of segmented polyurethanes: aliphatic poly(ether-urethane)s. Polymer 39:24 (1998), 5973–5980.
Hassouna, F., Morlat-Therias, S., Mailhot, G., Gardette, J.-L., Influence of water on the photodegradation of poly(ethylene oxide). Polymer Degradat Stab - Polym Degrad Stabil 92 (2007), 2042–2050.
Olewnik-Kruszkowska, E., Effect of UV irradiation on thermal properties of nanocomposites based on polylactide. J. Therm. Anal. Calorim. 119:1 (2015), 219–228.
Du, Y., Zheng, J., Yu, G., Influence of thermally-accelerated aging on the dynamic mechanical properties of HTPB coating and crosslinking density-modified model for the payne effect. Polymers, 12(2), 2020, 403.
Körber, T., Mohamed, F., Hofmann, M., Lichtinger, A., Willner, L., Rössler, E.A., The nature of secondary relaxations: the case of Poly(ethylene- alt-propylene) studied by dielectric and deuteron NMR spectroscopy. Macromolecules 50:4 (2017), 1554–1568.
Ding, Y., Pawlus, S., Sokolov, A.P., Douglas, J.F., Karim, A., Soles, C.L., Dielectric spectroscopy investigation of relaxation in C 60−Polyisoprene nanocomposites. Macromolecules 42:8 (2009), 3201–3206.
Se, K., Adachi, K., Kotaka, T., Dielectric relaxations in Poly(ethylene oxide): dependence on molecular weight. Polymer J. 13:11 (1981), 1009–1017.
Suarez-Martinez, P.C., Batys, P., Sammalkorpi, M., Lutkenhaus, J.L., Time–temperature and time–water superposition principles applied to Poly(allylamine)/Poly(acrylic acid) complexes. Macromolecules 52:8 (2019), 3066–3074.
Muzeau, E., Vigier, G., Vassoille, R., Physical aging phenomena in an amorphous polymer at temperatures far below the glass transition. J. Non-Crystalline Solids 172-174 (1994), 575–579.
Wypych, A., Duval, E., Boiteux, G., Ulanski, J., David, L., Seytre, G., Mermet, A., Stevenson, I., Kozanecki, M., Okrasa, L., Physical aging of atactic polystyrene as seen by dielectric relaxational and low-frequency vibrational Raman spectroscopies. J. Non-Crystalline Solids 351:33-36 (2005), 2593–2598.
Potaufeux, J.-E., Odent, J., Notta-Cuvier, D., Barrau, S., Magnani, C., Delille, R., Zhang, C., Liu, G., Giannelis, E.P., Müller, A.J., Lauro, F., Raquez, J.-M., Mastering superior performance origins of ionic Polyure-thane/Silica hybrids. ACS Appl. Polymer Mater., 2021, 10.1021/acsapm.1c01396.
Tien, N.-D., Hoa, T.-P., Mochizuki, M., Saijo, K., Hasegawa, H., Sasaki, S., Sakurai, S., Higher-order crystalline structures of poly(oxyethylene) in poly(d,l-lactide)/poly(oxyethylene) blends. Polymer 54:17 (2013), 4653–4659.