First principle calculations; Lattice modes; Low-frequency Raman; Mechanistics; Normal modes; Order/disorder phase transition; Pentacenes; Raman measurements; Raman peak; Temperature dependent; Materials Science (all); Physical and Theoretical Chemistry; General Materials Science
Abstract :
[en] We combine temperature-dependent low-frequency Raman measurements and first-principles calculations to obtain a mechanistic understanding of the order-disorder phase transition of 2,7-di-tert-butylbenzo[b]benzo[4,5]thieno[2,3-d]thiophene (ditBu-BTBT) and 6,13-bis(triisopropylsilylethynyl) pentacene (TIPS-pentacene) semiconducting amphidynamic crystals. We identify the lattice normal modes associated with the phase transition by following the position and width of the Raman peaks with temperature and identifying peaks that exhibit nonlinear dependence toward the phase transition temperature. Our findings are interpreted according to the "hardcore mode" model previously used to describe order-disorder phase transitions in inorganic and hybrid crystals with a Brownian sublattice. Within the framework of this model, ditBu-BTBT exhibits an ideal behavior where only one lattice mode is associated with the phase transition. TIPS-pentacene deviates strongly from the model due to strong interactions between lattice modes. We discuss the origin of the different behaviors and suggest side-chain engineering as a tool to control polymorphism in amphidynamic crystals.
Disciplines :
Chemistry
Author, co-author :
Asher, Maor ; Department of Chemical and Biological Physics, Weizmann Institute of Science, Rehovot76100, Israel
Bardini, Marco ; Université de Mons - UMONS > Faculté des Science > Service de Chimie des matériaux nouveaux
Catalano, Luca; Laboratoire de Chimie des Polymères, Université Libre de Bruxelles (ULB), 1050Brussels, Belgium
Jouclas, Rémy; Laboratoire de Chimie des Polymères, Université Libre de Bruxelles (ULB), 1050Brussels, Belgium
Schweicher, Guillaume ; Laboratoire de Chimie des Polymères, Université Libre de Bruxelles (ULB), 1050Brussels, Belgium
Liu, Jie ; Laboratoire de Chimie des Polymères, Université Libre de Bruxelles (ULB), 1050Brussels, Belgium
Korobko, Roman ; Department of Chemical and Biological Physics, Weizmann Institute of Science, Rehovot76100, Israel
Cohen, Adi; Department of Chemical and Biological Physics, Weizmann Institute of Science, Rehovot76100, Israel
Geerts, Yves ; Université de Mons - UMONS ; Laboratoire de Chimie des Polymères, Université Libre de Bruxelles (ULB), 1050Brussels, Belgium ; International Solvay Institutes for Physics and Chemistry, 1050Brussels, Belgium
Beljonne, David ; Université de Mons - UMONS > Faculté des Science > Service de Chimie des matériaux nouveaux
Yaffe, Omer ; Department of Chemical and Biological Physics, Weizmann Institute of Science, Rehovot76100, Israel
Language :
English
Title :
Mechanistic View on the Order-Disorder Phase Transition in Amphidynamic Crystals.
R400 - Institut de Recherche en Science et Ingénierie des Matériaux Complexys
Funders :
Fédération Wallonie-Bruxelles H2020 Marie Sklodowska-Curie Actions Fondation Francqui - Stichting Fonds De La Recherche Scientifique - FNRS H2020 European Research Council
Funding text :
We thank Lior Segev for software development. O.Y. acknowledges funding from the European Research Counsel (850041-ANHARMONIC). Y.G. is thankful to the Belgian National Fund for Scientific Research (FNRS) for financial support through research projects Pi-Fast (No T.0072.18), Pi-Chir (No T.0094.22), DIFFRA (No U.G001.19), 2D to 3D (No O.005018F), and CHISUB (No O.00322). Financial support from the French Community of Belgian (ARC No. 20061) is also acknowledged. L.C. thanks the H2020 MSCA COFUND IF@ULB program for financial support (Grant Agreement 801505). G.S. is a FNRS Research Associate and acknowledges financial support from the Francqui Foundation (Francqui Start-Up Grant). D.B. is a FNRS research director. The work in Mons has been supported by the Consortium des Équipements de Calcul Intensif (CÉCI), funded by the Fonds de la Recherche Scientifique de Belgique (F.R.S.-FNRS) under Grant No. 2.5020.11. This project has received funding from the European Union’s Horizon 2020 research and innovation program under Marie Skodowska-Curie Grant Agreements No. 811284 (UHMob) and No. 801505.
Catalano, L.; Naumov, P. Exploiting rotational motion in molecular crystals. CrystEngComm 2018, 20, 5872- 5883, 10.1039/C8CE00420J
Garcia-Garibay, M. A. Crystalline molecular machines: Encoding supramolecular dynamics into molecular structure. Proc. Natl. Acad. Sci. U.S.A. 2005, 102, 10771- 10776, 10.1073/pnas.0502816102
Wang, X.; Wang, W.; Yang, C.; Han, D.; Fan, H.; Zhang, J. Thermal transport in organic semiconductors. J. Appl. Phys. 2021, 130, 170902, 10.1063/5.0062074
Das, S.; Mondal, A.; Reddy, C. M. Harnessing molecular rotations in plastic crystals: A holistic view for crystal engineering of adaptive soft materials. Chem. Soc. Rev. 2020, 49, 8878- 8896, 10.1039/D0CS00475H
Vogelsberg, C. S.; Garcia-Garibay, M. A. Crystalline molecular machines: Function, phase order, dimensionality, and composition. Chem. Soc. Rev. 2012, 41, 1892- 1910, 10.1039/C1CS15197E
Liepuoniute, I.; Jellen, M. J.; Garcia-Garibay, M. A. Correlated motion and mechanical gearing in amphidynamic crystalline molecular machines. Chemical Science 2020, 11, 12994- 13007, 10.1039/D0SC04495D
Kottas, G. S.; Clarke, L. I.; Horinek, D.; Michl, J. Artificial molecular rotors. Chem. Rev. 2005, 105, 1281- 1376, 10.1021/cr0300993
Colin-Molina, A.; Karothu, D. P.; Jellen, M. J.; Toscano, R. A.; Garcia-Garibay, M. A.; Naumov, P.; Rodríguez-Molina, B. Thermosalient Amphidynamic Molecular Machines: Motion at the Molecular and Macroscopic Scales. Matter 2019, 1, 1033- 1046, 10.1016/j.matt.2019.06.018
Zhang, W.; Ye, H. Y.; Graf, R.; Spiess, H. W.; Yao, Y. F.; Zhu, R. Q.; Xiong, R. G. Tunable and switchable dielectric constant in an amphidynamic crystal. J. Am. Chem. Soc. 2013, 135, 5230- 5233, 10.1021/ja3110335
Sato, O. Dynamic molecular crystals with switchable physical properties. Nat. Chem. 2016, 8, 644- 656, 10.1038/nchem.2547
Chung, H.; Dudenko, D.; Zhang, F.; D’Avino, G.; Ruzié, C.; Richard, A.; Schweicher, G.; Cornil, J.; Beljonne, D.; Geerts, Y.; Diao, Y. Rotator side chains trigger cooperative transition for shape and function memory effect in organic semiconductors. Nat. Commun. 2018, 9, 1- 12, 10.1038/s41467-017-02607-9
Su, S. Q.; Kamachi, T.; Yao, Z. S.; Huang, Y. G.; Shiota, Y.; Yoshizawa, K.; Azuma, N.; Miyazaki, Y.; Nakano, M.; Maruta, G.; Takeda, S.; Kang, S.; Kanegawa, S.; Sato, O. Assembling an alkyl rotor to access abrupt and reversible crystalline deformation of a cobalt(II) complex. Nat. Commun. 2015, 6, 8810, 10.1038/ncomms9810
Park, S. K.; Diao, Y. Martensitic transition in molecular crystals for dynamic functional materials. Chem. Soc. Rev. 2020, 49, 8287- 8314, 10.1039/D0CS00638F
Andrade, P. D. R.; Borstel, G.; Merten, L. Numerical calculations for the effect of a Brownian sublattice on polariton dispersion. Physica Status Solidi (B) 1975, 67, 129- 136, 10.1002/pssb.2220670111
da R. Andrade, P.; Porto, S. P. S. On linewidth of phonons associated to a disorder mechanism. Solid State Commun. 1973, 13, 1249- 1254, 10.1016/0038-1098(73)90574-7
Menahem, M.; Benshalom, N.; Asher, M.; Aharon, S.; Korobko, R.; Safran, S.; Hellman, O.; Yaffe, O. The Disorder Origin of Raman Scattering In Perovskites Single Crystals. arXiv 2022.
Andrade, P. d. R.; Porto, S. P. Hard core phonon frequency at transition temperature. Solid State Commun. 1974, 14, 547- 550, 10.1016/0038-1098(74)91008-4
Cochran, W. Crystal stability and the theory of ferroelectricity. Phys. Rev. Lett. 1959, 3, 412- 414, 10.1103/PhysRevLett.3.412
Rao, A. D.; Andrade, P. D. R.; Porto, S. P. Phonon behavior and disorder mechanism in NaClO3. Phys. Rev. B 1974, 9, 1077- 1084, 10.1103/PhysRevB.9.1077
da R. Andrade, P.; Rao, A.D.P.; Katiyar, R.S.; Porto, S.P.S. Analysis of the relationship between temperature dependence of the libration mode and dielectric relaxation in NaNO2. Solid State Commun. 1973, 12, 847- 851, 10.1016/0038-1098(73)90092-6
Maalej, A.; Abid, Y.; Kallel, A.; Daoud, A.; Lautié, A.; Romain, F. Phase transitions and crystal dynamics in the cubic perovskite-CH3NH3PbCl3. Solid State Commun. 1997, 103, 279- 284, 10.1016/S0038-1098(97)00199-3
CarabatosNedelec, C.; Becker, P. Order-disorder and structural phase transitions in solid-state materials by Raman scattering analysis. J. Raman Spectrosc. 1997, 28, 663- 671, 10.1002/(SICI)1097-4555(199709)28:9<663::AID-JRS157>3.0.CO;2-L
Hetmańczyk, J.; Hetmańczyk, Ł.; Migdał-Mikuli, A.; Mikuli, E. Vibrations and reorientations of NH3 molecules in [Mn(NH3)6](ClO4)2 studied by infrared spectroscopy and theoretical (DFT) calculations. Spectrochimica Acta - Part A: Molecular and Biomolecular Spectroscopy 2015, 136, 1515- 1522, 10.1016/j.saa.2014.10.044
Forss, S. A Raman spectroscopic temperature study of NH3+ torsional motion as related to hydrogen bonding in the L-alanine crystal. J. Raman Spectrosc. 1982, 12, 266- 273, 10.1002/jrs.1250120313
Piela, K.; Hołderna-Natkaniec, K.; Baranowski, M.; Misiaszek, T.; Baran, J.; Magdalena Szostak, M. Molecular motions contributions to optical nonlinearity of N-benzyl-2-methyl-4-nitroaniline studied by temperature-dependent FT-IR, 1H NMR spectroscopy and DFT calculations. J. Mol. Struct. 2013, 1033, 91- 97, 10.1016/j.molstruc.2012.08.014
Zhou, J.; Xu, H.; Shi, Y.; Li, J. Terahertz Driven Reversible Topological Phase Transition of Monolayer Transition Metal Dichalcogenides. Advanced Science 2021, 8, 2003832, 10.1002/advs.202003832
Zhou, J.; Zhang, S. Terahertz optics-driven phase transition in two-dimensional multiferroics. npj 2D Mater. Appl. 2021, 5, 16, 10.1038/s41699-020-00189-7
Rini, M.; Tobey, R.; Dean, N.; Itatani, J.; Tomioka, Y.; Tokura, Y.; Schoenlein, R. W.; Cavalleri, A. Control of the electronic phase of a Manganite by mode-selective vibrational excitation. Nature 2007, 449, 72- 74, 10.1038/nature06119
Disa, A. S.; Nova, T. F.; Cavalleri, A. Engineering crystal structures with light. Nat. Phys. 2021, 17, 1087- 1092, 10.1038/s41567-021-01366-1
Li, X.; Qiu, T.; Zhang, J.; Baldini, E.; Lu, J.; Rappe, A. M.; Nelson, K. A. Terahertz field-induced ferroelectricity in quantum paraelectric SrTiO3. Science 2019, 364, 1079- 1082, 10.1126/science.aaw4913
Cruz-Cabeza, A. J.; Feeder, N.; Davey, R. J. Open questions in organic crystal polymorphism. Communications Chemistry 2020, 3, 142, 10.1038/s42004-020-00388-9
Chung, H.; Ruzié, C.; Geerts, Y.; Diao, Y. Hybrid Mechanism of Nucleation and Cooperative Propagation in a Single-Crystal-to-Single-Crystal Transition of a Molecular Crystal. Cryst. Growth Des. 2018, 18, 4245- 4251, 10.1021/acs.cgd.8b00452
Chen, J.; Anthony, J.; Martin, D. C. Thermally induced solid-state phase transition of bis(triisopropylsilylethynyl) pentacene crystals. J. Phys. Chem. B 2006, 110, 16397- 16403, 10.1021/jp0627877
Asher, M.; Angerer, D.; Korobko, R.; Diskin-Posner, Y.; Egger, D. A.; Yaffe, O. Anharmonic Lattice Vibrations in Small-Molecule Organic Semiconductors. Adv. Mater. 2020, 32, 1908028, 10.1002/adma.201908028
Venuti, E.; Bilotti, I.; Della Valle, R. G.; Brillante, A.; Ranzieri, P.; Masino, M.; Girlando, A. Polarized Raman spectra of a rubrene single crystal. J. Phys. Chem. C 2008, 112, 17416- 17422, 10.1021/jp805861v
Parrott, E. P.; Zeitler, J. A. Terahertz time-domain and low-frequency Raman spectroscopy of organic materials. Appl. Spectrosc. 2015, 69, 1- 25, 10.1366/14-07707
Socci, J.; Salzillo, T.; Della Valle, R. G.; Venuti, E.; Brillante, A. Fast identification of rubrene polymorphs by lattice phonon Raman microscopy. Solid State Sci. 2017, 71, 146- 151, 10.1016/j.solidstatesciences.2017.07.015
Asher, M.; Jouclas, R.; Bardini, M.; Diskin-posner, Y.; Kahn, N.; Korobko, R.; Kennedy, A. R.; Silva de Moraes, L. S. D.; Schweicher, G.; Liu, J.; Beljonne, D.; Geerts, Y.; Yaffe, O. Chemical Modifications Suppress Anharmonic Effects in the Lattice Dynamics of Organic Semiconductors. ACS Materials Au 2022, 2, 699, 10.1021/acsmaterialsau.2c00020
Ouillon, R.; Ranson, P.; Califano, S. Temperature dependence of the bandwidths and frequencies of some anthracene phonons. High-resolution Raman measurements. Chem. Phys. 1984, 91, 119- 131, 10.1016/0301-0104(84)80048-8
Lima, R. J.; Freire, P. T.; Sasaki, J. M.; Melo, F. E.; Mendes Filho, J.; Moreira, R. L. Temperature-dependent Raman study of taurine single crystal. J. Raman Spectrosc. 2001, 32, 751- 756, 10.1002/jrs.739
Hess, L. A.; Prasad, P. N. Vibrational dephasing in organic solids: Temperature dependence of a Raman active localized internal mode of naphthalene. J. Chem. Phys. 1980, 72, 573- 579, 10.1063/1.438944
Lucazeau, G. Effect of pressure and temperature on Raman spectra of solids: Anharmonicity. J. Raman Spectrosc. 2003, 34, 478- 496, 10.1002/jrs.1027
Ivanovska, T.; Quarti, C.; Grancini, G.; Petrozza, A.; De Angelis, F.; Milani, A.; Ruani, G. Vibrational Response of Methylammonium Lead Iodide: From Cation Dynamics to Phonon-Phonon Interactions. ChemSusChem 2016, 9, 2994- 3004, 10.1002/cssc.201600932
Zhao, Y.; Yang, S.; Zhu, J.; Ji, G.; Peng, F. The study of oxygen ion motion in Zn2GeO4 by Raman spectroscopy. Solid State Ionics 2015, 274, 12- 16, 10.1016/j.ssi.2015.02.015
Savatinova, I.; Anachkova, E. Raman spectrum and dielectric relaxation in K4Fe(CN)6 · 3 H2O. Physica Status Solidi (B) 1977, 84, 401- 406, 10.1002/pssb.2220840143
Chung, H.; Chen, S.; Sengar, N.; Davies, D. W.; Garbay, G.; Geerts, Y. H.; Clancy, P.; Diao, Y. Single Atom Substitution Alters the Polymorphic Transition Mechanism in Organic Electronic Crystals. Chem. Mater. 2019, 31, 9115- 9126, 10.1021/acs.chemmater.9b03436
Zaczek, A. J.; Catalano, L.; Naumov, P.; Korter, T. M. Mapping the polymorphic transformation gateway vibration in crystalline 1,2,4,5-tetrabromobenzene. Chemical Science 2019, 10, 1332- 1341, 10.1039/C8SC03897J
Li, C. W.; Tang, X.; Muñoz, J. A.; Keith, J. B.; Tracy, S. J.; Abernathy, D. L.; Fultz, B. Structural relationship between negative thermal expansion and quartic anharmonicity of cubic ScF3. Phys. Rev. Lett. 2011, 107, 195504, 10.1103/PhysRevLett.107.195504
Salke, N. P.; Gupta, M. K.; Rao, R.; Mittal, R.; Deng, J.; Xing, X. Raman and ab initio investigation of negative thermal expansion material TaVO5: Insights into phase stability and anharmonicity. J. Appl. Phys. 2015, 117, 235902, 10.1063/1.4922744
Menéndez, J.; Cardona, M. Temperature dependence of the first-order Raman scattering by phonons in Si, Ge, and -Sn: Anharmonic effects. Phys. Rev. B 1984, 29, 2051- 2059, 10.1103/PhysRevB.29.2051
Balkanski, M.; Wallis, R. F.; Haro, E. Anharmonic effects in light scattering due to optical phonons in silicon. Phys. Rev. B 1983, 28, 1928- 1934, 10.1103/PhysRevB.28.1928
Cuscó, R.; Gil, B.; Cassabois, G.; Artús, L. Temperature dependence of Raman-active phonons and anharmonic interactions in layered hexagonal BN. Phys. Rev. B 2016, 94, 155435, 10.1103/PhysRevB.94.155435
Chung, H.; Chen, S.; Patel, B.; Garbay, G.; Geerts, Y. H.; Diao, Y. Understanding the Role of Bulky Side Chains on Polymorphism of BTBT-Based Organic Semiconductors. Cryst. Growth Des. 2020, 20, 1646- 1654, 10.1021/acs.cgd.9b01372
Erba, A.; Baima, J.; Bush, I.; Orlando, R.; Dovesi, R. Large-Scale Condensed Matter DFT Simulations: Performance and Capabilities of the CRYSTAL Code. J. Chem. Theory Comput. 2017, 13, 5019- 5027, 10.1021/acs.jctc.7b00687
Dovesi, R.; Erba, A.; Orlando, R.; Zicovich-Wilson, C. M.; Civalleri, B.; Maschio, L.; Rérat, M.; Casassa, S.; Baima, J.; Salustro, S.; Kirtman, B. Quantum-mechanical condensed matter simulations with CRYSTAL. Wiley Interdisciplinary Reviews: Computational Molecular Science 2018, 8, 1360, 10.1002/wcms.1360
Pascale, F.; Zicovich-Wilson, C. M.; López Gejo, F.; Civalleri, B.; Orlando, R.; Dovesi, R. The calculation of the vibrational frequencies of crystalline compounds and its implementation in the CRYSTAL code. J. Comput. Chem. 2004, 25, 888- 897, 10.1002/jcc.20019
Dovesi, R.; Kirtman, B.; Maschio, L.; Maul, J.; Pascale, F.; Rérat, M. Calculation of the Infrared Intensity of Crystalline Systems. A Comparison of Three Strategies Based on Berry Phase, Wannier Function, and Coupled-Perturbed Kohn-Sham Methods. J. Phys. Chem. C 2019, 123, 8336- 8346, 10.1021/acs.jpcc.8b08902
Hehre, W. J.; Ditchfield, K.; Pople, J. A. Self-consistent molecular orbital methods. XII. Further extensions of gaussian-type basis sets for use in molecular orbital studies of organic molecules. J. Chem. Phys. 1972, 56, 2257- 2261, 10.1063/1.1677527
Francl, M. M.; Pietro, W. J.; Hehre, W. J.; Binkley, J. S.; Gordon, M. S.; DeFrees, D. J.; Pople, J. A. Self-consistent molecular orbital methods. XXIII. A polarization-type basis set for second-row elements. J. Chem. Phys. 1982, 77, 3654- 3665, 10.1063/1.444267
Perdew, J. P.; Burke, K.; Ernzerhof, M. Generalized gradient approximation made simple. Phys. Rev. Lett. 1996, 77, 3865- 3868, 10.1103/PhysRevLett.77.3865
Grimme, S. Density functional theory with London dispersion corrections. Wiley Interdisciplinary Reviews: Computational Molecular Science 2011, 1, 211- 228, 10.1002/wcms.30