[en] Alternating copolymers are distinctly unique in comparison with other copolymers. Herein, an in-depth investigation of the oxyanionic ring-opening copolymerization of propylene oxide (PO) and allyl glycidyl ether (AGE) from benzyl alcohol (BnOH) activated with potassium acetate (KOAc) complexed by 18-crown-6 ether (18C6) is described. We demonstrate that the 18C6/KOAc complex is an efficient and benign catalytic system to promote copolymerization of both oxirane monomers, leading to well-defined polyethers with varied comonomer content and low dispersity values (ƉM < 1.20). Kinetic analysis confirmed the controlled nature of the (co)polymerization process, and the determination of reactivity ratios revealed a quasi-alternating copolymerization profile, according to the Fineman-Ross method. The comparison between the quasi-alternating-type PO/AGE copolymerization and block or gradient copolymerization revealed significant differences, to confirm the different sequence incorporation in the different topological copolymers. These results highlight the great potential of 18C6/KOAc-mediated copolymerization process for the controlled sythesis of a series of copolymer topologies.
Disciplines :
Chemistry
Author, co-author :
Fornaciari, Charlotte; Laboratory of Polymeric and Composite Materials (LPCM), Center of Innovation and Research in Materials and Polymers (CIRMAP), University of Mons, Place du Parc, 20, Mons, 7000, Belgium ; Department of Chemistry, University of Pavia, Viale Taramelli, 10, Pavia, 27100, Italy
LEMAUR, Vincent ; Université de Mons - UMONS > Faculté des Science > Service de Chimie des matériaux nouveaux
Pasini, Dario ; Department of Chemistry, University of Pavia, Viale Taramelli, 10, Pavia, 27100, Italy. dario.pasini@unipv.it
COULEMBIER, Olivier ; Université de Mons - UMONS > Faculté des Science > Service des Matériaux Polymères et Composites
Language :
English
Title :
Quasi-alternating copolymerization of oxiranes driven by a benign acetate-based catalyst.
Klein, R. & Wurm, F. R. Aliphatic polyethers: classical polymers for the 21st century. Macromol. Rapid Commun. 36, 1147–1165 (2015).
Herzberger, J. et al. Polymerization of ethylene oxide, propylene oxide, and other alkylene oxides: synthesis, novel polymer architectures, and bioconjugation. Chem. Rev. 116, 2170–2242 (2016).
Nijhuis, T. A., Makkee, M., Moulijn, J. A. & Weckhuysen, B. M. The production of propene oxide: catalytic processes and recent developments. Ind. Eng. Chem. Res. 45, 3447–3459 (2006).
Price, C. C. Polyethers. Acc. Chem. Res. 7, 294–301 (1974).
Penczek, S., Cypryk, M., Duda, A., Kubisa, P. & Słomkowski, S. Living ring-opening polymerizations of heterocyclic monomers. Prog. Polym. Sci. 32, 247–282 (2007).
Grobelny, Z., Matlengiewicz, M., Jurek-Suliga, J., Golba, S. & Skrzeczyna, K. The influence of initiator and macrocyclic ligand on unsaturation and molar mass of poly(propylene oxide)s prepared with various anionic system. Polym. Bull. 75, 1101–1121 (2018).
Pierre, L. E. S. & Price, C. C. The room temperature polymerization of propylene oxide. J. Am. Chem. Soc. 78, 3432–3436 (1956).
Simons, D. M. & Verbanc, J. J. The polymerization of propylene oxide. J. Polym. Sci. 44, 303–311 (1960).
Stolarzewicz, A. A new chain transfer reaction in the anionic polymerization of 2,3‐epoxypropyl phenyl ether and other oxiranes. Makromol. Chem. 187, 745–752 (1986).
Hans, M., Keul, H. & Moeller, M. Chain transfer reactions limit the molecular weight of polyglycidol prepared via alkali metal based initiating systems. Polymer 50, 1103–1108 (2009).
Chen, S., Xu, N. & Shi, J. Structure and properties of polyether polyols catalyzed by Fe/Zn double metal cyanide complex catalyst. Prog. Org. Coat. 49, 125–129 (2004).
Blankenburg, J. et al. The poly(propylene oxide-co-ethylene oxide) gradient is controlled by the polymerization method: determination of reactivity ratios by direct comparison of different copolymerization models. Polym. Chem. 10, 2863–2871 (2019).
Matthes, R., Bapp, C., Wagner, M., Zarbakhsh, S. & Frey, H. Unexpected random copolymerization of propylene oxide with glycidyl methyl ether via double metal cyanide catalysis: introducing polarity in polypropylene oxide. Macromolecules 54, 11228–11237 (2021).
Brocas, A.-L., Mantzaridis, C., Tunc, D. & Carlotti, S. Polyether synthesis: from activated or metal-free anionic ring-opening polymerization of epoxides to functionalization. Prog. Polym. Sci. 38, 845–873 (2013).
Billouard, C., Carlotti, S., Desbois, P. & Deffieux, A. Controlled high-speed anionic polymerization of propylene oxide initiated by alkali metal alkoxide/trialkylaluminum systems. Macromolecules 37, 4038–4043 (2004).
Labbé, A., Carlotti, S., Billouard, C., Desbois, P. & Deffieux, A. Controlled high-speed anionic polymerization of propylene oxide initiated by onium salts in the presence of triisobutylaluminum. Macromolecules 40, 7842–7847 (2007).
Herzberger, J., Leibig, D., Liermann, J. C. & Frey, H. Conventional oxyanionic versus monomer-activated anionic copolymerization of ethylene oxide with glycidyl ethers: striking differences in reactivity ratios. ACS Macro Lett. 5, 1206–1211 (2016).
Chen, Y. et al. High efficiency organic Lewis pair catalyst for ring-opening polymerization of epoxides with chemoselectivity. Macromolecules 51, 8286–8297 (2018).
Morinaga, H., Ujihara, Y., Yamanaka, T., Nagai, D. & Endo, T. Metal-free ring-opening polymerization of glycidyl phenyl ether initiated by tetra-n-butylammonium acetate and its application to the hydroxyl-terminated telechelic polymer. J. Polym. Sci. A Polym. Chem. 49, 4092–4097 (2011).
Boileau, S. & Illy, N. Activation in anionic polymerization: why phosphazene bases are very exciting promoters. Prog. Polym. Sci. 36, 1132–1151 (2011).
Zhao, J., Hadjichristidis, N. & Gnanou, Y. Phosphazene-promoted anionic polymerization. Polimery 59, 49–59 (2014).
Raynaud, J., Ottou, W. N., Gnanou, Y. & Taton, D. Metal-free and solvent-free access to α, ω-heterodifunctionalized poly-(propylene oxide)s by N-heterocyclic carbene-induced ring opening polymerization. Chem. Commun. 46, 3203–3205 (2010).
Naumann, S., Thomas, A. W. & Dove, A. P. N-heterocyclic olefins as organocatalysts for polymerization: preparation of well-defined poly(propylene oxide). Angew. Chem. Int. Ed. 54, 9550–9554 (2015).
Moins, S. et al. Accelerating effect of crown ethers on the lactide polymerization catalysed by potassium acetate. Catal. Sci. Technol. 11, 4387–4391 (2021).
De Roover, Q., Vucko, T., Vincent, S. P., De Winter, J. & Coulembier, O. Photocontrolled lactide ROP by the light-regulated release of potassium acetate from an azobenzene-bridged crown ether. Catal. Sci. Technol. 11, 6048–6052 (2021).
Fornaciari, C., Pasini, D. & Coulembier, O. Controlled oxyanionic polymerization of propylene oxide: unlocking the molecular-weight limitation by a soft nucleophilic catalysis. Macromol. Rapid Commun. 43, 2200424 (2022).
Saito, T. et al. Alkali metal carboxylate as an efficient and simple catalyst for ring-opening polymerization of cyclic esters. Macromolecules 51, 689–696 (2018).
Takojima, K. et al. Facile synthesis of poly(trimethylene carbonate) by alkali metal carboxylate-catalyzed ring-opening polymerization. Polym. J. 52, 103–110 (2019).
Gao, T. et al. Polyether/polythioether synthesis via ring-opening polymerization of epoxides and episulfides catalyzed by alkali metal carboxylates. Macromolecules 55, 9373–9383 (2022).
Dou, X., Liu, W.-H., Wang, B. & Li, Y.-S. Potassium acetate/18-crown-6 pair: robust and versatile catalyst for synthesis of polyols from ring-opening copolymerization of epoxides and cyclic anhydrides. Chin. J. Chem. 41, 83–92 (2023).
Chen, C. M. et al. Alkali metal carboxylates: simple and versatile initiators for ring-opening alternating copolymerization of cyclic anhydrides/epoxides. Macromolecules 54, 713–724 (2021).
Rastogi, A. K. & St. Pierre, L. E. Copolymerization of ethylene oxide and propylene oxide by anhydrous potassium hydroxide. J. Appl. Polym. Sci. 14, 1179–1182 (1970).
Gladovskii, G. A. & Ryzhenkova, Ye. V. Anionic copolymerization reactions of ethylene oxide and propylene oxide. Polym. Sci. USSR 13, 723–730 (1971).
Heatley, F., Yu, G., Booth, C. & Blease, T. G. Determination of reactivity ratios for the anionic copolymerization of ethylene oxide and propylene oxide in bulk. Eur. Polym. J. 27, 573–579 (1991).
Leibig, D., Seiwert, J., Liermann, J. & Frey, H. Copolymerization kinetics of glycidol and ethylene oxide, propylene oxide, and 1,2-butylene oxide: from hyperbranched to multiarm star topology. Macromolecules 49, 7767–7776 (2016).
Lee, J., Han, S., Kim, M. & Kim, B.-S. Anionic polymerization of azidoalkyl glycidyl ethers and post-polymerization modification. Macromolecules 53, 355–366 (2020).
Lee, B. F. et al. Reactivity ratios and mechanistic insight for anionic ring-opening copolymerization of epoxides. Macromolecules 45, 3722–3731 (2012).
Blankenburg, J., Maciol, K., Hahn, C. & Frey, H. Poly(ethylene glycol) with multiple aldehyde functionalities opens up a rich and versatile post-polymerization chemistry. Macromolecules 52, 1785–1793 (2019).
Herzberger, J. et al. Oxidation-responsive and “clickable” Poly(ethylene glycol) via copolymerization of 2-(methylthio)ethyl glycidyl ether. J. Am. Chem. Soc. 138, 9212–9223 (2016).
Ponomarenko, V. A., Khomutov, A. M., Ilchenko, S. J. & lgnatenko, A.V. The effect of substituents of the anionic polymerization of α-oxides. Polym. Sci. USSR 13, 1735–1740 (1971).
Stolarzewicz, A. & Neugebauer, D. Influence of substituent on the polymerization of oxiranes by potassium hydride. Macromol. Chem. Phys. 200, 2467–2470 (1999).
Louai, A., Sarazin, D., Pollet, G., François, J. & Moreaux, F. Properties of ethylene oxide-propylene oxide statistical copolymers in aqueous solution. Polymer 32, 703–712 (1991).
Rudnick, L. R. Shubkin, R. L. Synthetic Lubricants and High-Performance Functional Fluids 2nd ed, Chemical industries Vol. 77 (Marcel Dekker, 1999).
Chiappetta, D. A. & Sosnik, A. Poly(ethylene oxide)-poly(propylene oxide) block copolymer micelles as drug delivery agents: improved hydrosolubility, stability and bioavailability of drugs. Eur. J. Pharm. Biopharm. 66, 303–317 (2007).
Fineman, M. & Ross, S. D. Linear method for determining monomer reactivity ratios in copolymerization. J. Polym. Sci. 5, 259–262 (1959).
Childers, M. I., Longo, J. M., Van Zee, N. J., LaPointe, A. M. & Coates, G. W. Stereoselective epoxide polymerization and copolymerization. Chem. Rev. 114, 8129–8152 (2014).
Rodriguez, C. G., Ferrier, R. C., Helenic, A. & Lynd, N. A. Ring-opening polymerization of epoxides: facile pathway to functional polyethers via a versatile organoaluminum initiator. Macromolecules 50, 3121–3130 (2017).
Akkermans, R. L. C., Spenley, N. A. & Robertson, S. H. COMPASS III: automated fitting workflows and extension to ionic liquids. Mol. Simul. 47, 540–551 (2021).
Job, P. Formation and stability of inorganic complexes in solution. Ann. Chim. 9, 113–203 (1928).
Cowie, J. M. G. 22 Alternating Copolymerization (Specialty Polymers) 383–382 (Springer, 1985).
Pfeifer, S. & Lutz, J.-F. A facile procedure for controlling monomer sequence distribution in radical chain polymerizations. J. Am. Chem. Soc. 129, 9542–9543 (2007).
Zamfir, M. & Lutz, J.-F. Ultra-precise insertion of functional monomers in chain-growth polymerizations. Nat. Commun. 3, 1138 (2012).
Montaudo, G., Samperi, F. & Montaudo, M. S. Characterization of synthetic polymers by MALDI-MS. Prog. Polym. Sci. 31, 277–357 (2006).