[en] This paper reports the results of polyethylene (PE) and polypropylene (PP) composites containing 5 and 10 wt.% dendritic fibrous nanosilica (DFNS) synthesized by a hydrothermal process. The objective of this investigation is to provide a better understanding of the relationship between the structure, composition, matrix-nanofiller interfaces, and the properties of these nanocomposites. These materials have been prepared by twin-screw extrusion and injection molding. Their structural, thermal, mechanical, rheological, and electrical properties were evaluated, both alone and when combined with an organic compatibilizing agent. Findings have shown that the unique morphology of fibrous silica nanoparticles was preserved and not altered by melt processing, indicating the high thermal and mechanical stability of these fibrous materials. The nanocomposites containing DFNS alone exhibited higher mechanical performances compared to those containing the surface modifier, with no observable effect on their thermal properties. Findings also showed that the interactions between the nanoparticles and polymer may influence the functional properties of the final nanocomposites, and that they are dependent on both the nature of the host polymer along with the presence of the surface modifier agent. Highlights: Well-defined DFNS were successfully prepared. PE and PP based nanocomposites were successfully designed by twin-screw extrusion. Good interfacial interactions were obtained with PP. Functional properties of the nanocomposites were influenced by the interfacial adhesion.
Disciplines :
Materials science & engineering
Author, co-author :
Fihri, Aziz ; Non-Metallic Application Development Division, Research & Development Center, Saudi Aramco, Dhahran, Saudi Arabia
Lazko, Jevgenij ; Université de Mons - UMONS > Unités externe > Materia Nova ASBL ; Laboratory of Polymeric and Composite Materials, Materia Nova Research Center, Mons, Belgium
Laoutid, Fouad ; Université de Mons - UMONS > Unités externe > Materia Nova ASBL ; Laboratory of Polymeric and Composite Materials, Materia Nova Research Center, Mons, Belgium
Mariage, Jérôme; Laboratory of Polymeric and Composite Materials, Materia Nova Research Center, Mons, Belgium
Passion, Julie; Laboratory of Polymeric and Composite Materials, Materia Nova Research Center, Mons, Belgium
Schow, Tim; Laboratory of Polymeric and Composite Materials, Materia Nova Research Center, Mons, Belgium
Malajati, Yassine; Non-Metallic Application Development Division, Research & Development Center, Saudi Aramco, Dhahran, Saudi Arabia
Rastogi, Ruchi; Non-Metallic Application Development Division, Research & Development Center, Saudi Aramco, Dhahran, Saudi Arabia
Alamri, Haleema; Non-Metallic Application Development Division, Research & Development Center, Saudi Aramco, Dhahran, Saudi Arabia
Dubois, Philippe ; Université de Mons - UMONS > Faculté des Science > Service des Matériaux Polymères et Composites ; Laboratory of Polymeric and Composite Materials, Materia Nova Research Center, Mons, Belgium
Language :
English
Title :
Effect of interfacial modification on functional properties of polyethylene and polypropylene—Fibrous silica nanocomposites
Publication date :
2023
Journal title :
Journal of Vinyl and Additive Technology
ISSN :
1083-5601
eISSN :
1548-0585
Publisher :
John Wiley and Sons Ltd
Peer reviewed :
Peer reviewed
Research unit :
S816 - Matériaux Polymères et Composites
Research institute :
R400 - Institut de Recherche en Science et Ingénierie des Matériaux
Alexandre M, Dubois P. Polymer-layered silicate nanocomposites: preparation, properties and uses of a new class of materials. Mater Sci Eng R: Rep. 2000;28(1–2):1-63. doi:10.1016/S0927-796X(00)00012-7
Kango S, Kalia S, Celli A, Njuguna J, Habibi Y, Kumar R. Surface modification of inorganic nanoparticles for development of organic–inorganic nanocomposites—a review. Prog Polym Sci. 2013;38(8):1232-1261. doi:10.1016/j.progpolymsci.2013.02.003
Watanabe R, Hagihara H, Sato H. Structure−property relationships of polypropylene-based nanocomposites obtained by dispersing mesoporous silica into hydroxyl-functionalized polypropylene. Part 2: matrix−filler interactions and pore filling of mesoporous silica characterized by evolved gas analysis. Polym J. 2018;50(11):1067-1077. doi:10.1038/s41428-018-0096-9
Bikiaris DN, Vassiliou A, Pavlidou E, Karayannidis GP. Compatibilisation effect of PP-g-MA copolymer on IPP/SiO2 nanocomposites prepared by melt mixing. Eur Polym J. 2005;41(9):1965-1978. doi:10.1016/j.eurpolymj.2005.03.008
Yuan W, Wang F, Chen Z, et al. Efficient grafting of polypropylene onto silica nanoparticles and the properties of PP/PP-g-SiO2 nanocomposites. Polymer. 2018;151:242-249. doi:10.1016/j.polymer.2018.07.060
Scharlach K, Kaminsky W. New polyolefin-nanocomposites by in situ polymerization with metallocene catalysts. Macromol Symp. 2008;261(1):10-17. doi:10.1002/masy.200850102
Lin OH, Akil HM, Mohd IZ. Surface-activated nanosilica treated with Silane coupling agents/polypropylene composites: mechanical, morphological, and thermal studies. Polym Compos. 2011;32(10):1568-1583. doi:10.1002/pc.21190
Russo P, Venezia V, Tescione F, et al. Improving interaction at polymer–filler Interface: the efficacy of wrinkle texture. Nanomaterials (Basel). 2020;10:208-223. doi:10.3390/nano10020208
Maiti M, Basak GC, Srivastava VK, Jasra RV. Mesoporous silica reinforced polybutadiene rubber hybrid composite. Int J Ind Chem. 2016;7(2):131-141. doi:10.1007/s40090-015-0062-8
Wang N, Fang Q, Zhang J, Chen E, Zhang X. Incorporation of nano-sized mesoporous MCM-41 material used as fillers in natural rubber composite. Mater Sci Eng A. 2011;528:3321-3325. https://www.sciencedirect.com/science/article/pii/S0921509311000128
Polshettiwar V, Cha D, Zhang XX, Basset JM. High-surface-area silica Nanospheres (KCC-1) with a fibrous morphology. AngewChem Int Ed. 2010;50(49):9652-9656.
Xu C, Lei C, Wang Y, Yu C. Dendritic mesoporous nanoparticles: structure, synthesis and properties. Angew Chem Int Ed. 2022;61(12):e202112752. doi:10.1002/anie.202112752
Polshettiwar V. Dendritic fibrous nanosilica: discovery, synthesis, formation mechanism, catalysis, and CO2 capture–conversion. Acc Chem Res. 2022;55(10):1395-1410. doi:10.1021/acs.accounts.2c00031
Silver nanoparticles immobilized on fibrous nano-silica as highly efficient and recyclable heterogeneous catalyst for reduction of 4-nitrophenol and 2-nitroaniline. Appl Catal Environ. 2014;158–159:129-135. doi:10.1016/j.apcatb.2014.04.015
Wang K, Liang S, Deng J, et al. The role of clay network on macromolecular chain mobility and relaxation in isotactic polypropylene/organoclay nanocomposites. Polymer. 2006;47(20):7131-7144. doi:10.1016/j.polymer.2006.07.067
Hamzah MS, Mariatti M, Ismail H. Melt flow index and flammability of alumina, zinc oxide and organoclay nanoparticles filled cross-linked polyethyelene nanocomposites. Mater Today Proc. 2019;17:798-802. doi:10.1016/j.matpr.2019.06.365
Salmi MS, Zoukrami F, Haddaoui N. Structure-properties relation in thermoplastic polymer/silica nanocomposites in presence of stearic acid as modifier agent. Int J Polym Anal Charact. 2021;26(7):604-617. doi:10.1080/1023666X.2021.1947661
Wetting & Dispersing Additives – Polymeric & Oleochemical Base Waxes|20 Microns Ltd. Accessed September 12, 2022. https://www.20microns.com/wetting-dispersing-additives-polymeric-oleochemical-base-waxes/
Patti A, Russo P, Acierno D, Acierno S. The effect of filler functionalization on dispersion and thermal conductivity of polypropylene/multi wall carbon nanotubes composites. Comp Part B Eng. 2016;94:350-359.