DFT; physisorption; selenium vacancy defect; thermodynamic stability; WSe2 monolayer; Ab initio molecular dynamics; Acceptor molecules; Density-functional-theory; Donor and acceptor; Electron-acceptor; Electron-donor molecules; Selenia vacancy defect; Tetracyanoquinodimethane; Vacancy Defects; Electronic, Optical and Magnetic Materials; Materials Chemistry; Electrochemistry
Abstract :
[en] Two-dimensional transition-metal dichalcogenide (2D-TMD) monolayers have recently attracted growing interest, thanks to their excellent optoelectronic properties, especially a moderate direct band gap in the visible spectral range and an extremely strong light-matter interaction. Herein, by means of density functional theory (DFT) and ab initio molecular dynamics (AIMD), we systematically investigate the chemical doping of the WSe2 monolayer upon non-covalent attachment of electron donor and acceptor molecules, namely, fullerenes (C20, C26, and C60), tetrathiafulvalene (TTF), 7,7,8,8-tetracyanoquinodimethane (TCNQ), and 2,3,5,6-tetrafluoro-7,7,8,8-tetracyanoquinodimethane (F4-TCNQ). Our results confirm that the physisorbed molecules stack on WSe2 via a weak van der Waals interaction; this precludes any significant damage in the basal-plane structure of the monolayer. In turn, the modifications in the carrier density in the WSe2 monolayer due to organic dopants result in a change of the work function by up to 0.41 eV. By performing AIMD calculations, we show that the effect is more pronounced upon increasing the coverage density of physisorbed TTF and TCNQ molecules. The impact of Se-vacancy (VSe) defects on the electronic properties of the WSe2 monolayer and thermodynamic stability of physisorption (including the molecular density) is also considered. Interestingly, the molecules demonstrate an ability to modulate the degree of spatial localization of VSe trap states. Moreover, the shift of the Fermi level upon molecular adsorption also enables further stabilization of charged defect states associated to a VSe vacancy. The pronounced effect of molecular adsorption on the VSe defect behavior in WSe2 might open the door for potential engineering of defect states in 2D TMDs.
Gali, Adam ; Wigner Research Centre for Physics, Budapest, Hungary ; Department of Atomic Physics, Budapest University of Technology and Economics, Budapest, Hungary
Cornil, Jérôme ; Université de Mons - UMONS > Faculté des Science > Service de Chimie des matériaux nouveaux
Pershin, Anton ; Wigner Research Centre for Physics, Budapest, Hungary ; Department of Atomic Physics, Budapest University of Technology and Economics, Budapest, Hungary
Language :
English
Title :
Non-covalent Functionalization of Pristine and Defective WSe2 by Electron Donor and Acceptor Molecules
R400 - Institut de Recherche en Science et Ingénierie des Matériaux R150 - Institut de Recherche sur les Systèmes Complexes
Funders :
Wallonie-Bruxelles International Nemzeti Kutat?si Fejleszt?si ?s Innov?ci?s Hivatal Horizon 2020 Framework Programme Fonds De La Recherche Scientifique - FNRS Quantum Information National Laboratory Region of Wallonie Ministry of Innovation and Technology of Hungary
Funding text :
This work was supported by the Belgian National Fund for Scientific Research (FRS-FNRS), Wallonie-Bruxelles International (WBI), and Region of Wallonie (RW) within the project of 2D Materials and FNRS-TOREADOR project. Computational resources were provided by the Consortium des Équipements de Calcul Intensif (CÉCI) funded by F.R.S.-FNRS under grant 2.5020.11. A.M. acknowledges the financial support from EC through the H2020-DT-NMBP-11-2020 project GA no. 953167 (OpenModel). A.G. acknowledges the financial support from the National Research, Development and Innovation Office in Hungary (NKFIH) grant no. KKP129866 (National Excellence Program) as well as from the Quantum Information National Laboratory sponsored via the Ministry of Innovation and Technology of Hungary. J.C. is an FNRS research director. We also thank Dr. Arrigo Calzolari (CNR Researcher) for his fruitful comments.
Er, D.; Ye, H.; Frey, N. C.; Kumar, H.; Lou, J.; Shenoy, V. B. Prediction of Enhanced Catalytic Activity for Hydrogen Evolution Reaction in Janus Transition Metal Dichalcogenides. Nano Lett. 2018, 18, 3943- 3949, 10.1021/acs.nanolett.8b01335
Karmodak, N.; Bursi, L.; Andreussi, O. Oxygen Evolution and Reduction on Two-Dimensional Transition Metal Dichalcogenides. J. Phys. Chem. Lett. 2022, 13, 58- 65, 10.1021/acs.jpclett.1c03431
Chhowalla, M.; Shin, H. S.; Eda, G.; Li, L.-J.; Loh, K. P.; Zhang, H. The Chemistry of Two-Dimensional Layered Transition Metal Dichalcogenide Nanosheets. Nat. Chem. 2013, 5, 263- 275, 10.1038/nchem.1589
Koppens, F. H. L.; Mueller, T.; Avouris, P.; Ferrari, A. C.; Vitiello, M. S.; Polini, M. Photodetectors Based on Graphene, Other Two-Dimensional Materials and Hybrid Systems. Nat. Nanotechnol. 2014, 9, 780- 793, 10.1038/nnano.2014.215
Mak, K. F.; Lee, C.; Hone, J.; Shan, J.; Heinz, T. F. Atomically Thin MoS2: A New Direct-Gap Semiconductor. Phys. Rev. Lett. 2010, 105, 136805, 10.1103/PhysRevLett.105.136805
Bertolazzi, S.; Brivio, J.; Kis, A. Stretching and Breaking of Ultrathin MoS 2. ACS Nano 2011, 5, 9703- 9709, 10.1021/nn203879f
Britnell, L.; Ribeiro, R. M.; Eckmann, A.; Jalil, R.; Belle, B. D.; Mishchenko, A.; Kim, Y. J.; Gorbachev, R. V.; Georgiou, T.; Morozov, S. V.; Grigorenko, A. N.; Geim, A. K.; Casiraghi, C.; Neto, A. H.; Novoselov, K. S. Strong Light-Matter Interactions in Heterostructures of Atomically Thin Films. Science 2013, 340, 1311- 1314, 10.1126/science.1235547
Barré, E.; Incorvia, J. A. C.; Kim, S. H.; McClellan, C. J.; Pop, E.; Wong, H.-S. P.; Heinz, T. F. Spatial Separation of Carrier Spin by the Valley Hall Effect in Monolayer WSe 2 Transistors. Nano Lett. 2019, 19, 770- 774, 10.1021/acs.nanolett.8b03838
Stoeckel, M.-A.; Gobbi, M.; Leydecker, T.; Wang, Y.; Eredia, M.; Bonacchi, S.; Verucchi, R.; Timpel, M.; Nardi, M. V.; Orgiu, E.; Samorì, P. Boosting and Balancing Electron and Hole Mobility in Single- and Bilayer WSe2 Devices via Tailored Molecular Functionalization. ACS Nano 2019, 13, 11613- 11622, 10.1021/acsnano.9b05423
Li, D.; Wang, X.; Chen, Y.; Zhu, S.; Gong, F.; Wu, G.; Meng, C.; Liu, L.; Wang, L.; Lin, T.; Sun, S.; Shen, H.; Wang, X.; Hu, W.; Wang, J.; Sun, J.; Meng, X.; Chu, J. The Ambipolar Evolution of a High-Performance WSe2 Transistor Assisted by a Ferroelectric Polymer. Nanotechnology 2018, 29, 105202, 10.1088/1361-6528/aaa629
Zhou, H.; Wang, C.; Shaw, J. C.; Cheng, R.; Chen, Y.; Huang, X.; Liu, Y.; Weiss, N. O.; Lin, Z.; Huang, Y.; Duan, X. Large Area Growth and Electrical Properties of P-Type WSe 2 Atomic Layers. Nano Lett. 2015, 15, 709- 713, 10.1021/nl504256y
Podzorov, V.; Gershenson, M. E.; Kloc, C.; Zeis, R.; Bucher, E. High-Mobility Field-Effect Transistors Based on Transition Metal Dichalcogenides. Appl. Phys. Lett. 2004, 84, 3301- 3303, 10.1063/1.1723695
Chen, C.-H.; Wu, C.-L.; Pu, J.; Chiu, M.-H.; Kumar, P.; Takenobu, T.; Li, L.-J. Hole Mobility Enhancement and p -Doping in Monolayer WSe 2 by Gold Decoration. 2D Mater. 2014, 1, 034001, 10.1088/2053-1583/1/3/034001
Li, Z.; Wang, T.; Jin, C.; Lu, Z.; Lian, Z.; Meng, Y.; Blei, M.; Gao, S.; Taniguchi, T.; Watanabe, K.; Ren, T.; Tongay, S.; Yang, L.; Smirnov, D.; Cao, T.; Shi, S. Emerging Photoluminescence from the Dark-Exciton Phonon Replica in Monolayer WSe2. Nat. Commun. 2019, 10, 2469, 10.1038/s41467-019-10477-6
Chen, W.; Qi, D.; Gao, X.; Wee, A. T. S. Surface Transfer Doping of Semiconductors. Prog. Surf. Sci. 2009, 84, 279- 321, 10.1016/j.progsurf.2009.06.002
Presolski, S.; Wang, L.; Loo, A. H.; Ambrosi, A.; Lazar, P.; Ranc, V.; Otyepka, M.; Zboril, R.; Tomanec, O.; Ugolotti, J.; Sofer, Z.; Pumera, M. Functional Nanosheet Synthons by Covalent Modification of Transition-Metal Dichalcogenides. Chem. Mater. 2017, 29, 2066- 2073, 10.1021/acs.chemmater.6b04171
Wang, Y.; Slassi, A.; Stoeckel, M.-A.; Bertolazzi, S.; Cornil, J.; Beljonne, D.; Samorì, P. Doping of Monolayer Transition-Metal Dichalcogenides via Physisorption of Aromatic Solvent Molecules. J. Phys. Chem. Lett. 2019, 10, 540- 547, 10.1021/acs.jpclett.8b03697
Wang, Y.; Slassi, A.; Cornil, J.; Beljonne, D.; Samorì, P. Tuning the Optical and Electrical Properties of Few-Layer Black Phosphorus via Physisorption of Small Solvent Molecules. Small 2019, 15, 1903432, 10.1002/smll.201903432
Wang, J.; Ji, Z.; Yang, G.; Chuai, X.; Liu, F.; Zhou, Z.; Lu, C.; Wei, W.; Shi, X.; Niu, J.; Wang, L.; Wang, H.; Chen, J.; Lu, N.; Jiang, C.; Li, L.; Liu, M. Charge Transfer within the F4TCNQ-MoS2 van Der Waals Interface: Toward Electrical Properties Tuning and Gas Sensing Application. Adv. Funct. Mater. 2018, 28, 1806244, 10.1002/adfm.201806244
Jing, Y.; Tan, X.; Zhou, Z.; Shen, P. Tuning Electronic and Optical Properties of MoS 2 Monolayer via Molecular Charge Transfer. J. Mater. Chem. A 2014, 2, 16892- 16897, 10.1039/C4TA03660C
Cai, Y.; Zhou, H.; Zhang, G.; Zhang, Y.-W. Modulating Carrier Density and Transport Properties of MoS 2 by Organic Molecular Doping and Defect Engineering. Chem. Mater. 2016, 28, 8611- 8621, 10.1021/acs.chemmater.6b03539
Slassi, A.; Cornil, D.; Cornil, J. Theoretical Characterization of the Electronic Properties of Heterogeneous Vertical Stacks of 2D Metal Dichalcogenides Containing One Doped Layer. Phys. Chem. Chem. Phys. 2020, 22, 14088- 14098, 10.1039/D0CP01878C
Wang, Y.; Gali, S. M.; Slassi, A.; Beljonne, D.; Samorì, P. Collective Dipole-Dominated Doping of Monolayer MoS 2 : Orientation and Magnitude Control via the Supramolecular Approach. Adv. Funct. Mater. 2020, 30, 2002846, 10.1002/adfm.202002846
Slassi, A.; Cornil, J. Theoretical Characterization of Strain and Interfacial Electronic Effects in Donor-Acceptor Bilayers of 2D Transition Metal Dichalcogenides. 2D Mater. 2018, 6, 015025, 10.1088/2053-1583/aaf1d4
Gan, L.-Y.; Zhang, Q.; Cheng, Y.; Schwingenschlögl, U. Photovoltaic Heterojunctions of Fullerenes with MoS 2 and WS 2 Monolayers. J. Phys. Chem. Lett. 2014, 5, 1445- 1449, 10.1021/jz500344s
Luo, C.-Y.; Huang, W.-Q.; Xu, L.; Yang, Y.-C.; Li, X.; Hu, W.; Peng, P.; Huang, G.-F. Electronic Properties and Photoactivity of Monolayer MoS 2 /Fullerene van Der Waals Heterostructures. RSC Adv. 2016, 6, 43228- 43236, 10.1039/C6RA05672E
Santos, E. J. G.; Scullion, D.; Chu, X. S.; Li, D. O.; Guisinger, N. P.; Wang, Q. H. Rotational Superstructure in van Der Waals Heterostructure of Self-Assembled C 60 Monolayer on the WSe 2 Surface. Nanoscale 2017, 9, 13245- 13256, 10.1039/C7NR03951D
Liu, H.; Cui, M.; Dang, C.; Wen, W.; Wang, X.; Xie, L. Two-Dimensional WSe 2 /Organic Acceptor Hybrid Nonvolatile Memory Devices Based on Interface Charge Trapping. ACS Appl. Mater. Interfaces 2019, 11, 34424- 34429, 10.1021/acsami.9b11998
Zhao, Y.; Gali, S. M.; Wang, C.; Pershin, A.; Slassi, A.; Beljonne, D.; Samorì, P. Molecular Functionalization of Chemically Active Defects in WSe 2 for Enhanced Opto-Electronics. Adv. Funct. Mater. 2020, 30, 2005045, 10.1002/adfm.202005045
Bertolazzi, S.; Bonacchi, S.; Nan, G.; Pershin, A.; Beljonne, D.; Samorì, P. Engineering Chemically Active Defects in Monolayer MoS 2 Transistors via Ion-Beam Irradiation and Their Healing via Vapor Deposition of Alkanethiols. Adv. Mater. 2017, 29, 1606760, 10.1002/adma.201606760
Lu, J.; Carvalho, A.; Chan, X. K.; Liu, H.; Liu, B.; Tok, E. S.; Loh, K. P.; Castro Neto, A. H.; Sow, C. H. Atomic Healing of Defects in Transition Metal Dichalcogenides. Nano Lett. 2015, 15, 3524- 3532, 10.1021/acs.nanolett.5b00952
Li, L.; Long, R.; Prezhdo, O. V. Why Chemical Vapor Deposition Grown MoS 2 Samples Outperform Physical Vapor Deposition Samples: Time-Domain Ab Initio Analysis. Nano Lett. 2018, 18, 4008- 4014, 10.1021/acs.nanolett.8b01501
Wang, Y.; Deng, L.; Wei, Q.; Wan, Y.; Liu, Z.; Lu, X.; Li, Y.; Bi, L.; Zhang, L.; Lu, H.; Chen, H.; Zhou, P.; Zhang, L.; Cheng, Y.; Zhao, X.; Ye, Y.; Huang, W.; Pennycook, S. J.; Loh, K. P.; Peng, B. Spin-Valley Locking Effect in Defect States of Monolayer MoS2. Nano Lett. 2020, 20, 2129, 10.1021/acs.nanolett.0c00138
Zhou, W.; Zou, X.; Najmaei, S.; Liu, Z.; Shi, Y.; Kong, J.; Lou, J.; Ajayan, P. M.; Yakobson, B. I.; Idrobo, J.-C. Intrinsic Structural Defects in Monolayer Molybdenum Disulfide. Nano Lett. 2013, 13, 2615- 2622, 10.1021/nl4007479
Komsa, H.-P.; Kotakoski, J.; Kurasch, S.; Lehtinen, O.; Kaiser, U.; Krasheninnikov, A. V. Two-Dimensional Transition Metal Dichalcogenides under Electron Irradiation: Defect Production and Doping. Phys. Rev. Lett. 2012, 109, 035503, 10.1103/PhysRevLett.109.035503
Zhu, W.; Low, T.; Lee, Y.-H.; Wang, H.; Farmer, D. B.; Kong, J.; Xia, F.; Avouris, P. Electronic Transport and Device Prospects of Monolayer Molybdenum Disulphide Grown by Chemical Vapour Deposition. Nat. Commun. 2014, 5, 3087, 10.1038/ncomms4087
Pető, J.; Ollár, T.; Vancsó, P.; Popov, Z. I.; Magda, G. Z.; Dobrik, G.; Hwang, C.; Sorokin, P. B.; Tapasztó, L. Spontaneous Doping of the Basal Plane of MoS2 Single Layers through Oxygen Substitution under Ambient Conditions. Nat. Chem. 2018, 10, 1246- 1251, 10.1038/s41557-018-0136-2
Kresse, G.; Marsman, M. VASP the GUIDE, 2012.
Kresse, G.; Joubert, D. From Ultrasoft Pseudopotentials to the Projector Augmented-Wave Method. Phys. Rev. B: Condens. Matter Mater. Phys. 1999, 59, 1758- 1775, 10.1103/PhysRevB.59.1758
Perdew, J. P.; Burke, K.; Ernzerhof, M. Generalized Gradient Approximation Made Simple. Phys. Rev. Lett. 1996, 77, 3865- 3868, 10.1103/PhysRevLett.77.3865
Grimme, S. Semiempirical GGA-Type Density Functional Constructed with a Long-Range Dispersion Correction. J. Comput. Chem. 2006, 27, 1787- 1799, 10.1002/jcc.20495
Dion, M.; Rydberg, H.; Schröder, E.; Langreth, D. C.; Lundqvist, B. I. Density Functional for General Geometries. Phys. Rev. Lett. 2004, 92, 246401, 10.1103/PhysRevLett.92.246401
Heyd, J.; Scuseria, G. E.; Ernzerhof, M. Hybrid Functionals Based on a Screened Coulomb Potential. J. Chem. Phys. 2003, 118, 8207- 8215, 10.1063/1.1564060
Noh, J.-Y.; Kim, H.; Kim, Y.-S. Stability and Electronic Structures of Native Defects in Single-Layer ${\mathrm{MoS}}_{2}$. Phys. Rev. B: Condens. Matter Mater. Phys. 2014, 89, 205417, 10.1103/PhysRevB.89.205417
Freysoldt, C.; Neugebauer, J. First-Principles Calculations for Charged Defects at Surfaces, Interfaces, and Two-Dimensional Materials in the Presence of Electric Fields. Phys. Rev. B 2018, 97, 205425, 10.1103/PhysRevB.97.205425
Schutte, W. J.; De Boer, J. L.; Jellinek, F. Crystal Structures of Tungsten Disulfide and Diselenide. J. Solid State Chem. 1987, 70, 207- 209, 10.1016/0022-4596(87)90057-0
Le, D.; Barinov, A.; Preciado, E.; Isarraraz, M.; Tanabe, I.; Komesu, T.; Troha, C.; Bartels, L.; Rahman, T. S.; Dowben, P. A. Spin-Orbit Coupling in the Band Structure of Monolayer WSe 2. J. Phys. Condens. Matter 2015, 27, 182201, 10.1088/0953-8984/27/18/182201
Osada, K.; Tanaka, M.; Ohno, S.; Suzuki, T. Photoinduced Charge Transfer from Vacuum-Deposited Molecules to Single-Layer Transition Metal Dichalcogenides. Jpn. J. Appl. Phys. 2016, 55, 065201, 10.7567/JJAP.55.065201
Crispin, X.; Geskin, V.; Crispin, A.; Cornil, J.; Lazzaroni, R.; Salaneck, W. R.; Brédas, J.-L. Characterization of the Interface Dipole at Organic/ Metal Interfaces. J. Am. Chem. Soc. 2002, 124, 8131- 8141, 10.1021/ja025673r
Avilov, I.; Geskin, V.; Cornil, J. Quantum-Chemical Characterization of the Origin of Dipole Formation at Molecular Organic/Organic Interfaces. Adv. Funct. Mater. 2009, 19, 624- 633, 10.1002/adfm.200800632
Li, J.; Slassi, A.; Han, X.; Cornil, D.; Ha-Thi, M.; Pino, T.; Debecker, D. P.; Colbeau-Justin, C.; Arbiol, J.; Cornil, J.; Ghazzal, M. N. Tuning the Electronic Bandgap of Graphdiyne by H-Substitution to Promote Interfacial Charge Carrier Separation for Enhanced Photocatalytic Hydrogen Production. Adv. Funct. Mater. 2021, 31, 2100994, 10.1002/adfm.202100994
Slassi, A.; Gali, S. M.; Pershin, A.; Gali, A.; Cornil, J.; Beljonne, D. Interlayer Bonding in Two-Dimensional Materials: The Special Case of SnP 3 and GeP 3. J. Phys. Chem. Lett. 2020, 11, 4503- 4510, 10.1021/acs.jpclett.0c00780
Kang, J.; Liu, W.; Sarkar, D.; Jena, D.; Banerjee, K. Computational Study of Metal Contacts to Monolayer Transition-Metal Dichalcogenide Semiconductors. Phys. Rev. X 2014, 4, 031005, 10.1103/PhysRevX.4.031005
Muccioli, L.; D’Avino, G.; Zannoni, C. Simulation of Vapor-Phase Deposition and Growth of a Pentacene Thin Film on C 60 (001). Adv. Mater. 2011, 23, 4532, 10.1002/adma.201101652
Cornil, D.; Olivier, Y.; Geskin, V.; Cornil, J. Depolarization Effects in Self-Assembled Monolayers: A Quantum-Chemical Insight. Adv. Funct. Mater. 2007, 17, 1143- 1148, 10.1002/adfm.200601116
Coletti, C.; Riedl, C.; Lee, D. S.; Krauss, B.; Patthey, L.; von Klitzing, K.; Smet, J. H.; Starke, U. Charge Neutrality and Band-Gap Tuning of Epitaxial Graphene on SiC by Molecular Doping. Phys. Rev. B: Condens. Matter Mater. Phys. 2010, 81, 235401, 10.1103/PhysRevB.81.235401
Cochrane, K. A.; Zhang, T.; Kozhakhmetov, A.; Lee, J.-H.; Zhang, F.; Dong, C.; Neaton, J. B.; Robinson, J. A.; Terrones, M.; Bargioni, A. W.; Schuler, B. Intentional Carbon Doping Reveals CH as an Abundant Charged Impurity in Nominally Undoped Synthetic WS2 and WSe2. 2D Mater. 2020, 7, 031003, 10.1088/2053-1583/ab8543