density functional theory; lattice dynamics; organic crystals; small-molecule organics semiconductors; temperature and polarization-dependent Raman spectroscopy; temperature-dependent X-ray diffraction; vibrational anharmonicity; Electronic, Optical and Magnetic Materials; Biomaterials; Polymers and Plastics; Materials Chemistry
Abstract :
[en] The lattice dynamics of organic semiconductors has a significant role in determining their electronic and mechanical properties. A common technique to control these macroscopic properties is to chemically modify the molecular structure. These modifications are known to change the molecular packing, but their effect on the lattice dynamics is relatively unexplored. Therefore, we investigate how chemical modifications to a core [1]benzothieno[3,2-b]benzothiophene (BTBT) semiconducting crystal affect the evolution of the crystal structural dynamics with temperature. Our study combines temperature-dependent polarization-orientation (PO) low-frequency Raman measurements with first-principles calculations and single-crystal X-ray diffraction measurements. We show that chemical modifications can indeed suppress specific expressions of vibrational anharmonicity in the lattice dynamics. Specifically, we detect in BTBT a gradual change in the PO Raman response with temperature, indicating a unique anharmonic expression. This anharmonic expression is suppressed in all examined chemically modified crystals (ditBu-BTBT and diC8-BTBT, diPh-BTBT, and DNTT). In addition, we observe solid-solid phase transitions in the alkyl-modified BTBTs. Our findings indicate that π-conjugated chemical modifications are the most effective in suppressing these anharmonic effects.
Disciplines :
Chemistry
Author, co-author :
Asher, Maor ; Department of Chemical and Biological Physics, Weizmann Institute of Science, Rehovot 76100, Israel
Jouclas, Rémy; Laboratoire de Chimie des Polymères, Université Libre de Bruxelles (ULB), 1050 Brussels, Belgium
Bardini, Marco ; Université de Mons - UMONS > Faculté des Science > Service de Chimie des matériaux nouveaux
Diskin-Posner, Yael ; Chemical Research Support, Weizmann Institute of Science, Rehovot 76100, Israel
Kahn, Nitzan; Department of Chemical and Biological Physics, Weizmann Institute of Science, Rehovot 76100, Israel
Korobko, Roman ; Department of Chemical and Biological Physics, Weizmann Institute of Science, Rehovot 76100, Israel
Kennedy, Alan R ; Department of Pure and Applied Chemistry, University of Strathclyde, Glasgow G1 1XL, United Kingdom
Silva de Moraes, Lygia ; Laboratoire de Chimie des Polymères, Université Libre de Bruxelles (ULB), 1050 Brussels, Belgium
Schweicher, Guillaume ; Laboratoire de Chimie des Polymères, Université Libre de Bruxelles (ULB), 1050 Brussels, Belgium
Liu, Jie ; Laboratoire de Chimie des Polymères, Université Libre de Bruxelles (ULB), 1050 Brussels, Belgium
Beljonne, David ; Université de Mons - UMONS > Faculté des Science > Service de Chimie des matériaux nouveaux
Geerts, Yves ; Université de Mons - UMONS ; Laboratoire de Chimie des Polymères, Université Libre de Bruxelles (ULB), 1050 Brussels, Belgium ; International Solvay Institutes for Physics and Chemistry, 1050 Brussels, Belgium
Yaffe, Omer ; Department of Chemical and Biological Physics, Weizmann Institute of Science, Rehovot 76100, Israel
R400 - Institut de Recherche en Science et Ingénierie des Matériaux Complexys
Funders :
F?d?ration Wallonie-Bruxelles H2020 Marie Sklodowska-Curie Actions Fonds De La Recherche Scientifique - FNRS H2020 European Research Council
Funding text :
We thank Lior Segev for software development. O.Y. acknowledges funding from the European Research Counsel (850041, ANHARMONIC). Y.G. is thankful to the Belgian National Fund for Scientific Research (FNRS) for financial support through research projects BTBT No. 2.4565.11, Phasetrans No. T.0058.14, Pi-Fast No. T.0072.18, 2D to 3D No. 30489208, and DIFFRA No. U.G001.19. Financial support from the French Community of Belgian (ARC No. 20061) is also acknowledged. G.S. is a FNRS Research Associate. D.B. is a FNRS research director. The work in Mons has been supported by the Marie Curie ITN projects UHMob (GA-811284) and the Consortium des Équipements de Calcul Intensif (CÉCI), funded by the Fonds de la Recherche Scientifique de Belgique (F.R.S.-FNRS) under Grant No. 2.5020.11. This project has received funding from the European Union’s Horizon 2020 research and innovation programme under the Marie Skłodowska-Curie Grant Agreement No. 811284 (UHMob).
Landi, A.; Troisi, A. Rapid Evaluation of Dynamic Electronic Disorder in Molecular Semiconductors. J. Phys. Chem. C 2018, 122, 18336, 10.1021/acs.jpcc.8b05511
Fratini, S.; Ciuchi, S.; Mayou, D.; De Laissardière, G. T.; Troisi, A. A map of high-mobility molecular semiconductors. Nat. Mater. 2017, 16, 998-1002, 10.1038/nmat4970
Troisi, A. Charge transport in high mobility molecular semiconductors: Classical models and new theories. Chem. Soc. Rev. 2011, 40, 2347-2358, 10.1039/c0cs00198h
Sosorev, A. Y.; Maslennikov, D. R.; Kharlanov, O. G.; Chernyshov, I. Y.; Bruevich, V. V.; Paraschuk, D. Y. Impact of Low-Frequency Vibrations on Charge Transport in High-Mobility Organic Semiconductors. Physica Status Solidi-Rapid Research Letters 2019, 13, 1970016, 10.1002/pssr.201970016
Troisi, A.; Orlandi, G. Charge-transport regime of crystalline organic semiconductors: Diffusion limited by thermal off-diagonal electronic disorder. Phys. Rev. Lett. 2006, 96, 086601, 10.1103/PhysRevLett.96.086601
Xie, X.; Santana-Bonilla, A.; Troisi, A. Nonlocal Electron-Phonon Coupling in Prototypical Molecular Semiconductors from First Principles. J. Chem. Theory Comput. 2018, 14, 3752-3762, 10.1021/acs.jctc.8b00235
Wang, L.; Li, Q.; Shuai, Z.; Chen, L.; Shi, Q. Multiscale study of charge mobility of organic semiconductor with dynamic disorders. Phys. Chem. Chem. Phys. 2010, 12, 3309-3314, 10.1039/b913183c
Fetherolf, J. H.; Golež, D.; Berkelbach, T. C. A Unification of the Holstein Polaron and Dynamic Disorder Pictures of Charge Transport in Organic Crystals. Physical Review X 2020, 10, 021062, 10.1103/PhysRevX.10.021062
Schweicher, G. et al. Chasing the "Killer" Phonon Mode for the Rational Design of Low-Disorder, High-Mobility Molecular Semiconductors. Adv. Mater. 2019, 31, 1902407, 10.1002/adma.201902407
Dove, M. Structure and Dynamics: An Atomic View of Materials; Oxford University Press, 2003; pp 175, 236.
Cowley, R. A. Anharmonic crystals. Rep. Prog. Phys. 1968, 31, 123-166, 10.1088/0034-4885/31/1/303
Nematiaram, T.; Troisi, A. Modeling charge transport in high-mobility molecular semiconductors: Balancing electronic structure and quantum dynamics methods with the help of experiments. J. Chem. Phys. 2020, 152, 190902, 10.1063/5.0008357
Hutereau, M.; Banks, P. A.; Slater, B.; Zeitler, J. A.; Bond, A. D.; Ruggiero, M. T. Resolving Anharmonic Lattice Dynamics in Molecular Crystals with X-Ray Diffraction and Terahertz Spectroscopy. Phys. Rev. Lett. 2020, 125, 103001, 10.1103/PhysRevLett.125.103001
van der Lee, A.; Dumitrescu, D. G. Thermal expansion properties of organic crystals: a CSD study. Chemical Science 2021, 12, 8537-8547, 10.1039/D1SC01076J
Vaidya, S. N.; Kennedy, G. C. Compressibility of 18 molecular organic solids to 45 kbar. J. Chem. Phys. 1971, 55, 987-992, 10.1063/1.1676268
Ouillon, R.; Ranson, P.; Califano, S. Temperature dependence of the bandwidths and frequencies of some anthracene phonons. High-resolution Raman measurements. Chem. Phys. 1984, 91, 119-131, 10.1016/0301-0104(84)80048-8
Ruggiero, M. T.; Zeitler, J. A. Resolving the Origins of Crystalline Anharmonicity Using Terahertz Time-Domain Spectroscopy and ab initio Simulations. J. Phys. Chem. B 2016, 120, 11733-11739, 10.1021/acs.jpcb.6b10248
Ren, Z. Q.; McNeil, L. E.; Liu, S.; Kloc, C. Molecular motion and mobility in an organic single crystal: Raman study and model. Physical Review B-Condensed Matter and Materials Physics 2009, 80, 245211, 10.1103/PhysRevB.80.245211
McCullough, J. P. Transition types in hydrocarbons and related substances. Pure Appl. Chem. 1961, 2, 221-230, 10.1351/pac196102010221
Venuti, E.; Della Valle, R. G.; Farina, L.; Brillante, A.; Masino, M.; Girlando, A. Phonons and structures of tetracene polymorphs at low temperature and high pressure. Physical Review B-Condensed Matter and Materials Physics 2004, 70, 104106, 10.1103/PhysRevB.70.104106
Beckmann, P. A.; McGhie, A. R.; Rheingold, A. L.; Sloan, G. J.; Szewczyk, S. T. Solid-Solid Phase Transitions and tert-Butyl and Methyl Group Rotation in an Organic Solid: X-ray Diffractometry, Differential Scanning Calorimetry, and Solid-State 1H Nuclear Spin Relaxation. J. Phys. Chem. A 2017, 121, 6220-6230, 10.1021/acs.jpca.7b06265
Coropceanu, V.; Cornil, J.; da Silva Filho, D. A.; Olivier, Y.; Silbey, R.; Brédas, J. L. Charge transport in organic semiconductors. Chem. Rev. 2007, 107, 926-952, 10.1021/cr050140x
Troisi, A.; Orlandi, G. Dynamics of the intermolecular transfer integral in crystalline organic semiconductors. J. Phys. Chem. A 2006, 110, 4065-4070, 10.1021/jp055432g
Sirringhaus, H.; Sakanoue, T.; Chang, J. F. Charge-transport physics of high-mobility molecular semiconductors. Physica Status Solidi (B) Basic Research 2012, 249, 1655-1676, 10.1002/pssb.201248143
Seiler, H.; Krynski, M.; Zahn, D.; Hammer, S.; Windsor, Y. W.; Vasileiadis, T.; Pflaum, J.; Ernstorfer, R.; Rossi, M.; Schwoerer, H. Nuclear dynamics of singlet exciton fission in pentacene single crystals. Science Advances 2021, 7, 869-894, 10.1126/sciadv.abg0869
Alvertis, A. M.; Pandya, R.; Muscarella, L. A.; Sawhney, N.; Nguyen, M.; Ehrler, B.; Rao, A.; Friend, R. H.; Chin, A. W.; Monserrat, B. Impact of exciton delocalization on exciton-vibration interactions in organic semiconductors. Phys. Rev. B 2020, 102, 081122, 10.1103/PhysRevB.102.081122
Busby, E.; Berkelbach, T. C.; Kumar, B.; Chernikov, A.; Zhong, Y.; Hlaing, H.; Zhu, X. Y.; Heinz, T. F.; Hybertsen, M. S.; Sfeir, M. Y.; Reichman, D. R.; Nuckolls, C.; Yaffe, O. Multiphonon relaxation slows singlet fission in crystalline hexacene. J. Am. Chem. Soc. 2014, 136, 10654-10660, 10.1021/ja503980c
Wang, X.; Wang, W.; Yang, C.; Han, D.; Fan, H.; Zhang, J. Thermal transport in organic semiconductors. J. Appl. Phys. 2021, 130, 170902, 10.1063/5.0062074
Selezneva, E.; Vercouter, A.; Schweicher, G.; Lemaur, V.; Broch, K.; Antidormi, A.; Takimiya, K.; Coropceanu, V.; Brédas, J.; Melis, C.; Cornil, J.; Sirringhaus, H. Strong Suppression of Thermal Conductivity in the Presence of Long Terminal Alkyl Chains in Low-Disorder Molecular Semiconductors. Adv. Mater. 2021, 33, 2008708, 10.1002/adma.202008708
Banks, P. A.; Maul, J.; Mancini, M. T.; Whalley, A. C.; Erba, A.; Ruggiero, M. T. Thermoelasticity in organic semiconductors determined with terahertz spectroscopy and quantum quasi-harmonic simulations. Journal of Materials Chemistry C 2020, 8, 10917-10925, 10.1039/D0TC01676D
Ruggiero, M. T.; Zeitler, J. A.; Erba, A. Intermolecular anharmonicity in molecular crystals: Interplay between experimental low-frequency dynamics and quantum quasi-harmonic simulations of solid purine. Chem. Commun. 2017, 53, 3781-3784, 10.1039/C7CC00509A
Della Valle, R. G.; Venuti, E.; Farina, L.; Brillante, A.; Masino, M.; Girlando, A. Intramolecular and Low-Frequency Intermolecular Vibrations of Pentacene Polymorphs as a Function of Temperature. J. Phys. Chem. B 2004, 108, 1822-1826, 10.1021/jp0354550
Ranzieri, P.; Girlando, A.; Tavazzi, S.; Campione, M.; Raimondo, L.; Bilotti, I.; Brillante, A.; Della Valle, R. G.; Venuti, E. Polymorphism and phonon dynamics of α-quaterthiophene. ChemPhysChem 2009, 10, 657-663, 10.1002/cphc.200800771
Brillante, A. et al. The four polymorphic modifications of the semiconductor dibenzo-tetrathiafulvalene. CrystEngComm 2008, 10, 1899-1909, 10.1039/b810993a
Kapil, V.; Engel, E.; Rossi, M.; Ceriotti, M. Assessment of Approximate Methods for Anharmonic Free Energies. J. Chem. Theory Comput. 2019, 15, 5845-5857, 10.1021/acs.jctc.9b00596
Elsner, J.; Giannini, S.; Blumberger, J. Mechanoelectric Response of Single-Crystal Rubrene from Ab Initio Molecular Dynamics. J. Phys. Chem. Lett. 2021, 12, 5857-5863, 10.1021/acs.jpclett.1c01385
Sutton, C.; Risko, C.; Brédas, J.-L. Noncovalent Intermolecular Interactions in Organic Electronic Materials: Implications for the Molecular Packing vs Electronic Properties of Acenes. Chem. Mater. 2016, 28, 3-16, 10.1021/acs.chemmater.5b03266
Wawrzinek, R.; Sobus, J.; Chaudhry, M. U.; Ahmad, V.; Grosjean, A.; Clegg, J. K.; Namdas, E. B.; Lo, S. C. Mobility Evaluation of [1]Benzothieno[3,2-b][1]benzothiophene Derivatives: Limitation and Impact on Charge Transport. ACS Appl. Mater. Interfaces 2019, 11, 3271-3279, 10.1021/acsami.8b16158
Sugiyama, M.; Jancke, S.; Uemura, T.; Kondo, M.; Inoue, Y.; Namba, N.; Araki, T.; Fukushima, T.; Sekitani, T. Mobility enhancement of DNTT and BTBT derivative organic thin-film transistors by triptycene molecule modification. Org. Electron. 2021, 96, 106219, 10.1016/j.orgel.2021.106219
Bergantin, S.; Moret, M. Rubrene polymorphs and derivatives: The effect of chemical modification on the crystal structure. Cryst. Growth Des. 2012, 12, 6035-6041, 10.1021/cg301130n
Hu, Y.; Miao, K.; Xu, L.; Zha, B.; Long, M.; Miao, X.; Deng, W. Two side chains, three supramolecules: Exploration of fluorenone derivatives towards crystal engineering. Phys. Chem. Chem. Phys. 2017, 19, 19205-19216, 10.1039/C7CP03894A
Yao, Z. F.; Wang, J. Y.; Pei, J. Control of π-πStacking via Crystal Engineering in Organic Conjugated Small Molecule Crystals. Cryst. Growth Des. 2018, 18, 7-15, 10.1021/acs.cgd.7b01385
Harrelson, T. F.; Dantanarayana, V.; Xie, X.; Koshnick, C.; Nai, D.; Fair, R.; Nunez, S. A.; Thomas, A. K.; Murrey, T. L.; Hickner, M. A.; Grey, J. K.; Anthony, J. E.; Gomez, E. D.; Troisi, A.; Faller, R.; Moule, A. J. Direct probe of the nuclear modes limiting charge mobility in molecular semiconductors. Materials Horizons 2019, 6, 182-191, 10.1039/C8MH01069B
Illig, S.; Eggeman, A. S.; Troisi, A.; Jiang, L.; Warwick, C.; Nikolka, M.; Schweicher, G.; Yeates, S. G.; Henri Geerts, Y.; Anthony, J. E.; Sirringhaus, H. Reducing dynamic disorder in small-molecule organic semiconductors by suppressing large-Amplitude thermal motions. Nat. Commun. 2016, 7, 10736, 10.1038/ncomms10736
Matsumura, M.; Muranaka, A.; Kurihara, R.; Kanai, M.; Yoshida, K.; Kakusawa, N.; Hashizume, D.; Uchiyama, M.; Yasuike, S. General synthesis, structure, and optical properties of benzothiophene-fused benzoheteroles containing Group 15 and 16 elements. Tetrahedron 2016, 72, 8085-8090, 10.1016/j.tet.2016.10.048
Chung, H.; Dudenko, D.; Zhang, F.; D'Avino, G.; Ruzié, C.; Richard, A.; Schweicher, G.; Cornil, J.; Beljonne, D.; Geerts, Y.; Diao, Y. Rotator side chains trigger cooperative transition for shape and function memory effect in organic semiconductors. Nat. Commun. 2018, 9, 278, 10.1038/s41467-017-02607-9
Izawa, T.; Miyazaki, E.; Takimiya, K. Molecular ordering of high-performance soluble molecular semiconductors and re-evaluation of their field-effect transistor characteristics. Adv. Mater. 2008, 20, 3388-3392, 10.1002/adma.200800799
Yamamoto, T.; Takimiya, K. Facile synthesis of highly pi-extended heteroarenes, dinaphtho[2,3-b: 2,3-f]chalcogenopheno[3,2-b]chalcogenophenes, and their application to field-effect transistors. J. Am. Chem. Soc. 2007, 129, 2224-2225, 10.1021/ja068429z
Shinamura, S.; Osaka, I.; Miyazaki, E.; Nakao, A.; Yamagishi, M.; Takeya, J.; Takimiya, K. Linear-and angular-shaped naphthodithiophenes: Selective synthesis, properties, and application to organic field-effect transistors. J. Am. Chem. Soc. 2011, 133, 5024-5035, 10.1021/ja110973m
Yim, W. M.; Paff, R. J. Thermal expansion of AlN, sapphire, and silicon. J. Appl. Phys. 1974, 45, 1456-1457, 10.1063/1.1663432
Lucazeau, G. Effect of pressure and temperature on Raman spectra of solids: Anharmonicity. J. Raman Spectrosc. 2003, 34, 478-496, 10.1002/jrs.1027
Lan, T.; Li, C. W.; Fultz, B. Phonon anharmonicity of rutile SnO_\{2\} studied by Raman spectrometry and first principles calculations of the kinematics of phonon-phonon interactions. Physical Review B-Condensed Matter and Materials Physics 2012, 86, 134302, 10.1103/PhysRevB.86.134302
Menéndez, J.; Cardona, M. Temperature dependence of the first-order Raman scattering by phonons in Si, Ge, and-Sn: Anharmonic effects. Phys. Rev. B 1984, 29, 2051-2059, 10.1103/PhysRevB.29.2051
Cowley, R. A. The theory of Raman scattering from crystals. Proceedings of the Physical Society 1964, 84, 281, 10.1088/0370-1328/84/2/311
Benshalom, N.; Asher, M.; Jouclas, R.; Korobko, R.; Schweicher, G.; Liu, J.; Geerts, Y.; Hellman, O.; Yaffe, O. Phonon-phonon interactions in the polarizarion dependence of Raman scattering. arXiv 2022; https://arxiv.org/abs/2204.12528?context=cond-mat.
Raimbault, N.; Athavale, V.; Rossi, M. Anharmonic effects in the low-frequency vibrational modes of aspirin and paracetamol crystals. Physical Review Materials 2019, 3, 053605, 10.1103/PhysRevMaterials.3.053605
Asher, M.; Angerer, D.; Korobko, R.; Diskin-Posner, Y.; Egger, D. A.; Yaffe, O. Anharmonic Lattice Vibrations in Small-Molecule Organic Semiconductors. Adv. Mater. 2020, 32, 1908028, 10.1002/adma.201908028
Walrafen, G. E.; Fisher, M. R.; Hokmabadi, M. S.; Yang, W. H. Temperature dependence of the low-and high-frequency Raman scattering from liquid water. J. Chem. Phys. 1986, 85, 6970-6982, 10.1063/1.451384
Blatz, L. A. Low-frequency Raman lines from liquid benzene, benzene derivatives, and other organic liquids. J. Chem. Phys. 1967, 47, 841-849, 10.1063/1.1711959
Sheldrick, G. M. SHELXT-Integrated space-group and crystal-structure determination. Acta Crystallographica Section A: Foundations of Crystallography 2015, 71, 3-8, 10.1107/S2053273314026370
Erba, A.; Baima, J.; Bush, I.; Orlando, R.; Dovesi, R. Large-Scale Condensed Matter DFT Simulations: Performance and Capabilities of the CRYSTAL Code. J. Chem. Theory Comput. 2017, 13, 5019-5027, 10.1021/acs.jctc.7b00687
Dovesi, R.; Erba, A.; Orlando, R.; Zicovich-Wilson, C. M.; Civalleri, B.; Maschio, L.; Rérat, M.; Casassa, S.; Baima, J.; Salustro, S.; Kirtman, B. Quantum-mechanical condensed matter simulations with CRYSTAL. Wiley Interdisciplinary Reviews: Computational Molecular Science 2018, 8, 1360
Pascale, F.; Zicovich-Wilson, C. M.; López Gejo, F.; Civalleri, B.; Orlando, R.; Dovesi, R. The calculation of the vibrational frequencies of crystalline compounds and its implementation in the CRYSTAL code. J. Comput. Chem. 2004, 25, 888-897, 10.1002/jcc.20019
Dovesi, R.; Kirtman, B.; Maschio, L.; Maul, J.; Pascale, F.; Rérat, M. Calculation of the Infrared Intensity of Crystalline Systems. A Comparison of Three Strategies Based on Berry Phase, Wannier Function, and Coupled-Perturbed Kohn-Sham Methods. J. Phys. Chem. C 2019, 123, 8336-8346, 10.1021/acs.jpcc.8b08902
Hehre, W. J.; Ditchfield, K.; Pople, J. A. Self-consistent molecular orbital methods. XII. Further extensions of gaussian-type basis sets for use in molecular orbital studies of organic molecules. J. Chem. Phys. 1972, 56, 2257-2261, 10.1063/1.1677527
Francl, M. M.; Pietro, W. J.; Hehre, W. J.; Binkley, J. S.; Gordon, M. S.; DeFrees, D. J.; Pople, J. A. Self-consistent molecular orbital methods. XXIII. A polarization-type basis set for second-row elements. J. Chem. Phys. 1982, 77, 3654-3665, 10.1063/1.444267
Perdew, J. P.; Burke, K.; Ernzerhof, M. Generalized gradient approximation made simple. Phys. Rev. Lett. 1996, 77, 3865-3868, 10.1103/PhysRevLett.77.3865
Grimme, S. Density functional theory with London dispersion corrections. Wiley Interdisciplinary Reviews: Computational Molecular Science 2011, 1, 211-228