[en] Cermet based-coatings, made of a ceramic matrix and metallic nanoparticles, have attracted a lot of attention in applications such as solar absorbers in a solar concentrating system since they allow a strong solar absorptance, a low IR emittance, and present good thermal stability. It has been shown that many parameters impact the performances of the cermet-based solar absorber such as the thickness, composition, and features of the metallic nanoparticles. In this study, we report on the synthesis of a Al2O3-Ag cermet by reactive co-sputtering of Ag and aluminum in Ar/O2 gas mixtures. The influence of important experimental parameters (i.e. sputtering power on the Ag target, deposition time, and O2 content) on the chemistry, morphology, and optical properties of the cermet coating is studied while the photothermal property of the cermet has been evaluated by measuring the surface elevation temperature of the coating under 1 sun irradiation. Our data reveal that by optimizing the features of the cermet, an absorbance of 0.92 and a surface temperature elevation up to 9.1 K can be reached after 30 min of illumination.
Disciplines :
Chemistry Physics
Author, co-author :
Chauvin, Adrien ; Université de Mons - UMONS ; Chemistry of Surfaces, Interfaces and Nanomaterials, Faculty of Sciences, Université libre de Bruxelles, Brussels, Belgium
Savorianakis, Grégory ; Université de Mons - UMONS > Faculté des Sciences > Service de Chimie des Interactions Plasma-Surface
Horak, Lukas; Department of Condensed Matter Physics, Faculty of Mathematics and Physics, Charles University, Praha 2, Czech Republic
Dopita, Milan; Department of Condensed Matter Physics, Faculty of Mathematics and Physics, Charles University, Praha 2, Czech Republic
Voué, Michel ; Université de Mons - UMONS > Faculté des Sciences > Service de Physique des matériaux et Optique
S878 - Physique des matériaux et Optique S882 - Chimie des Interactions Plasma-Surface
Research institute :
R400 - Institut de Recherche en Science et Ingénierie des Matériaux
Funders :
Fonds De La Recherche Scientifique - FNRS Society for Experimental Mechanics
Funding text :
The authors gratefully acknowledge D. Cornelissen (Mons Univ.), Y. Paint (Materia Nova, Mons), and X. Noirfalise (Materia Nova, Mons) for their technical assistance on the co-sputtering system, SEM, and on the XPS, respectively. A.C. thanks the FNRS for the financial support through the “VirusSurf” project No H.P064.20 . S. Konstantinidis is a senior research associate of the National Fund for Scientific Research (FNRS, Belgium).The authors gratefully acknowledge D. Cornelissen (Mons Univ.), Y. Paint (Materia Nova, Mons), and X. Noirfalise (Materia Nova, Mons) for their technical assistance on the co-sputtering system, SEM, and on the XPS, respectively. A.C. thanks the FNRS for the financial support through the “VirusSurf” project No H.P064.20. S. Konstantinidis is a senior research associate of the National Fund for Scientific Research (FNRS, Belgium).
Wu, X., Chen, G.Y., Owens, G., Chu, D., Xu, H., Photothermal materials: a key platform enabling highly efficient water evaporation driven by solar energy. Mater. TodayEnergy 12 (2019), 277–296, 10.1016/j.mtener.2019.02.001.
Brongersma, M.L., Halas, N.J., Nordlander, P., Plasmon-induced hot carrier science and technology. Nat. Nanotechnol. 10 (2015), 25–34, 10.1038/nnano.2014.311.
Govorov, A.O., Richardson, H.H., Generating heat with metal nanoparticles. Nano Today 2 (2007), 30–38, 10.1016/S1748-0132(07)70017-8.
Chen, J., Ye, Z., Yang, F., Yin, Y., Plasmonic nanostructures for photothermal conversion. Small Sci., 1, 2021, 2000055, 10.1002/smsc.202000055.
Gao, M., Zhu, L., Peh, C.K., Ho, G.W., Solar absorber material and system designs for photothermal water vaporization towards clean water and energy production. Energy Environ. Sci. 12 (2019), 841–864, 10.1039/C8EE01146J.
Liu, H., Huang, Z., Liu, K., Hu, X., Zhou, J., Interfacial solar-to-heat conversion for desalination. Adv. Energy Mater. 9 (2019), 1–17, 10.1002/aenm.201900310.
Paściak, A., Pilch-Wróbel, A., Marciniak, Ł., Schuck, P.J., Bednarkiewicz, A., Standardization of methodology of light-to-heat conversion efficiency determination for colloidal nanoheaters. ACS Appl. Mater. Interfaces 13 (2021), 44556–44567, 10.1021/acsami.1c12409.
Cao, F., McEnaney, K., Chen, G., Ren, Z., A review of cermet-based spectrally selective solar absorbers. Energy Environ. Sci., 7, 2014, 1615, 10.1039/c3ee43825b.
Gao, J.D., Zhao, C.Y., Wang, B.X., Effect of metal particles in cermets on spectral selectivity. J. Appl. Phys., 121, 2017, 113105, 10.1063/1.4978418.
Wang, C., Li, W., Li, Z., Fang, B., Solar thermal harvesting based on self-doped nanocermet: structural merits, design strategies and applications. Renew. Sust. Energ. Rev., 134, 2020, 110277, 10.1016/j.rser.2020.110277.
Calderon Velasco, S., Cavaleiro, A., Carvalho, S., Functional properties of ceramic-ag nanocomposite coatings produced by magnetron sputtering. Prog. Mater. Sci. 84 (2016), 158–191, 10.1016/j.pmatsci.2016.09.005.
Barshilia, H.C., Kumar, P., Rajam, K.S., Biswas, A., Structure and optical properties of Ag–Al2O3 nanocermet solar selective coatings prepared using unbalanced magnetron sputtering. Sol. Energy Mater. Sol. Cells 95 (2011), 1707–1715, 10.1016/j.solmat.2011.01.034.
Gao, J., Tu, C., Liang, L., Zhang, H., Zhuge, F., Wu, L., Cao, H., Yu, K., Silver nanoparticles with an armor layer embedded in the alumina matrix to form nanocermet thin films with sound thermal stability. ACS Appl. Mater. Interfaces 6 (2014), 11550–11557, 10.1021/am502254s.
Xiao, X., Xu, G., Xiong, B., Chen, D., Miao, L., The film thickness dependent thermal stability of Al2O3: ag thin films as high-temperature solar selective absorbers. J. Nanopart. Res., 14, 2012, 746, 10.1007/s11051-012-0746-3.
Gao, T., Jelle, B.P., Gustavsen, A., Core–shell-typed Ag@SiO2 nanoparticles as solar selective coating materials. J. Nanopart. Res., 15, 2013, 1370, 10.1007/s11051-012-1370-y.
Gao, J., Wang, X., Yang, B., Tu, C., Liang, L., Zhang, H., Zhuge, F., Cao, H., Zou, Y., Yu, K., Xia, F., Han, Y., Plasmonic AgAl bimetallic alloy Nanoparticle/Al 2 O 3 nanocermet thin films with robust thermal stability for solar thermal applications. Adv. Mater. Interfaces, 3, 2016, 1600248, 10.1002/admi.201600248.
Tu, C.J., Gao, J.H., Hui, S., Lou, D., Zhang, H.L., Liang, L.Y., Jin, A.P., Zou, Y.S., Cao, H.T., Alloyed nanoparticle-embedded alumina nanocermet film: a new attempt to improve the thermotolerance. Appl. Surf. Sci. 331 (2015), 285–291, 10.1016/j.apsusc.2015.01.064.
Belkind, A., Freilich, A., Scholl, R., Using pulsed direct current power for reactive sputtering of Al2O3. J. Vac. Sci. Technol. Vac. Surf. Films. 17 (1999), 1934–1940, 10.1116/1.581706.
Schneider, C.A., Rasband, W.S., Eliceiri, K.W., NIH image to ImageJ: 25 years of image analysis. Nat. Methods 9 (2012), 671–675.
Savorianakis, G., Mita, K., Shimizu, T., Konstantinidis, S., Voué, M., Maes, B., VO 2 nanostripe-based thin film with optimized color and solar characteristics for smart windows. J. Appl. Phys., 129, 2021, 185306, 10.1063/5.0049284.
Houska, J., Blazek, J., Rezek, J., Proksova, S., Overview of optical properties of Al2O3 films prepared by various techniques. Thin Solid Films 520 (2012), 5405–5408.
Wang, Z.-Y., Zhang, R.-J., Lu, H.-L., Chen, X., Sun, Y., Zhang, Y., Wei, Y.-F., Xu, J.-P., Wang, S.-Y., Zheng, Y.-X., Chen, L.-Y., The impact of thickness and thermal annealing on refractive index for aluminum oxide thin films deposited by atomic layer deposition. Nanoscale Res. Lett., 10, 2015, 46, 10.1186/s11671-015-0757-y.
Piralaee, M., Asgari, A., Siahpoush, V., Modeling and optimizing the performance of plasmonic solar cells using effective medium theory. Phys. Lett. A 381 (2017), 489–493, 10.1016/j.physleta.2016.11.029.
Strijckmans, K., Schelfhout, R., Depla, D., Tutorial: hysteresis during the reactive magnetron sputtering process. J. Appl. Phys., 124, 2018, 241101, 10.1063/1.5042084.
Kelly, P.J., Arnell, R.D., Control of the structure and properties of aluminum oxide coatings deposited by pulsed magnetron sputtering. J. Vac. Sci. Technol. Vac. Surf. Films. 17 (1999), 945–953, 10.1116/1.581669.
Barnes, J.-P., Petford-Long, A.K., Doole, R.C., Serna, R., Gonzalo, J., Suárez-García, A., Afonso, C.N., Hole, D., Structural studies of Ag nanocrystals embedded in amorphous Al2O3 grown by pulsed laser deposition. Nanotechnology 13 (2002), 465–470, 10.1088/0957-4484/13/4/305.
Steinhoff, M.K., Holzapfel, D.M., Karimi Aghda, S., Neuß, D., Pöllmann, P.J., Hans, M., Primetzhofer, D., Schneider, J.M., Azina, C., Ag surface and bulk segregations in sputtered ZrCuAlNi metallic glass thin films. Materials., 15, 2022, 1635, 10.3390/ma15051635.
Matěj, Z., Kadlecová, A., Janeček, M., Matějová, L., Dopita, M., Kužel, R., Refining bimodal microstructure of materials with MSTRUCT. Powder Diffract. 29 (2014), S35–S41, 10.1017/S0885715614000852.
Mandal, S.K., Roy, R.K., Pal, A.K., Surface plasmon resonance in nanocrystalline silver particles embedded in SiO2 matrix. J. Phys. Appl. Phys. 35 (2002), 2198–2205, 10.1088/0022-3727/35/17/317.
Roper, D.K., Ahn, W., Hoepfner, M., Microscale heat transfer transduced by surface plasmon resonant gold nanoparticles. J. Phys. Chem. C 111 (2007), 3636–3641, 10.1021/jp064341w.
Arancibia-Bulnes, C.A., Estrada, C.A., Ruiz-Suárez, J.C., Solar absorptance and thermal emittance of cermets with large particles. J. Phys. Appl. Phys. 33 (2000), 2489–2496, 10.1088/0022-3727/33/19/320.
Maiti, N., Biswas, A., Tokas, R.B., Bhattacharyya, D., Jha, S.N., Deshpande, U.P., Barve, U.D., Bhatia, M.S., Das, A.K., Effects of oxygen flow rate on microstructure and optical properties of aluminum oxide films deposited by electron beam evaporation technique. Vacuum 85 (2010), 214–220, 10.1016/j.vacuum.2010.05.017.
Depla, D., Gryse, R.D., Influence of oxygen addition on the target voltage during reactive sputtering of aluminium. Plasma Sources Sci. Technol. 10 (2001), 547–555, 10.1088/0963-0252/10/4/302.
Segda, B.G., Jacquet, M., Besse, J.P., Elaboration, characterization and dielectric properties study of amorphous alumina thin films deposited by r.f. magnetron sputtering. Vacuum 62 (2001), 27–38.
Jiménez, J.A., Sendova, M., McAlpine, K., Revealing oxidation kinetics of dielectric-embedded Ag nanoparticles via in situ optical microspectroscopy. Chem. Phys. Lett. 523 (2012), 107–112.
Gaudry, M., Lermé, J., Cottancin, E., Pellarin, M., Vialle, J.-L., Broyer, M., Prével, B., Treilleux, M., Mélinon, P., Optical properties of (Au x Ag 1–x) n clusters embedded in alumina: evolution with size and stoichiometry. Phys. Rev. B, 64, 2001, 085407, 10.1103/PhysRevB.64.085407.
Figueiredo, N.M., Carvalho, N.J.M., Cavaleiro, A., An XPS study of Au alloyed Al–O sputtered coatings. Appl. Surf. Sci. 257 (2011), 5793–5798, 10.1016/j.apsusc.2011.01.104.
Gredelj, S., Kumar, S., Gerson, A.R., Cavallaro, G.P., Radio frequency plasma nitriding of aluminium at higher power levels. Thin Solid Films 515 (2006), 1480–1485, 10.1016/j.tsf.2006.04.031.
Liu, Q., Qin, H., Boscoboinik, J.A., Zhou, G., Comparative study of the oxidation of NiAl(100) by molecular oxygen and water vapor using ambient-pressure X-ray photoelectron spectroscopy. Langmuir 32 (2016), 11414–11421, 10.1021/acs.langmuir.6b02752.
Balakrishnan, G., Tripura Sundari, S., Ramaseshan, R., Thirumurugesan, R., Mohandas, E., Sastikumar, D., Kuppusami, P., Kim, T.G., Song, J.I., Effect of substrate temperature on microstructure and optical properties of nanocrystalline alumina thin films. Ceram. Int. 39 (2013), 9017–9023, 10.1016/j.ceramint.2013.04.104.
Serényi, M., Lohner, T., Sáfrán, G., Szívós, J., Comparison in formation, optical properties and applicability of DC magnetron and RF sputtered aluminum oxide films. Vacuum 128 (2016), 213–218, 10.1016/j.vacuum.2016.03.033.
Szívós, J., Serényi, M., Gergely-Fülöp, E., Lohner, T., Sáfrán, G., Nanopattern formation in UV laser treated a-AlOx and nc-Al/AlOx layers. Vacuum 109 (2014), 200–205, 10.1016/j.vacuum.2014.07.024.
Zhu, L., Gao, M., Peh, C.K.N., Ho, G.W., Solar-driven photothermal nanostructured materials designs and prerequisites for evaporation and catalysis applications. Mater. Horiz. 5 (2018), 323–343, 10.1039/C7MH01064H.