charge transfer; electrochemical gating; operando terahertz spectroscopy; photogating; van der Waals heterostructures; Charge flow; Electrical control; Interfacial charge; Operando; Two-dimensional; Van der Waal; Van der waal heterostructure; Bioengineering; Chemistry (all); Materials Science (all); Condensed Matter Physics; Mechanical Engineering; General Materials Science; General Chemistry
Abstract :
[en] Bond-free integration of two-dimensional (2D) materials yields van der Waals (vdW) heterostructures with exotic optical and electronic properties. Manipulating the splitting and recombination of photogenerated electron-hole pairs across the vdW interface is essential for optoelectronic applications. Previous studies have unveiled the critical role of defects in trapping photogenerated charge carriers to modulate the photoconductive gain for photodetection. However, the nature and role of defects in tuning interfacial charge carrier dynamics have remained elusive. Here, we investigate the nonequilibrium charge dynamics at the graphene-WS2 vdW interface under electrochemical gating by operando optical-pump terahertz-probe spectroscopy. We report full control over charge separation states and thus photogating field direction by electrically tuning the defect occupancy. Our results show that electron occupancy of the two in-gap states, presumably originating from sulfur vacancies, can account for the observed rich interfacial charge transfer dynamics and electrically tunable photogating fields, providing microscopic insights for optimizing optoelectronic devices.
Disciplines :
Chemistry
Author, co-author :
Fu, Shuai ; Max Planck Institute for Polymer Research, Ackermannweg 10, D-55128 Mainz, Germany
Jia, Xiaoyu; Max Planck Institute for Polymer Research, Ackermannweg 10, D-55128 Mainz, Germany
Hassan, Aliaa S; Max Planck Institute for Polymer Research, Ackermannweg 10, D-55128 Mainz, Germany
Zhang, Heng ; Max Planck Institute for Polymer Research, Ackermannweg 10, D-55128 Mainz, Germany
Zheng, Wenhao; Max Planck Institute for Polymer Research, Ackermannweg 10, D-55128 Mainz, Germany
Gao, Lei; Max Planck Institute for Polymer Research, Ackermannweg 10, D-55128 Mainz, Germany ; School of Physics and Key Laboratory of MEMS of the Ministry of Education, Southeast University, Nanjing 211189, China
Di Virgilio, Lucia; Max Planck Institute for Polymer Research, Ackermannweg 10, D-55128 Mainz, Germany
Krasel, Sven; Max Planck Institute for Polymer Research, Ackermannweg 10, D-55128 Mainz, Germany
Beljonne, David ; Université de Mons - UMONS > Faculté des Science > Service de Chimie des matériaux nouveaux
Tielrooij, Klaas-Jan ; Catalan Institute of Nanoscience and Nanotechnology (ICN2), BIST & CSIC, Campus UAB, Bellaterra, Barcelona 08193, Spain
Bonn, Mischa ; Max Planck Institute for Polymer Research, Ackermannweg 10, D-55128 Mainz, Germany
Wang, Hai I ; Max Planck Institute for Polymer Research, Ackermannweg 10, D-55128 Mainz, Germany
Language :
English
Title :
Reversible Electrical Control of Interfacial Charge Flow across van der Waals Interfaces.
R400 - Institut de Recherche en Science et Ingénierie des Matériaux Complexys
Funders :
Deutsche Forschungsgemeinschaft Johannes Gutenberg-Universit?t Mainz Horizon 2020 Framework Programme China Scholarship Council
Funding text :
We thank Jaco Geuchies, Yongkang Wang, Chao Zhu, Maksim Grechko, Heejae Kim, Sheng Qu, Jiabao Yang, Min Liu, Shuai Chen, Yunji Lee, Pushpendra Kumar, Arjan Houtepen and Samir Al-Hilfi for fruitful discussions. S.F. and L.G. acknowledge the fellowship support from China Scholarship Council (CSC). X.J. acknowledges the financial support by DFG through the Excellence Initiative by the Graduate School of Excellence Materials Science in Mainz (MAINZ) (GSC 266) and support from the Max Planck Graduate Center mit der Johannes Gutenberg-Universität Mainz (MPGC). K.J.T. acknowledges funding from the European Union’s Horizon 2020 research and innovation programme under Grant Agreement No. 804349 (ERC StG CUHL) and financial support through the MAINZ Visiting Professorship.Open access funded by Max Planck Society.
Roy, K.; Padmanabhan, M.; Goswami, S.; Sai, T. P.; Ramalingam, G.; Raghavan, S.; Ghosh, A. Graphene-MoS2 Hybrid Structures for Multifunctional Photoresponsive Memory Devices. Nat. Nanotechnol. 2013, 8 ( 11), 826- 830, 10.1038/nnano.2013.206
Flöry, N.; Ma, P.; Salamin, Y.; Emboras, A.; Taniguchi, T.; Watanabe, K.; Leuthold, J.; Novotny, L. Waveguide-Integrated van Der Waals Heterostructure Photodetector at Telecom Wavelengths with High Speed and High Responsivity. Nat. Nanotechnol. 2020, 15 ( 2), 118- 124, 10.1038/s41565-019-0602-z
Koppens, F. H. L.; Mueller, T.; Avouris, P.; Ferrari, A. C.; Vitiello, M. S.; Polini, M. Photodetectors Based on Graphene, Other Two-Dimensional Materials and Hybrid Systems. Nat. Nanotechnol. 2014, 9 ( 10), 780, 10.1038/nnano.2014.215
Rosman, N. N.; Yunus, R. M.; Minggu, L. J.; Arifin, K.; Salehmin, M. N. I.; Mohamed, M. A.; Kassim, M. B. Photocatalytic Properties of Two-Dimensional Graphene and Layered Transition-Metal Dichalcogenides Based Photocatalyst for Photoelectrochemical Hydrogen Generation: An Overview. Int. J. Hydrogen Energy 2018, 43 ( 41), 18925- 18945, 10.1016/j.ijhydene.2018.08.126
Sierra, J. F.; Fabian, J.; Kawakami, R. K.; Roche, S.; Valenzuela, S. O. Van Der Waals Heterostructures for Spintronics and Opto-Spintronics. Nat. Nanotechnol. 2021, 16 ( 8), 856- 868, 10.1038/s41565-021-00936-x
Liu, Y.; Huang, Y.; Duan, X. Van Der Waals Integration before and beyond Two-Dimensional Materials. Nature 2019, 567 ( 7748), 323- 333, 10.1038/s41586-019-1013-x
Hu, Z.; Liu, X.; Hernández-Martínez, P. L.; Zhang, S.; Gu, P.; Du, W.; Xu, W.; Demir, H. V.; Liu, H.; Xiong, Q. Interfacial Charge and Energy Transfer in van Der Waals Heterojunctions. InfoMat 2022, 4 ( 3), e12290 10.1002/inf2.12290
Jin, C.; Ma, E. Y.; Karni, O.; Regan, E. C.; Wang, F.; Heinz, T. F. Ultrafast Dynamics in van Der Waals Heterostructures. Nat. Nanotechnol. 2018, 13 ( 11), 994- 1003, 10.1038/s41565-018-0298-5
Chen, Y.; Li, Y.; Zhao, Y.; Zhou, H.; Zhu, H. Highly Efficient Hot Electron Harvesting from Graphene before Electron-Hole Thermalization. Sci. Adv. 2019, 5 ( 11), eaax9958 10.1126/sciadv.aax9958
Fu, S.; du Fossé, I.; Jia, X.; Xu, J.; Yu, X.; Zhang, H.; Zheng, W.; Krasel, S.; Chen, Z.; Wang, Z. M. Long-Lived Charge Separation Following Pump-Wavelength-Dependent Ultrafast Charge Transfer in Graphene/WS2 Heterostructures. Sci. Adv. 2021, 7 ( 9), eabd9061 10.1126/sciadv.abd9061
Yuan, L.; Chung, T. F.; Kuc, A.; Wan, Y.; Xu, Y.; Chen, Y. P.; Heine, T.; Huang, L. Photocarrier Generation from Interlayer Charge-Transfer Transitions in WS2-Graphene Heterostructures. Sci. Adv. 2018, 4 ( 2), e1700324 10.1126/sciadv.1700324
Aeschlimann, S.; Rossi, A.; Chavez-Cervantes, M.; Krause, R.; Arnoldi, B.; Stadtmuller, B.; Aeschlimann, M.; Forti, S.; Fabbri, F.; Coletti, C.; Gierz, I. Direct Evidence for Efficient Ultrafast Charge Separation in Epitaxial WS2/Graphene Heterostructures. Sci. Adv. 2020, 6 ( 20), eaay0761 10.1126/sciadv.aay0761
Luo, D.; Tang, J.; Shen, X.; Ji, F.; Yang, J.; Weathersby, S.; Kozina, M. E.; Chen, Z.; Xiao, J.; Ye, Y. Twist-Angle-Dependent Ultrafast Charge Transfer in MoS2-Graphene van Der Waals Heterostructures. Nano Lett. 2021, 21 ( 19), 8051- 8057, 10.1021/acs.nanolett.1c02356
Ferrante, C.; Di Battista, G.; López, L. E. P.; Batignani, G.; Lorchat, E.; Virga, A.; Berciaud, S.; Scopigno, T. Picosecond Energy Transfer in a Transition Metal Dichalcogenide-Graphene Heterostructure Revealed by Transient Raman Spectroscopy. Proc. Natl. Acad. Sci. U. S. A. 2022, 119 ( 15), e2119726119 10.1073/pnas.2119726119
Trovatello, C.; Piccinini, G.; Forti, S.; Fabbri, F.; Rossi, A.; De Silvestri, S.; Coletti, C.; Cerullo, G.; Dal Conte, S. Ultrafast Hot Carrier Transfer in WS2/Graphene Large Area Heterostructures. npj 2D Mater. Appl. 2022, 6, 24, 10.1038/s41699-022-00299-4
Liu, H.; Wang, J.; Liu, Y.; Wang, Y.; Xu, L.; Huang, L.; Liu, D.; Luo, J. Visualizing Ultrafast Defect-controlled Interlayer Electron-phonon Coupling in van Der Waals Heterostructures. Adv. Mater. 2022, 34, 2106955, 10.1002/adma.202106955
Krause, R.; Aeschlimann, S.; Chávez-Cervantes, M.; Perea-Causin, R.; Brem, S.; Malic, E.; Forti, S.; Fabbri, F.; Coletti, C.; Gierz, I. Microscopic Understanding of Ultrafast Charge Transfer in van Der Waals Heterostructures. Phys. Rev. Lett. 2021, 127 ( 27), 276401, 10.1103/PhysRevLett.127.276401
Massicotte, M.; Schmidt, P.; Vialla, F.; Watanabe, K.; Taniguchi, T.; Tielrooij, K. J.; Koppens, F. H. L. Photo-Thermionic Effect in Vertical Graphene Heterostructures. Nat. Commun. 2016, 7, 12174, 10.1038/ncomms12174
Fang, H.; Hu, W. Photogating in Low Dimensional Photodetectors. Adv. Sci. 2017, 4 ( 12), 1700323, 10.1002/advs.201700323
Zhu, B.; Chen, X.; Cui, X. Exciton Binding Energy of Monolayer WS2. Sci. Rep. 2015, 5, 9218, 10.1038/srep09218
Shi, W.; Lin, M.-L.; Tan, Q.-H.; Qiao, X.-F.; Zhang, J.; Tan, P.-H. Raman and Photoluminescence Spectra of Two-Dimensional Nanocrystallites of Monolayer WS2 and WSe2. 2D Mater. 2016, 3 ( 2), 25016, 10.1088/2053-1583/3/2/025016
Iqbal, M. W.; Shahzad, K.; Akbar, R.; Hussain, G. A Review on Raman Finger Prints of Doping and Strain Effect in TMDCs. Microelectron. Eng. 2020, 219, 111152, 10.1016/j.mee.2019.111152
Raja, A.; Chaves, A.; Yu, J.; Arefe, G.; Hill, H. M.; Rigosi, A. F.; Berkelbach, T. C.; Nagler, P.; Schüller, C.; Korn, T. Coulomb Engineering of the Bandgap and Excitons in Two-Dimensional Materials. Nat. Commun. 2017, 8, 15251, 10.1038/ncomms15251
Hill, H. M.; Rigosi, A. F.; Raja, A.; Chernikov, A.; Roquelet, C.; Heinz, T. F. Exciton Broadening in WS2/Graphene Heterostructures. Phys. Rev. B 2017, 96 ( 20), 205401, 10.1103/PhysRevB.96.205401
Neu, J.; Regan, K. P.; Swierk, J. R.; Schmuttenmaer, C. A. Applicability of the Thin-Film Approximation in Terahertz Photoconductivity Measurements. Appl. Phys. Lett. 2018, 113 ( 23), 233901, 10.1063/1.5052232
Shi, S.-F.; Tang, T.-T.; Zeng, B.; Ju, L.; Zhou, Q.; Zettl, A.; Wang, F. Controlling Graphene Ultrafast Hot Carrier Response from Metal-like to Semiconductor-like by Electrostatic Gating. Nano Lett. 2014, 14 ( 3), 1578- 1582, 10.1021/nl404826r
Jensen, S. A.; Mics, Z.; Ivanov, I.; Varol, H. S.; Turchinovich, D.; Koppens, F. H. L.; Bonn, M.; Tielrooij, K.-J. Competing Ultrafast Energy Relaxation Pathways in Photoexcited Graphene. Nano Lett. 2014, 14 ( 10), 5839- 5845, 10.1021/nl502740g
Tomadin, A.; Candini, A.; Kläui, M.; Koppens, F. H. L.; Tielrooij, K.-J.; Wang, H. I.; Hendry, E.; Coletti, C.; Polini, M.; Alexeev, E. M.; Hornett, S. M.; Bonn, M.; Turchinovich, D. The Ultrafast Dynamics and Conductivity of Photoexcited Graphene at Different Fermi Energies. Sci. Adv. 2018, 4 ( 5), eaar5313 10.1126/sciadv.aar5313
Jnawali, G.; Rao, Y.; Yan, H.; Heinz, T. F. Observation of a Transient Decrease in Terahertz Conductivity of Single-Layer Graphene Induced by Ultrafast Optical Excitation. Nano Lett. 2013, 13 ( 2), 524- 530, 10.1021/nl303988q
Liu, Z.; Qiu, H.; Fu, S.; Wang, C.; Yao, X.; Dixon, A. G.; Campidelli, S.; Pavlica, E.; Bratina, G.; Zhao, S.; Rondin, L.; Lauret, J.-S.; Narita, A.; Bonn, M.; Müllen, K.; Ciesielski, A.; Wang, H. I.; Samorì, P. Solution-Processed Graphene-Nanographene van Der Waals Heterostructures for Photodetectors with Efficient and Ultralong Charge Separation. J. Am. Chem. Soc. 2021, 143 ( 41), 17109- 17116, 10.1021/jacs.1c07615
Yu, X.; Fu, S.; Mandal, M.; Yao, X.; Liu, Z.; Zheng, W.; Samori, P.; Narita, A.; Mullen, K.; Andrienko, D.; Bonn, M.; Wang, H. I. Tuning Interfacial Charge Transfer in Atomically Precise Nanographene-Graphene Heterostructures by Engineering van Der Waals Interactions. J. Chem. Phys. 2022, 156 ( 7), 74702, 10.1063/5.0081074
Jnawali, G.; Rao, Y.; Beck, J. H.; Petrone, N.; Kymissis, I.; Hone, J.; Heinz, T. F. Observation of Ground- and Excited-State Charge Transfer at the C60/Graphene Interface. ACS Nano 2015, 9 ( 7), 7175- 7185, 10.1021/acsnano.5b01896
Massicotte, M.; Soavi, G.; Principi, A.; Tielrooij, K.-J. Hot Carriers in Graphene-Fundamentals and Applications. Nanoscale 2021, 13 ( 18), 8376- 8411, 10.1039/D0NR09166A
Schuler, B.; Qiu, D. Y.; Refaely-Abramson, S.; Kastl, C.; Chen, C. T.; Barja, S.; Koch, R. J.; Ogletree, D. F.; Aloni, S.; Schwartzberg, A. M. Large Spin-Orbit Splitting of Deep in-Gap Defect States of Engineered Sulfur Vacancies in Monolayer WS2. Phys. Rev. Lett. 2019, 123 ( 7), 76801, 10.1103/PhysRevLett.123.076801
Gali, S. M.; Beljonne, D. Combined Healing and Doping of Transition Metal Dichalcogenides through Molecular Functionalization. J. Mater. Chem. C 2021, 9 ( 45), 16247- 16256, 10.1039/D1TC01329G
Farmer, D. B.; Golizadeh-Mojarad, R.; Perebeinos, V.; Lin, Y.-M.; Tulevski, G. S.; Tsang, J. C.; Avouris, P. Chemical Doping and Electron- Hole Conduction Asymmetry in Graphene Devices. Nano Lett. 2009, 9 ( 1), 388- 392, 10.1021/nl803214a
Horng, J.; Chen, C. F.; Geng, B.; Girit, C.; Zhang, Y.; Hao, Z.; Bechtel, H. A.; Martin, M.; Zettl, A.; Crommie, M. F.; Shen, Y. R.; Wang, F. Drude Conductivity of Dirac Fermions in Graphene. Phys. Rev. B 2011, 83 ( 16), 165113, 10.1103/PhysRevB.83.165113
Zhou, W.; Zou, X.; Najmaei, S.; Liu, Z.; Shi, Y.; Kong, J.; Lou, J.; Ajayan, P. M.; Yakobson, B. I.; Idrobo, J.-C. Intrinsic Structural Defects in Monolayer Molybdenum Disulfide. Nano Lett. 2013, 13 ( 6), 2615- 2622, 10.1021/nl4007479
Hu, Z.; Wu, Z.; Han, C.; He, J.; Ni, Z.; Chen, W. Two-Dimensional Transition Metal Dichalcogenides: Interface and Defect Engineering. Chem. Soc. Rev. 2018, 47 ( 9), 3100- 3128, 10.1039/C8CS00024G
Ippolito, S.; Samorì, P. Defect Engineering Strategies Toward Controlled Functionalization of Solution-Processed Transition Metal Dichalcogenides. Small Sci. 2022, 2 ( 4), 2100122, 10.1002/smsc.202100122
Ippolito, S.; Kelly, A. G.; Furlan de Oliveira, R.; Stoeckel, M.-A.; Iglesias, D.; Roy, A.; Downing, C.; Bian, Z.; Lombardi, L.; Samad, Y. A. Covalently Interconnected Transition Metal Dichalcogenide Networks via Defect Engineering for High-Performance Electronic Devices. Nat. Nanotechnol. 2021, 16 ( 5), 592- 598, 10.1038/s41565-021-00857-9
Lien, D.-H.; Uddin, S. Z.; Yeh, M.; Amani, M.; Kim, H.; Ager, J. W., III; Yablonovitch, E.; Javey, A. Electrical Suppression of All Nonradiative Recombination Pathways in Monolayer Semiconductors. Science 2019, 364 ( 6439), 468- 471, 10.1126/science.aaw8053
Shin, D.; Wang, G.; Han, M.; Lin, Z.; O’Hara, A.; Chen, F.; Lin, J.; Pantelides, S. T. Preferential Hole Defect Formation in Monolayer WSe2 by Electron-Beam Irradiation. Phys. Rev. Mater. 2021, 5 ( 4), 44002, 10.1103/PhysRevMaterials.5.044002
Bretscher, H.; Li, Z.; Xiao, J.; Qiu, D. Y.; Refaely-Abramson, S.; Alexander-Webber, J. A.; Tanoh, A.; Fan, Y.; Delport, G.; Williams, C. A. Rational Passivation of Sulfur Vacancy Defects in Two-Dimensional Transition Metal Dichalcogenides. ACS Nano 2021, 15 ( 5), 8780- 8789, 10.1021/acsnano.1c01220
Amani, M.; Lien, D.-H.; Kiriya, D.; Xiao, J.; Azcatl, A.; Noh, J.; Madhvapathy, S. R.; Addou, R.; Kc, S.; Dubey, M. Near-Unity Photoluminescence Quantum Yield in MoS2. Science 2015, 350 ( 6264), 1065- 1068, 10.1126/science.aad2114