[en] Immunity in echinoderms, often considered the ancestral
deuterostome cellular defense system, relies primarily on cells
called coelomocytes. These cells have been found in the perivisceral
and hydrovascular cavities, the lumen of the haemal
system, and associated with the tissues of various internal organs
(i.e. marginated). Coelomocytes consist of various cell types that
display different morphologies, of which sea cucumbers show the
greatest diversity among echinoderms, with seven currently
accepted types: phagocytes, spherulocytes (morula cells), vibratile
cells, hemocytes, progenitor cells, crystal cells, and fusiform cells.
Among them, two types are the topic of debate regarding their
occurrence and distribution: vibratile cells and hemocytes. We
aimed to address this controversy through an investigation of
coelomocytes in several sea cucumber species (across orders
Holothuriida, Apodida, and Dendrochirotida) and various other
species of echinoderms (including sea urchins, crinoids, brittle
stars, and sea stars) by light microscopy and scanning electron
microscopy. We conclude that vibratile cells have been erroneously
considered coelomocytes but are in fact spermatozoa (or less
developed male gametes), at least in holothuroids. Hemocytes,
which to date were strictly described in the perivisceral fluid of
species in the order Dendrochirotida and Molpadida, were
detected in the hydrovascular fluid of one apodid (Chiridota
laevis) and three holothuriid species (Holothuria forskali, H. atra,
and Bohadschia argus). We suggest that both the misidentification
of vibratile cells and oversight of hemocytes in certain groups may
largely be attributed to the collection method, which most often
involves puncturing blindly through the body wall using a syringe
instead of dissecting the holothuroids to carefully sample coelomocytes
along the organs and inside the various cavities.
Disciplines :
Zoology
Author, co-author :
Caulier, Guillaume ; Université de Mons - UMONS > Faculté des Science > Service de Biologie des Organismes Marins et Biomimétisme
Jobson, Sara; Memorial University of Newfoundland > Ocean Science Center > Mercier lab
Wambreuse, Noé ; Université de Mons - UMONS > Faculté des Science > Service de Biologie des Organismes Marins et Biomimétisme
Borrello, Laura; UMONS - Université de Mons [BE] > Biologie > Biologie des Organismes Marins et Biomimétisme
Delroisse, Jérôme ; Université de Mons - UMONS > Faculté des Science > Service de Biologie des Organismes Marins et Biomimétism
Eeckhaut, Igor ; Université de Mons - UMONS > Faculté des Science > Service de Biologie des Organismes Marins et Biomimétisme
Mercier, Annie; Memorial University of Newfoundland > Ocean Science Center > Mercier lab
Hamel, Jean-François; Society for the Exploration and Valuing of the Environment (SEVE)
Language :
English
Title :
Vibratile cells and hemocytes in sea cucumbers—Clarifications and new paradigms
Publication date :
01 November 2023
Main work title :
The World Of Sea Cucumbers
Author, co-author :
Mercier, Annie; Memorial University of Newfoundland > Ocean Science Center > Mercier lab
Hamel, Jean-François; Society for the Exploration and Valuing of the Environment (SEVE)
Suhrbier D., Andrew
Pearce M., Christopher
Publisher :
Elsevier-Academic Press, London, United Kingdom
ISBN/EAN :
978-0-323-95377-1
Pages :
403-411
Peer reviewed :
Peer reviewed
Research unit :
S864 - Biologie des Organismes Marins et Biomimétisme
Andrade, C., Oliveira, B., Guatelli, S., Martinez, P., Simoes, B., Bispo, C.,... & Coelho, A. V. (2021). Characterization of coelomic fluid cell types in the starfish Marthasterias glacialis using a flow cytometry/imaging combined approach. Frontiers in Immunology, 807.
Baker, S. M. (1988). Hemoglobin function in a burrowing sea cucumber, Paracaudina chilensis (Doctoral dissertation, University of Oregon theses, Dept. of Biology, MS, 1988).
Bertheussen, K. (1979). The cytotoxic reaction in allogeneic mixtures of echinoid phagocytes. Experimental Cell Research, 120(2), 373-381.
Bertheussen, K., & Seljelid, R. (1978). Echinoid phagocytes in vitro. Experimental Cell Research, 111(2), 401-412.
Braet, F., De Zanger, R., & Wisse, E. (1997). Drying cells for SEM, AFM and TEM by hexamethyldisilazane: a study on hepatic endothelial cells. Journal of microscopy, 186(1), 84-87.
Canicatti, C., D'Ancona, G., & Farina-Lipari, E. (1989). The Holothuria polii brown bodies. Italian Journal of Zoology, 56(4), 275-283.
Caulier, G., Hamel, J.-F., & Mercier, A. (2020). From coelomocytes to colored aggregates: cellular components and processes involved in the immune response of the holothuroid Cucumaria frondosa. The Biological Bulletin, 239(2), 95-114.
Chia, F. S., Atwood, D., & Crawford, B. (1975). Comparative morphology of echinoderm sperm and possible phylogenetic implications. American Zoologist, 15(3), 553-565.
Chia, F. S., & Xing, J. (1996). Echinoderm coelomocytes. Zoological Studies-Taipei-, 35, 231-254.
Cuenot, L. (1948). Echinodermes. In Traite de Zoologie Vol. XI (pp. 1-363). Grasse, Masson, Paris.
Echlin, P. (2009). Sample stabilization for imaging in the SEM. In Handbook of Sample Preparation for Scanning Electron Microscopy and X-Ray Microanalysis (pp. 137-183). Springer, Boston, MA.
Eliseikina, M. A., & Magarlamov, T. Y. (2002). Coelomocyte morphology in the holothurians Apostichopus japonicus (Aspidochirota: Stichopodidae) and Cucumaria japonica (Dendrochirota: Cucumariidae). Russian Journal of Marine Biology, 28(3), 197-202.
Fontaine, A. R., & Hall, B. D. (1981). The hemocyte of the holothurian Eupentacta quinquesemita: ultrastructure and maturation. Canadian Journal of Zoology, 59(10), 1884-1891.
Fontaine, A. R., & Lambert, P. (1973). The fine structure of the hemocyte of the holothurian, Cucumaria miniata (Brandt). Canadian Journal of Zoology, 51(3), 323-332.
Hamel, J.-F., Jobson, S., Caulier, G., & Mercier, A. (2021). Evidence of anticipatory immune and hormonal responses to predation risk in an echinoderm. Scientific Reports, 11(1), 1-10.
Hetzel, H. R. (1963). Studies on holothurian coelomocytes. I. A survey of coelomocyte types. The Biological Bulletin, 125(2), 289-301.
Holland, N. D., Phillips Jr., J. H., & Giese, A. C. (1965). An autoradiographic investigation of coelomocyte production in the purple sea urchin (Strongylocentrotus purpuratus). The Biological Bulletin, 128(2), 259-270.
Hyman, L. H. (1955). The invertebrates: Echinodermata. The Coelomate Bilateria, 4, 1-763.
Jamieson, B. G. (1985). The spermatozoa of the Holothuroidea (Echinodermata): an ultrastructural review with data on two Australian species and phylogenetic discussion. Zoologica Scripta, 14(2), 123-135.
Jans, D., Dubois, P., & Jangoux, M. (1995). Defensive mechanisms of holothuroids (Echinodermata): Formation, role, and fate of intracoelomic brown bodies in the sea cucumber Holothuria tubulosa. Cell and Tissue Research, 283(1), 99-106.
Jobson, S., Hamel, J.-F., & Mercier, A. (2022). Rainbow bodies: revisiting the diversity of coelomocyte aggregates and their synthesis in echinoderms. Fish & Shellfish Immunology, 122, 352-365.
Kindred, J. E. (1924). The cellular elements in the perivisceral fluid of echinoderms. The Biological Bulletin, 46(5), 228-251.
Matranga, V., Pinsino, A., Celi, M., Bella, G. D., & Natoli, A. (2006). Impacts of UV-B radiation on short-term cultures of sea urchin coelomocytes. Marine Biology, 149(1), 25-34.
Mercier, A., Gebruk, A., Kremenetskaia, A., Hamel, J.-F., 2023. Chapter 1. An overview of taxonomic and morphological diversity in sea cucumbers (Holothuroidea: Echinodermata). In: Mercier, A., Hamel, J.-F., Suhrbier, A., Pearce, C., (Eds.), The World of Sea Cucumbers. Academic Press, pp. xx-xx.
Muthiga, N. A., Kawaka, J. A., & Ndirangu, S. (2009). The timing and reproductive output of the commercial sea cucumber Holothuria scabra on the Kenyan coast. Estuarine, Coastal and Shelf Science, 84(3), 353-360.
Pinsino, A., Thorndyke, M. C., & Matranga, V. (2007). Coelomocytes and post-traumatic response in the common sea star Asterias rubens. Cell Stress & Chaperones, 12(4), 331.
Queiroz, V., Custodio, M. R., 2023. Chapter 23. Diversity of coelomocytes in the class Holothuroidea. In: Mercier, A., Hamel, J.-F., Suhrbier, A., Pearce, C., (Eds.), The World of Sea Cucumbers. Academic Press, pp. xx-xx.
Queiroz, V., Mauro, M., Arizza, V., Custodio, M. R., & Vazzana, M. (2022). The use of an integrative approach to identify coelomocytes in three species of the genus Holothuria (Echinodermata). Invertebrate Biology, 141(1), e12357.
Queiroz, V., Muxel, S. M., Inguglia, L., Chiaramonte, M., & Custodio, M. R. (2021). Comparative study of coelomocytes from Arbacia lixula and Lythechinus variegatus: cell characterization and in vivo evidence of the physiological function of vibratile cells. Fish & Shellfish Immunology, 110, 1-9.
Ramirez-Gomez, F., Aponte-Rivera, F., Mendez-Castaner, L., & Garcia-Arraras, J. E. (2010). Changes in holothurian coelomocyte populations following immune stimulation with different molecular patterns. Fish & Shellfish Immunology, 29(2), 175-185.
Ramofafia, C., Battaglene, S. C., Bell, J. D., & Byrne, M. (2000). Reproductive biology of the commercial sea cucumber Holothuria fuscogilva in the Solomon Islands. Marine Biology, 136(6), 1045-1056.
Santos, R., Dias, S., Pinteus, S., Silva, J., Alves, C., Tecelao, C.,... & Pombo, A. (2016). Sea cucumber Holothuria forskali, a new resource for aquaculture? Reproductive biology and nutraceutical approach. Aquaculture Research, 47(7), 2307-2323.
Smith, V. J. (1981). The echinoderms. Invertebrate Blood Cells, 2, 513-562.
Smith, L. C., Arizza, V., Barela Hudgell, M. A., Barone, G., Bodnar, A. G., Buckley, K. M.,... & Sutton, E. (2018). Echinodermata: The complex immune system in echinoderms. In Advances in Comparative Immunology (pp. 409-501). Springer, Cham.
Smith, L., S. A. Boettger, M. Byrne, A. Hyland, D. L. Lipscomb, A. Majeske, J. P. Rast, N. W. Scuh, L. Song, G. Tafesh-Edwards, L. Wang, Z. Xue, and Z. Yu. (2022). Echinoderm diseases and pathologies. In Invertebrate Pathology (pp. 505-562). Rowley, Coates and Whitten (eds).
Smith, L. C., Hawley, T. S., Henson, J. H., Majeske, A. J., Oren, M., & Rosental, B. (2019). Methods for collection, handling, and analysis of sea urchin coelomocytes. Methods in Cell Biology, 150, 357-389.
Stein, E., Avtalion, R. R., & Cooper, E. L. (1977). The coelomocytes of the earthworm Lumbricus terrestris: Morphology and phagocytic properties. Journal of Morphology, 153(3), 467-477.
Tahseen, Q. (2009). Coelomocytes: biology and possible immune functions in invertebrates with special remarks on nematodes. International Journal of Zoology, 2009.
Tuwo, A., & Conand, C. (1992). Reproductive biology of the holothurian Holothuria forskali (Echinodermata). Journal of the Marine Biological Association of the United Kingdom, 72(4), 745-758.
Vazzana, M., Celi, M., Chiaramonte, M., Inguglia, L., Russo, D., Ferrantelli, V.,... & Arizza, V. (2018). Cytotoxic activity of Holothuria tubulosa (Echinodermata) coelomocytes. Fish and Shellfish Immunology, 72, 334-341.
Xing, K., Yang, H. S., & Chen, M. Y. (2008). Morphological and ultrastructural characterization of the coelomocytes in Apostichopus japonicus. Aquatic Biology, 2(1), 85-92.
Zang, Y., Tian, X., Dong, S., & Dong, Y. (2012). Growth, metabolism and immune responses to evisceration and the regeneration of viscera in sea cucumber, Apostichopus japonicus. Aquaculture, 358, 50-60.