Article (Scientific journals)
Reversible Electrical Control of Interfacial Charge Flow across van der Waals Interfaces.
Fu, Shuai; Jia, Xiaoyu; Hassan, Aliaa S et al.
2023In Nano Letters, 23 (5), p. 1850 - 1857
Peer Reviewed verified by ORBi
 

Files


Full Text
cmn1129.pdf
Author postprint (3.28 MB)
Download

All documents in ORBi UMONS are protected by a user license.

Send to



Details



Keywords :
charge transfer; electrochemical gating; operando terahertz spectroscopy; photogating; van der Waals heterostructures; Charge flow; Electrical control; Interfacial charge; Operando; Two-dimensional; Van der Waal; Van der waal heterostructure; Bioengineering; Chemistry (all); Materials Science (all); Condensed Matter Physics; Mechanical Engineering; General Materials Science; General Chemistry
Abstract :
[en] Bond-free integration of two-dimensional (2D) materials yields van der Waals (vdW) heterostructures with exotic optical and electronic properties. Manipulating the splitting and recombination of photogenerated electron-hole pairs across the vdW interface is essential for optoelectronic applications. Previous studies have unveiled the critical role of defects in trapping photogenerated charge carriers to modulate the photoconductive gain for photodetection. However, the nature and role of defects in tuning interfacial charge carrier dynamics have remained elusive. Here, we investigate the nonequilibrium charge dynamics at the graphene-WS2 vdW interface under electrochemical gating by operando optical-pump terahertz-probe spectroscopy. We report full control over charge separation states and thus photogating field direction by electrically tuning the defect occupancy. Our results show that electron occupancy of the two in-gap states, presumably originating from sulfur vacancies, can account for the observed rich interfacial charge transfer dynamics and electrically tunable photogating fields, providing microscopic insights for optimizing optoelectronic devices.
Disciplines :
Chemistry
Author, co-author :
Fu, Shuai ;  Max Planck Institute for Polymer Research, Ackermannweg 10, D-55128 Mainz, Germany
Jia, Xiaoyu;  Max Planck Institute for Polymer Research, Ackermannweg 10, D-55128 Mainz, Germany
Hassan, Aliaa S;  Max Planck Institute for Polymer Research, Ackermannweg 10, D-55128 Mainz, Germany
Zhang, Heng ;  Max Planck Institute for Polymer Research, Ackermannweg 10, D-55128 Mainz, Germany
Zheng, Wenhao;  Max Planck Institute for Polymer Research, Ackermannweg 10, D-55128 Mainz, Germany
Gao, Lei;  Max Planck Institute for Polymer Research, Ackermannweg 10, D-55128 Mainz, Germany ; School of Physics and Key Laboratory of MEMS of the Ministry of Education, Southeast University, Nanjing 211189, China
Di Virgilio, Lucia;  Max Planck Institute for Polymer Research, Ackermannweg 10, D-55128 Mainz, Germany
Krasel, Sven;  Max Planck Institute for Polymer Research, Ackermannweg 10, D-55128 Mainz, Germany
Beljonne, David  ;  Université de Mons - UMONS > Faculté des Science > Service de Chimie des matériaux nouveaux
Tielrooij, Klaas-Jan ;  Catalan Institute of Nanoscience and Nanotechnology (ICN2), BIST & CSIC, Campus UAB, Bellaterra, Barcelona 08193, Spain
Bonn, Mischa ;  Max Planck Institute for Polymer Research, Ackermannweg 10, D-55128 Mainz, Germany
Wang, Hai I ;  Max Planck Institute for Polymer Research, Ackermannweg 10, D-55128 Mainz, Germany
Language :
English
Title :
Reversible Electrical Control of Interfacial Charge Flow across van der Waals Interfaces.
Publication date :
08 March 2023
Journal title :
Nano Letters
ISSN :
1530-6984
eISSN :
1530-6992
Publisher :
American Chemical Society, United States
Volume :
23
Issue :
5
Pages :
1850 - 1857
Peer reviewed :
Peer Reviewed verified by ORBi
Research unit :
S817 - Chimie des matériaux nouveaux
Research institute :
R400 - Institut de Recherche en Science et Ingénierie des Matériaux
Complexys
Funders :
Deutsche Forschungsgemeinschaft
Johannes Gutenberg-Universit?t Mainz
Horizon 2020 Framework Programme
China Scholarship Council
Funding text :
We thank Jaco Geuchies, Yongkang Wang, Chao Zhu, Maksim Grechko, Heejae Kim, Sheng Qu, Jiabao Yang, Min Liu, Shuai Chen, Yunji Lee, Pushpendra Kumar, Arjan Houtepen and Samir Al-Hilfi for fruitful discussions. S.F. and L.G. acknowledge the fellowship support from China Scholarship Council (CSC). X.J. acknowledges the financial support by DFG through the Excellence Initiative by the Graduate School of Excellence Materials Science in Mainz (MAINZ) (GSC 266) and support from the Max Planck Graduate Center mit der Johannes Gutenberg-Universität Mainz (MPGC). K.J.T. acknowledges funding from the European Union’s Horizon 2020 research and innovation programme under Grant Agreement No. 804349 (ERC StG CUHL) and financial support through the MAINZ Visiting Professorship.Open access funded by Max Planck Society.
Available on ORBi UMONS :
since 18 December 2023

Statistics


Number of views
6 (0 by UMONS)
Number of downloads
4 (0 by UMONS)

Scopus citations®
 
9
Scopus citations®
without self-citations
5
OpenAlex citations
 
9

Bibliography


Similar publications



Contact ORBi UMONS