Article (Scientific journals)
Halide Containing Short Organic Monocations in n = 1-4 2D Multilayered Halide Perovskite Thin Films and Crystals
Skorokhod, Alla; Quarti, Claudio; Abhervé, Alexandre et al.
2023In Chemistry of Materials, 35 (7), p. 2873 - 2883
Peer Reviewed verified by ORBi
 

Files


Full Text
skorokhod-halide_containing_multi_n_2D-chemmater2023.pdf
Publisher postprint (6.34 MB)
Request a copy

All documents in ORBi UMONS are protected by a user license.

Send to



Details



Keywords :
Electronic band gaps; Halide perovskites; Layered compound; Lead iodide; Monocations; Multi-layered; Organics; Perovskite thin films; Photovoltaics; Thin crystal; Chemistry (all); Chemical Engineering (all); Materials Chemistry; General Chemical Engineering; General Chemistry
Abstract :
[en] Low electronic band gap 2D multilayered (n = 3,4) lead-iodide perovskites with formulas A′2An-1PbnI3n+1 A″An-1PbnI3n+1 are of great interest for photovoltaics, with recent demonstrations of stable solar cell operation based on 2D/3D bilayered heterostructures. Still, the difficulty in achieving optimal phase control, with potential formation of mixed n-domains, is a limiting factor for the photovoltaic performance of 2D/3D heterostructures, and the current choice for multi n-layered compounds is limited. Here, we report synthesis and XRD characterization of novel (I-EA)2MAn-1PbnI3n+1 (n = 1-4) compound series, along with the (Br-EA)2PbBr4 (n = 1) compound, incorporating iodo-ethylammonium (I-EA) and bromo-ethylammonium (Br-EA) spacers. These halide-featuring spacers lead to a small lattice mismatch between the inorganic and organic components, which explains the successful formation of multi n-layered compounds. The presence of bromine or iodine in the interlayer space impacts on the dielectric and electronic properties of these materials. Periodic DFT simulations predict vertical hole effective mass for n = 1 (I-EA)2PbI4 as small as 1.8 me, comparable to popular organic semiconductors, like rubrene. UV-vis characterization sets the optical absorption onset of these materials around 1.71 eV for n = 3 and 4, hence suggesting that they can be successfully implemented in 2D/3D photovoltaic architectures.
Disciplines :
Chemistry
Author, co-author :
Skorokhod, Alla;  MOLTECH ANJOU, UMR-CNRS 6200, Université D’Angers, Angers, France
Quarti, Claudio  ;  Université de Mons - UMONS > Faculté des Science > Service de Chimie des matériaux nouveaux ; Univ Rennes, ENSCR, INSA Rennes, CNRS, ISCR (Institut des Sciences Chimiques de Rennes), UMR 6226, Rennes, France
Abhervé, Alexandre;  MOLTECH ANJOU, UMR-CNRS 6200, Université D’Angers, Angers, France
Allain, Magali;  MOLTECH ANJOU, UMR-CNRS 6200, Université D’Angers, Angers, France
Even, Jacky ;  Univ Rennes, INSA Rennes, CNRS, Institut FOTON - UMR 6082, Rennes, France
Katan, Claudine ;  Univ Rennes, ENSCR, INSA Rennes, CNRS, ISCR (Institut des Sciences Chimiques de Rennes), UMR 6226, Rennes, France
Mercier, Nicolas ;  MOLTECH ANJOU, UMR-CNRS 6200, Université D’Angers, Angers, France
Language :
English
Title :
Halide Containing Short Organic Monocations in n = 1-4 2D Multilayered Halide Perovskite Thin Films and Crystals
Publication date :
11 April 2023
Journal title :
Chemistry of Materials
ISSN :
0897-4756
eISSN :
1520-5002
Publisher :
American Chemical Society
Volume :
35
Issue :
7
Pages :
2873 - 2883
Peer reviewed :
Peer Reviewed verified by ORBi
Research unit :
Chemistry of Novel Materials
Research institute :
Research Institute for Materials Science and Engineering
Funders :
Agence Nationale de la Recherche
H2020 Industrial Leadership
Institut Universitaire de France
Funding text :
The work at ISCR and MOLTECH-Anjou was mainly supported by the Agence Nationale pour la Recherche (MORELESS project). For DFT calculations, this work was granted access to the HPC resources of TGCC/CINES/IDRIS under the allocation 2020-A0090907682 made by GENCI. C.Q. is FNRS research associate. J.E. acknowledges the financial support from the Institut Universitaire de France. Part of the work at ISCR and Institut FOTON was funded by the European Union’s Horizon 2020 research and innovation program under grant agreement no. 861985 (PeroCUBE). C.Q. warmly thanks Dr. Mikael Kepenekian and Dr. Boubacar Traore for technical support in the calculations of the dielectric profiles.
Available on ORBi UMONS :
since 18 December 2023

Statistics


Number of views
11 (0 by UMONS)
Number of downloads
0 (0 by UMONS)

Scopus citations®
 
6
Scopus citations®
without self-citations
5
OpenAlex citations
 
5

Bibliography


Similar publications



Contact ORBi UMONS