[en] A problem for understanding bumblebee biogeography is that if bumblebees dispersed from Asia through North America to South America, if they are poor at long-distance dispersal with establishment over sea, and if the land bridge between North and South America was not established until c. 3 Ma BP, then there is an apparent conflict with the divergence among currently endemic South American lineages having been dated as early as 15–17 Ma. Using the first complete phylogenetic trees for all known and accepted extant species of the groups involved, we show how this conflict could be resolved. We suggest that characterizing bumblebees as being associated generally with temperate flower-rich meadows conflates divergent habitat specializations between two early lineages, associated with northern lowland grasslands and with southern montane grasslands respectively, which may have driven divergences in behaviour and in biogeographic processes. First, for most of the lowland grassland group of bumblebees, estimated dates of divergence are consistent with dispersal to South America via the land-bridge corridor that opened at c. 3 Ma, followed by extant endemic lineages diverging in situ within South America. In contrast, for the second group that occupies montane grassland habitats (and for a few montane lineages of the ‘lowland’ group), we suggest that dispersal to South America at c. 3 Ma could be consistent with older divergence for currently endemic species if: (1) many of the extant South American lineages had already diverged outside the region before 3 Ma in neighbouring Mesoamerica; and (2) they had been constrained within the high mountains there, dispersing southwards into South America only once the isthmus corridor had become established; and (3) some of those ancestral montane lineages had become extirpated from Mesoamerica during subsequent warm climatic fluctuations. This interpretation re-emphasizes that biogeographic studies need to consider habitat-specific dispersal models that change through time.
Disciplines :
Zoology
Author, co-author :
Williams, Paul H. ; Natural History Museum, London, United Kingdom
Françoso, Elaine ; Department of Biological Sciences, Royal Holloway University of London, Egham, United Kingdom
Martinet, Baptiste ; Université de Mons - UMONS > Faculté des Sciences > Service de Zoologie ; Université Libre de Bruxelles, Brussels, Belgium
Orr, Michael C. ; Institute of Zoology, Chinese Academy of Sciences, Chaoyang, Beijing, China
Ren, Zongxin; Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, China
Júnior, José Santos; Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
Thanoosing, Chawatat; Natural History Museum, London, United Kingdom
Vandame, Rémy; El Colegio de la Frontera Sur, San Cristóbal de Las Casas, Chiapas, Mexico
Language :
English
Title :
When did bumblebees reach South America? Unexpectedly old montane species may be explained by Mexican stopover (Hymenoptera: Apidae)
The work in Mexico was supported by SADER-CONACYT [grant number 291333]. Thanks to the many people who have collected bumblebees, managed collections, and provided gene sequences; to S. Brace, T. Li, and P. Sagot for additional barcode sequences; to A. Byvaltsev for translation; and to L. Bailey for discussion.
Abrahamovich, A. H., Díaz, N. B., & Morrone, J. J. (2004). Distributional patterns of the Neotropical and Andean species of the genus Bombus (Hymenoptera: Apidae). Acta Zoologica Mexicana, 20 (1), 99–117.
Arakaki, M., Christin, P.-A., Nyffeler, R., Lendel, A., Eggli, U., Ogburn, R. M., Spriggs, E., Moore, M. J., & Edwards, E. J. (2011). Contemporaneous and recent radiations of the world's major succulent plant lineages. Proceedings of the National Academy of Sciences of the United States of America, 108 (20), 8379–8384. https://doi.org/10.1073/pnas.1100628108
Arbetman, M. P., Gleiser, G., Morales, C. L., Williams, P. H., Aizen, M. A. (2017). Global decline of bumblebees is phylogenetically structured and inversely related to species range size and pathogen incidence. Proceedings of the Royal Society of London (B), 284 8. https://doi.org/10.1098/rspb.2017.0204
Bacon, C. D., Silvestro, D., Jaramillo, C., Smith, B. T., Chakrabarty, P., & Antonelli, A. (2015). Biological evidence supports an early and complex emergence of the Isthmus of Panama. Proceedings of the National Academy of Sciences of the United States of America, 112 (19), 6110–6115. https://doi.org/10.1073/pnas.1423853112
Baum, D., & Smith, S. (2012). Tree thinking: Aan introduction to phylogenetic biology. Roberts and Company.
Bond, W. J. (1994). Keystone species. In E.-D. Schultze & H. A. Mooney (Eds.), Biodiversity and ecosystem function (pp. 237–253). Springer-Verlag.
Brasero, N., Ghisbain, G., Lecocq, T., Michez, D., Valterova, I., Biella, P., … Martinet, B. (2021). Resolving the species status of overlooked West-Palaearctic bumblebees. Zoologica Scripta, 2021, 1–17. https://doi.org/10.1111/zsc.12496
Budd, G. E., & Mann, R. P. (2018). History is written by the victors: the effect of the push of the past on the fossil record. Evolution; International Journal of Organic Evolution, 72 (11), 2276–2291. https://doi.org/10.1111/evo.13593
Buttermore, R. E., Pomeroy, N., Hobson, W., Semmens, T., & Hart, R. (1998). Assessment of the genetic base of Tasmanian bumble bees (Bombus terrestris) for development as pollination agents. Journal of Apicultural Research, 37 (1), 23–25. https://doi.org/10.1080/00218839.1998.11100950
Cameron, S. A., Hines, H. M., & Williams, P. H. (2007). A comprehensive phylogeny of the bumble bees (Bombus). Biological Journal of the Linnean Society, 91 (1), 161–188. https://doi.org/10.1111/j.1095-8312.2007.00784.x
Cameron, S. A., Lozier, J. D., Strange, J. P., Koch, J. B., Cordes, N., Solter, L. F., Griswold, T. L. (2011). Patterns of widespread decline in North American bumble bees. Proceedings of the National Academy of Sciences of the United States of America, 108, 662–667.
Cameron, S. A., & Sadd, B. M. (2020). Global trends in bumble bee health. Annual Review of Entomology, 65, 209–232.
Coates, A. G., & Obando, J. A. (1996). The geologic evolution of Central American Isthmus. In J. B. C. Jackson, A. F. Budd, & A. G. Coates (Eds.), Evolution and Environment in Tropical America (pp. 21–56). University of Chicago Press.
Cook, J. M., & Crozier, R. H. (1995). Sex determination and population biology in the Hymenoptera. Trends in Ecology & Evolution, 10 (7), 281–286.
Crisp, M. D., & Cook, L. G. (2009). Explosive radiation or cryptic mass extinction? Interpreting signatures in molecular phylogenies. Evolution; International Journal of Organic Evolution, 63 (9), 2257–2264. https://doi.org/10.1111/j.1558-5646.2009.00728.x
Critchfield, W. B., & Little, E. L. (1966). Geographic distribution of the pines of the world. United States Department of Agrigulture.
Crowther, L. P., Hein, P.-L., & Bourke, A. F. G. (2014). Habitat and forage associations of a naturally colonising insect pollinator, the tree bumblebee Bombus hypnorum. PloS One, 9 (9), e107568. DOI: 10.1371/journal.pone.0107568
Darvill, B., Ellis, J. S., Lye, G. C., & Goulson, D. (2006). Population structure and inbreeding in a rare and declining bumblebee, Bombus muscorum (Hymenoptera: Apidae). Molecular Ecology, 15 (3), 601–611. https://doi.org/10.1111/j.1365-294X.2006.02797.x
Darvill, B. (2007). The conservation genetics of the bumblebees Bombus muscorum and Bombus jonellus in a model island system [PhD]. University of Southampton, Southampton.
Dehon, M., Engel, M. S., Gérard, M., Aytekin, A. M., Ghisbain, G., Williams, P. H., Rasmont, P., & Michez, D. (2019). Morphometric analysis of fossil bumble bees (Hymenoptera, Apidae, Bombini) reveals their taxonomic affinities. Zookeys, 891, 71–118. https://doi.org/10.3897/zookeys.891.32056
Dellicour, S., Kastally, C., Varela, S., Michez, D., Rasmont, P., Mardulyn, P., & Lecocq, T. (2017). Ecological niche modelling and coalescent simulations to explore the recent geographical range history of five widespread bumblebee species in Europe. Journal of Biogeography, 44 (1), 39–50. https://doi.org/10.1111/jbi.12748
Dellicour, S., Michez, D., & Mardulyn, P. (2015). Comparative phylogeography of five bumblebees: impact of range fragmentation, range size and diet specialization. Biological Journal of the Linnean Society, 116 (4), 926–939. https://doi.org/10.1111/bij.12636
Dirnböck, T., Essl, F., & Rabitsch, W. (2010). Disproportionate risk for habitat loss of high-altitude endemic species under climate change. Global Change Biology,17, 990–996. https://doi.org/10.1111/j.1365-2486.2010.02266.x
Drummond, A. J., & Bouckaert, R. R. (2015). Bayesian evolutionary analysis with BEAST. Cambridge University Press.
Drummond, A. J., & Rambaut, A. (2007). BEAST: Bayesian evolutionary analysis by sampling trees. BMC Evolutionary Biology, 7, 214.
Duchateau, M. J., Hoshiba, H., & Velthuis, H. H. W. (1994). Diploid males in the bumble bee Bombus terrestris. Entomologia Experimentalis et Applicata, 71 (3), 263–269. https://doi.org/10.1111/j.1570-7458.1994.tb01793.x
Estoup, A., Scholl, A., Pouvreau, A., & Solignac, M. (1995). Monandry and polyandry in bumble bees (Hymenoptera, Bombinae) as evidenced by highly variable microsatellites. Molecular Ecology, 4 (1), 89–93. https://doi.org/10.1111/j.1365-294X.1995.tb00195.x
Estoup, A., Solignac, M., Cornuet, J.-M., Goudet, J., & Scholl, A. (1996). Genetic differentiation of continental and island populations of Bombus terrestris (Hymenoptera: Apidae) in. Molecular Ecology, 5 (1), 19–31.
Fijen, T. P. M. (2021). Mass-migrating bumblebees: An overlooked phenomenon with potential far-reaching implications for bumblebee conservation. Journal of Applied Ecology, 58 (2), 274–280. https://doi.org/10.1111/1365-2664.13768
Fitz-Diaz, E., Lawton, T. F., Juarez-Arriaga, E., & Chavez-Cabello, G. (2018). The Cretaceous-Paleogene Mexican orogen: structure, basin development, magmatism and tectonics. Earth-Science Reviews, 183 (August), 56–84. https://doi.org/10.1016/j.earscirev.2017.03.002
Fitzpatrick, Ú., Murray, T. E., Paxton, R. J., Breen, J., Cotton, D., Santorum, V., & Brown, M. J. F. (2007). Rarity and decline in bumblebees - a test of causes and correlates in the Irish fauna. Biological Conservation, 136 (2), 185–194. https://doi.org/10.1016/j.biocon.2006.11.012
Françoso, E., Oliveira, F. F., & Arias, M. C. (2016). An integrative approach identifies a new species of bumblebee (Hymenoptera: Apidae: Bombini) from northeastern Brazil. Apidologie, 47 (2), 171–185. https://doi.org/10.1007/s13592-015-0385-7
Françoso, E., Zuntini, A. R., Carnaval, A. C., & Arias, M. C. (2016). Comparative phylogeography in the Atlantic forest and Brazilian savannas: Pleistocene fluctuations and dispersal shape spatial patterns in two bumblebees. BMC Evolutionary Biology, 16 (1), 267. https://doi.org/10.1186/s12862-016-0803-0
Franklin, H. J. (1913). The Bombidae of the New World. Part II. Species south of the United States. Transactions of the American Entomological Society, 39, 73–200.
Goulson, D. (2010). Bumblebees, behaviour, ecology, and conservation (2 ed.). Oxford: Oxford University Press.
Goulson, D., Kaden, J. C., Lepais, O., Lye, J. C., & Darvill, B. (2011). Population structure, dispersal and colonization history of the garden bumblebee Bombus hortorum in the Western Isles of Scotland. Conservation Genetics, 12 (4), 867–879. https://doi.org/10.1007/s10592-011-0190-4
Goulson, D., & Williams, P. (2001). Bombus hypnorum (Hymenoptera: Apidae), a New British bumblebee? British Journal of Entomology and Natural History, 14, 129–131.
Guthrie, R. D. (1982). Mammals of the mammoth steppe as paleoenvironmental indicators. In D. M. Hopkins, & S. B. Young (Eds.), Paleoecology of Beringia (pp. 307–329) Academic Press.
Haeseler, V. (1974). Aculeate hymenopteren über Nord- und ostsee nach untersuchungen auf feuerschiffen. Insect Systematics & Evolution, 5 (2), 123–136. https://doi.org/10.1163/187631274X00155
Harder, L. D. (1983). Flower handling efficiency of bumble bees: morphological aspects of probing time. Oecologia, 57 (1-2), 274–280. https://doi.org/10.1007/BF00379591
Hebert, P. D. N., Ratnasingham, S., & deWaard, J. R. (2003). Barcoding animal life: cytochrome c oxidase subunit 1 divergences among closely related species. Proceedings of the Royal Society of London (B), 270, S96–S99. https://doi.org/10.1098/rsbl.2003.0025
Heinrich, B. (1979). Bumblebee economics. Harvard University Press.
Hernandez-Hernandez, T., Brown, J. W., Schlumpberger, B. O., Eguiarte, L. E., & Magallon, S. (2014). Beyond aridification: multiple explanations for the elevated diversification of cacti in the New World Succulent Biome. The New Phytologist, 202 (4), 1382–1397. https://doi.org/10.1111/nph.12752
Hines, H. M. (2008). Historical biogeography, divergence times, and diversification patterns of bumble bees (Hymenoptera: Apidae: Bombus). Systematic Biology, 57 (1), 58–75. https://doi.org/10.1080/10635150801898912
Hines, H. M., Cameron, S. A., & Williams, P. H. (2006). Molecular phylogeny of the bumble bee subgenus Pyrobombus (Hymenoptera: Apidae: Bombus) with insights into gene utility for lower-level analysis. Invertebrate Systematics, 20, 289–303.
Huang, J.-X., An, J.-D., Wu, J., & Williams, P. H. (2015). Extreme food-plant specialisation in Megabombus bumblebees as a product of long tongues combined with short nesting seasons. PLoSONE, 10 (8), 10–15. https://doi.org/10.1371/journal.pone.0132358
Huml, J. V., Ellis, J. S., Lloyd, K., Benefer, C. M., Kiernan, M., Brown, M. J. F., & Knight, M. E. (2021). Bucking the trend of pollinator decline: the population genetics of a range expanding bumblebee. Evolutionary Ecology, 35 (3), 413–442. https://doi.org/10.1007/s10682-021-10111-2
Ito, M. (1985). Supraspecific classification of bumblebees based on the characters of male genitalia. Contributions from the Institute of Low Temperature Science, Hokkaido University (B), 20, 143.
Ito, M. (1987). Geographic variation of an eastern Asian bumble bee Bombus diversus in some morphometric characters (Hymenoptera. Apidae) Kontyu, 55 (2), 188–201.
Ito, M., & Sakagami, S. F. (1980). The bumblebee fauna of the Kurile Islands (Hymenoptera: Apidae). Low Temperature Science (B), 38, 23–51.
Jin, W.-T., Gernandt, D. S., Wehenkel, C., Xia, X.-M., Wei, X.-X., & Wang, X.-Q. (2021). Phylogenomic and ecological analyses reveal the spatiotemporal evolution of global pines. PNAS. pages, 118 (20), 11. https://doi.org/10.1073/pnas.2022302118
Kawakita, A., Sota, T., Ascher, J., Ito, M., Tanaka, H., & Kato, M. (2003). Evolution and phylogenetic utility of alignment gaps within intron sequences of three nuclear genes in bumble bees (Bombus). Molecular Biology and Evolution, 20 (1), 87–92.
Kawakita, A., Sota, T., Ito, M., Ascher, J. S., Tanaka, H., Kato, M., & Roubik, D. W. (2004). Phylogeny, historical biogeography, and character evolution in bumble bees (Bombus: Apidae) based on simultaneous analysis of three nuclear gene sequences. Molecular Phylogenetics and Evolution, 31 (2), 799–804. https://doi.org/10.1016/j.ympev.2003.12.003
Kraus, F. B., Wolf, S., & Moritz, R. F. A. (2009). Male flight distance and population substructure in the bumblebee Bombus terrestris. The Journal of Animal Ecology, 78 (1), 247–252.
Krüger, E. (1917). Zur Systematik der mitteleuropäischen Hummeln (Hym.). Entomologische Mitteilungen, 6, 55–66.
Krüger, E. (1920). Beiträge zur Systematik und Morphologie der mittel-europäischen Hummeln. Zoologische Jahrbücher (Systematik, Ökologie Und Geographie Der Tiere), 42, 289–464.
Labougle, J. M. (1990). Bombus of México and Central America (Hymenoptera, Apidae). Kansas University Science Bulletin, 54, 35–73.
Lamm, K. S., & Redelings, B. D. (2009). Reconstructing ancestral ranges in historical biogeography: properties and prospects. Journal of Systematics and Evolution, 47 (5), 369–382. https://doi.org/10.1111/j.1759-6831.2009.00042.x
Lecocq, T., Gerard, M., Michez, D., & Dellicour, S. (2017). Conservation genetics of European bees: new insights from the continental scale. Conservation Genetics, 18 (3), 585–596. https://doi.org/10.1007/s10592-016-0917-3
Lee, C. K. F., Williams, P. H., & Pearson, R. G. (2019). Climate change vulnerability higher in arctic than alpine bumblebees. Frontiers of Biogeography, 11 (4), 1–9. https://doi.org/10.21425/F5FBG42455
Lepais, O., Darvill, B., O'Connor, S., Osborne, J. L., Sanderson, R. A., Cussans, J., Goffe, L., & Goulson, D. (2010). Estimation of bumblebee queen dispersal distances using sibship reconstruction method. Molecular Ecology, 19 (4), 819–831. https://doi.org/10.1111/j.1365-294X.2009.04500.x
Lhomme, P., & Hines, H. M. (2019). Ecology and Evolution of Cuckoo Bumble Bees. Annals of the Entomological Society of America, 112 (3), 122–140. https://doi.org/10.1093/aesa/say031
Lomolino, M. V., Riddle, B. R., Whittaker, R. J., & Brown, J. H. (2010). Biogeography (4 ed.) Sinauer Associates.
Lozier, J. D., Strange, J. P., Stewart, I. J., & Cameron, S. A. (2011). Patterns of range-wide genetic variation in six North American bumble bee (Apidae: Bombus) species. Molecular Ecology, 20 (23), 4870–4888. https://doi.org/10.1111/j.1365-294X.2011.05314.x
Macdonald, M. (2001). The colonisation of Northern Scotland by Bombus terrestris (L.) and B. lapidarius (L.) (Hym., Apidae), with comments on the possible role of climate change. Entomologist's Monthly Magazine, 137, 1–13.
Macfarlane, R. P., & Gurr, L. (1995). Distribution of bumble bees in New Zealand. New Zealand Entomologist, 18 (1), 29–36. https://doi.org/10.1080/00779962.1995.9721999
Magnacca, K. N., & Brown, M. J. F. (2010). Mitochondrial heteroplasmy and DNA barcoding in Hawaiian Hylaeus (Nesoprosopis) bees (Hymenoptera: Colletidae). BMC Evolutionary Biology, 10 (, 174–116. https://doi.org/10.1186/1471-2148-10-174
Martinet, B., Lecocq, T., Brasero, N., Gerard, M., Urbanová, K., Valterová, I., Gjershaug, J. O., Michez, D., & Rasmont, P. (2019). Integrative taxonomy of an arctic bumblebee species complex highlights a new cryptic species (Apidae: Bombus). Zoological Journal of the Linnean Society, 187 (3), 599–621. https://doi.org/10.1093/zoolinnean/zlz041
Matzke, N. J. (2013b). Probabilistic historical biogeography: new models for founder-event speciation, imperfect detection, and fossils allow improved accuracy and model-testing. Frontiers of Biogeography, 5 (4), 242–248. https://doi.org/10.21425/F55419694
Matzke, N. J. (2014). Model selection in historical biogeography reveals that founder-event speciation is a crucial process in island clades. Systematic Biology, 63 (6), 951–970. https://doi.org/10.1093/sysbio/syu056
Matzke, N. J. (2013a). BioGeoBEARS: bioGeography with Bayesian (and likelihood) evolutionary analysis in R scripts. R package, version 0.2.1, published July 27, 2013 at: http://CRAN.R-project.org/package=BioGeoBEARS.
McCluskey, A. (2012). Let sleeping queens lie. Buzzword, Nov, 2012 (20), 5.
Mikkola, K. (1984). Migration of wasp and bumblebee queens across the Gulf of Finland (Hymenoptera: Vespidae and Apidae). Notulae Entomologicae, 64, 125–128.
O'Dea, A., Lessios, H. A., Coates, A. G., Eytan, R. I., Restrepo-Moreno, S. A., Cione, A. L., Collins, L. S., de Queiroz, A., Farris, D. W., Norris, R. D., Stallard, R. F., Woodburne, M. O., Aguilera, O., Aubry, M.-P., Berggren, W. A., Budd, A. F., Cozzuol, M. A., Coppard, S. E., Duque-Caro, H., … Jackson, J. B. C. (2016). Formation of the Isthmus of Panama. Science Advances, 2 (8), e1600883. https://doi.org/10.1126/sciadv.1600883
O'Donnell, M. (2018). Tree bumblebee (Bombus hypnorum) (Hymenoptera, Apidae): a bumblebee new to Ireland. The Irish Naturalists' Journal, 36 (1), 50–51.
Orr, M. C., Ren, Z.-X., Ge, J., Tian, L., An, J., Huang, J., Zhu, C.-D., & Williams, P. H. (2022). The rising threat of the invasive bumblebee Bombus terrestris highlights the need for sales restrictions and domestication of unique local biodiversity in Asia. Entomologia Generalis, 1–5. https://doi.org/10.1127/entomologia/2022/1409
Oyen, K. J., Giri, S., & Dillon, M. E. (2016). Altitudinal variation in bumble bee (Bombus) critical thermal limits. Journal of Thermal Biology, 59, 52–57. https://doi.org/10.1016/j.jtherbio.2016.04.015
Panfilov, D. V. (1957). On the geographical distribution of bumblebees (Bombus) in China.]. Acta Geographica Sinica, 23 (3), 221–239.
Pekkarinen, A., & Teräs, I. (1993). Zoogeography of Bombus and Psithyrus in northwestern Europe (Hymenoptera, Apidae). Annales Zoologici Fennici, 30, 187–208.
Potapov, G. S., Kondakov, A. V., Filippov, B. Y., Gofarov, M. Y., Kolosova, Y. S., Spitsyn, V. M., Tomilova, A. A., Zubrii, N. A., & Bolotov, I. N. (2019). Pollinators on the polar edge of the Ecumene: taxonomy, phylogeography, and ecology of bumble bees from Novaya Zemlya. Zookeys, 866, 85–115. https://doi.org/10.3897/zookeys.866.355084
Potapov, G. S., Kondakov, A. V., Spitsyn, V. M., Filippov, B. Y., Kolosova, Y. S., Zubril, N. A., & Bolotov, I. N. (2017). An integrative taxonomic approach confirms the valid status of Bombus glacialis, an endemic bumblebee species of the High Arctic. Polar Biology, 41, 629–642. https://doi.org/10.1007/s00300-017-2224-y
Prokop, J., Dehon, M., Michez, D., & Engel, M. S. (2017). An Early Miocene bumble bee from northern Bohemia (Hymenoptera, Apidae). ZooKeys, 710, 43–63. https://doi.org/10.3897/zookeys.710.14714
Prys-Jones, O. E., Kristjansson, K., & Olafsson, E. (2016). Hitchhiking with the Vikings? The anthropogenic bumblebee fauna of Iceland–past and present. Journal of Natural History, 50, 2895–2916. https://doi.org/10.1080/00222933.2016.1234655
R Core Team. (2017) R: a language and environment for statistical computing (Version https://www.R-project.org/). Vienna, Austria: R Foundation for Statistical Computing. https://www.R-project.org/
Rasmont, P., Ghisbain, G., & Terzo, M. (2021). Bumblebees of Europe and neighbouring regions (A. Hallewell, Trans.): NAP Editions.
Rasmont, P., Flagothier, D. (1996). Biogéographie et choix floraux des bourdons (Hymenoptera, Apidae) de la Turquie. Rapport preliminaire 1995–1996. Mons, Belgium: Université de Mons-Hainaut.
Ree, R. H., & Sanmartin, I. (2009). Prospects and challenges for parametric models in historical biogeographical inference. Journal of Biogeography, 36 (7), 1211–1220. https://doi.org/10.1111/j.1365-2699.2008.02068.x
Ree, R. H., & Smith, S. A. (2008). Maximum likelihood inference of geographic range evolution by dispersal, local extinction, and cladogenesis. Systematic Biology, 57 (1), 4–14.
Reinig, W. F. (1935). On the variation of Bombus lapidarius L. and its cuckoo, Psithyrus rupestris Fabr., with notes on mimetic similarity. Journal of Genetics, 30 (3), 321–356. https://doi.org/10.1007/BF02982243
Reinig, W. F. (1939). Die Evolutionsmechanismen, erläutert an den Hummeln. Verhandlungen Der Deutschen Zoologischen Gesellschaft (Supplement), 12, 170–206.
Revell, L. J. (2012). Phytools: an R package fo phylogenetic comparative biology (and other things). Methods in Ecology and Evolution, 3 (2), 217–223. https://doi.org/10.1111/j.2041-210X.2011.00169.x
Richards, K. W. (1975). Population ecology of bumblebees in southern Alberta. University of Kansas.
Ronquist, F. (1996). DIVA 1.1 User's Manual. Computer program and manual available by anonymous FTP from Uppsala University (ftp.uu.se or ftp.systbot.uu.se).
Sakagami, S. F. (1976). Specific differences in the bionomic characters of bumblebees. A comparative review. Journal of the Faculty of Science, Hokkaido University (Zoology), 20, 390–447.
Sanmartin, I., Enghoff, H., & Ronquist, F. (2001). Patterns of animal dispersal, vicariance and diversification in the Holarctic. Biological Journal of the Linnean Society, 73, 345–390.
Santos-Junior, J. E., Santos, F. R., & Silveira, F. A. (2015). Hitting an unintended target: phylogeography of Bombus brasiliensis Lepeletier, 1836 and the first new Brazilian bumblebee species in a century (Hymenoptera: Apidae). Plos One, 10 (5), e0125847. https://doi.org/10.1371/journal.pone.0125847
Santos-Júnior, J. E., Williams, P. H., Dias, C. A. R., Silveira, F. A., Faux, P., Coimbra, R. T. F., Campos, D. P., & Santos, F. R. (2022). Biogeography, divergence times and diversification patterns of bumblebees (Hymenoptera: Apidae), with emphasis on Neotropical species. Diversity, 14 (4), 238–255. https://doi.org/10.3390/d14040238
Schmid-Hempel, R., Eckhardt, M., Goulson, D., Heinzmann, D., Lange, C., Plischuk, S., … Schmid-Hempel, P. (2013). The invasion of southern South America by imported bumblebees and associated parasites. Journal of Animal Ecology, 2013, 1–15.
Schmid-Hempel, R., & Schmid-Hempel, P. (2000). Female mating frequencies in Bombus spp. from Central Europe. Insectes Sociaux, 47 (1), 36–41. https://doi.org/10.1007/s000400050006
Schmid-Hempel, P., Schmid-Hempel, R., Brunner, P. C., Seeman, O. D., & Allen, G. R. (2007). Invasion success of the bumblebee, Bombus terrestris, despite a drastic genetic bottleneck. Heredity, 99 (4), 414–422.
Sheffield, C. S., Oram, R., & Heron, J. M. (2020). Bombus (Pyrobombus) johanseni Sladen, 1919, a valid North American bumble bee species, with a new synonymy and comparisons to other “red-banded” bumble bee species in North America (Hymenoptera, Apidae, Bombini). ZooKeys, 984 (59), 59–81. https://doi.org/10.3897/zookeys.984.55816
Skorikov, A. S. (1923). [Palaearctic bumblebees. Part I. General biology (including zoogeography)]. Izvestiya Severnoi Oblastnoi Stantsii Zashchity Rastenii ot Vreditelei, 4, 1–160.
Skorikov, A. S. (1937). Die grönländischen Hummeln im Aspekte der Zirkumpolarfauna. Entomologiske Meddelelser, 20, 37–64.
Sladen, F. W. L. (1912). The humble-bee, its life history and how to domesticate it, with descriptions of all the British species of Bombus and Psithyrus. MacMillan.
Smissen van der, J., & Rasmont, P. (1999). Bombus semenoviellus Skorikov 1910, eine für Westeuropa neue Hummelart (Hymenoptera: Bombus, Cullumanobombus). Bembix, 13, 21–24.
Song, H., Moulton, M. J., & Whiting, M. F. (2014). Rampant nuclear insertion of mtDNA across diverse lineages within Orthoptera (Insecta). PloS One, 9, e110508. https://doi.org/10.1371/journal.pone.0110508
Stout, J.-C., & Goulson, D. (2000). Bumble bees in Tasmania: their distribution and potential impact on Australian flora and fauna. Bee World, 81 (2), 80–86. https://doi.org/10.1080/0005772X.2000.11099475
Sun, C., Huang, J., Wang, Y., Zhao, X., Su, L., Thomas, G. W. C., Zhao, M., Zhang, X., Jungreis, I., Kellis, M., Vicario, S., Sharakhov, I. V., Bondarenko, S. M., Hasselmann, M., Kim, C. N., Paten, B., Penso-Dolfin, L., Wang, L., Chang, Y., … Mueller, R. L. (2021). Genus-wide characterization of bumblebee genomes reveals variation associated with key ecological and behavioral traits of pollinators. Molecular Biology and Evolution, 38 (2), 486–501. https://doi.org/10.1093/molbev/msaa240
Talavera, G., Lukhtanov, V., Pierce, N. E., & Vila, R. (2022). DNA barcodes combined with multilocus data of representative taxa can generate reliable higher-level phylogenies. Systematic Biology, 71 (2), 382–314. https://doi.org/10.1093/sysbio/syab038
Tamura, K., Stecher, G., Peterson, D., Filipski, A., & Kumar, S. (2013). MEGA6: molecular evolutionary genetics analysis version 6.0. Molecular Biology and Evolution, 30 (12), 2725–2729.
Trunz, V., Packer, L., Vieu, J., Arrigo, N., & Praz, C. J. (2016). Comprehensive phylogeny, biogeography and new classification of the diverse bee tribe Megachilini: Can we use DNA barcodes in phylogenies of large genera? Molecular Phylogenetics and Evolution, 103, 245–259.
Wang, L.-H., Liu, S., Tang, Y.-J., Chen, Y.-P., Wu, J., & Li, J.-L. (2020). Using the combined gene approach and multiple analytical methods to improve the phylogeny and classification of Bombus (Hymenoptera, Apidae) in China. ZooKeys, 1007, 1–21. https://doi.org/10.3897/zookeys.1007.34105
Weissmann, J. A., Picanço, A., Borges, P. A., & Schaefer, H. (2017). Bees of the Azores: an annotated checklist (Apidae, Hymenoptera). ZooKeys, 642, 63–95. https://doi.org/10.3897/zookeys.642.10773
Williams, P. H. (1985). A preliminary cladistic investigation of relationships among the bumble bees (Hymenoptera, Apidae). Systematic Entomology, 10 (2), 239–255. https://doi.org/10.1111/j.1365-3113.1985.tb00529.x
Williams, P. H. (1989). Why are there so many species of bumble bees at Dungeness? Botanical Journal of the Linnean Society, 101 (1), 31–44. https://doi.org/10.1111/j.1095-8339.1989.tb00134.x
Williams, P. H. (1991). The bumble bees of the Kashmir Himalaya (Hymenoptera: Apidae, Bombini). Bulletin of the British Museum (Natural History) (Entomology), 60, 1–204.
Williams, P. H. (1996). Mapping variations in the strength and breadth of biogeographic transition zones using species turnover. Proceedings of the Royal Society of London (B), 263, 579–588.
Williams, P. H. (1998a). An annotated checklist of bumble bees with an analysis of patterns of description (Hymenoptera: Apidae, Bombini). Bulletin of The Natural History Museum (Entomology), 67, 79–152 [updated at www.nhm.ac.uk/bombus/ accessed 2022].
Williams, P. H. (1998b). Key sites for conservation: area-selection methods for biodiversity. In G. M. Mace, A. Balmford, & J. Ginsberg (Eds.), Conservation in a changing world (pp. 211–249). Cambridge University Press.
Williams, P. H. (2005). Does specialization explain rarity and decline among British bumblebees? A response to Goulson et al. Biological Conservation, 122, 33–43.
Williams, P. H. (2008). Do the parasitic Psithyrus resemble their host bumblebees in colour pattern? Apidologie, 39 (6), 637–649. https://doi.org/10.1051/apido:2008048
Williams, P. H. (2015). Bombus rubriventris: type locality, the history of bumblebees in the New World, and documenting invertebrate extinctions. Journal of Natural History, 49 (19-20), 1159–1171. https://doi.org/10.1080/00222933.2014.954022
Williams, P. H. (2021). Not just cryptic, but a barcode bush: PTP re-analysis of global data for the bumblebee subgenus Bombus s. str. supports additional species (Apidae, genus Bombus). Journal of Natural History, 55 (5-6), 271–282. https://doi.org/10.1080/00222933.2021.1900444
Williams, P. H. (2022). The bumblebees of the Himalaya. AbcTaxa.
Williams, P. H., Altanchimeg, D., Byvaltsev, A., De Jonghe, R., Jaffar, S., Japoshvili, G., Kahono, S., Liang, H., Mei, M., Monfared, A., Nidup, T., Raina, R., Ren, Z., Thanoosing, C., Zhao, Y., & Orr, M. C. (2020). Widespread polytypic species or complexes of local species? Revising bumblebees of the subgenus Melanobombus world-wide (Hymenoptera, Apidae, Bombus). European Journal of Taxonomy, 719 (1), 120. https://doi.org/10.5852/ejt.2020.719.1107
Williams, P. H., An, J.-D., & Huang, J.-X. (2011). The bumblebees of the subgenus Subterraneobombus: integrating evidence from morphology and DNA barcodes (Hymenoptera, Apidae, Bombus). Zoological Journal of the Linnean Society, 163 (3), 813–862. https://doi.org/10.1111/j.1096-3642.2011.00729.x
Williams, P. H., Berezin, M. V., Cannings, S. G., Cederberg, B., Ødegaard, F., Rasmussen, C., Richardson, L. L., Rykken, J., Sheffield, C. S., Thanoosing, C., & Byvaltsev, A. M. (2019). The arctic and alpine bumblebees of the subgenus Alpinobombus revised from integrative assessment of species’ gene coalescents and morphology (Hymenoptera, Apidae, Bombus). Zootaxa, 4625 (1), zootaxa.4625.1.1–68. https://doi.org/10.11646/zootaxa.4625.1.1
Williams, P. H., Brown, M. J., Carolan, J. C., An, J., Goulson, D., Aytekin, A. M., Best, L. R., Byvaltsev, A. M., Cederberg, B., Dawson, R., Huang, J., Ito, M., Monfared, A., Raina, R. H., Schmid-Hempel, P., Sheffield, C. S., Šima, P., & Xie, Z. (2012). Unveiling cryptic species of the bumblebee subgenus Bombus s. str. world-wide with COI barcodes (Hymenoptera: Apidae). Systematics and Biodiversity, 10 (1), 21–56. https://doi.org/10.1080/14772000.2012.664574
Williams, P. H., Byvaltsev, A. M., Sheffield, C. S., & Rasmont, P. (2013). Bombus cullumanus–an extinct European bumblebee species? Apidologie, 44 (2), 121–132. https://doi.org/10.1007/s13592-012-0161-x
Williams, P. H., Cameron, S. A., Hines, H. M., Cederberg, B., & Rasmont, P. (2008). A simplified subgeneric classification of the bumblebees (genus Bombus). Apidologie, 39 (1), 46–74. https://doi.org/10.1051/apido:2007052
Williams, P. H., Colla, S., & Xie, Z.-H. (2009). Bumblebee vulnerability: common correlates of winners and losers across three continents. Conservation Biology: The Journal of the Society for Conservation Biology, 23 (4), 931–940. https://doi.org/10.1017/S1477200008002843
Williams, P. H., de Klerk, H. M., & Crowe, T. M. (1999). Interpreting biogeographical boundaries among Afrotropical birds: spatial patterns in richness gradients and species replacement. Journal of Biogeography, 26 (3), 459–474. https://doi.org/10.1046/j.1365-2699.1999.00294.x
Williams, P. H., Huang, J.-X., & An, J.-D. (2017). Bear wasps of the Middle Kingdom: a decade of discovering China's bumblebees. Antenna, 41 (1), 21–24.
Williams, P. H., Huang, J.-X., Rasmont, P., & An, J.-D. (2016). Early-diverging bumblebees from across the roof of the world: the high-mountain subgenus Mendacibombus revised from species' gene coalescents and morphology (Hymenoptera, Apidae). Zootaxa, 4204 (1), zootaxa.4204.1.1–72. https://doi.org/10.11646/zootaxa.4204.1.1
Williams, P. H., Lobo, J. M., & Meseguer, A. S. (2018). Bumblebees take the high road: climatically integrative biogeography shows that escape from Tibet, not Tibetan uplift, is associated with divergences of present-day Mendacibombus. Ecography, 41 (3), 461–477. https://doi.org/10.1111/ecog.03074
Williams, P. H., & Osborne, J. L. (2009). Bumblebee vulnerability and conservation world-wide. Apidologie, 40 (3), 367–387. https://doi.org/10.1051/apido/2009025
Williams, P. H., Sung, I.-H., Lin, Y.-J., & Lu, S.-S. (2022). Discovering endemic species among the bumble bees of Taiwan (Apidae: Bombus). Journal of Natural History, 56, 435–447. https://doi.org/10.1080/00222933.2022.2052991
Williams, P. H., Thorp, R. W., Richardson, L. L., & Colla, S. R. (2014). Bumble bees of North America. An identification guide. Princeton University Press.
Yu, Y., Blair, C., & He, X.-J. (2020). RASP 4: ancestral state reconstruction tool for multiple genes and characters. Molecular Biology and Evolution, 37 (2), 604–606. https://doi.org/10.1093/molbev/msz257
Yu, Y., Harris, A. J., & He, X.-J. (2010). S-DIVA (Statistical Dispersal-Vicariance Analysis): a tool for inferring biogeographic histories. Molecular Phylogenetics and Evolution, 56 (2), 848–850.
Yu, Y., Harris, A. J., He, X.-J. (2014). RASP (Reconstruct Ancestral State in Phylogenies) 3.0. http://mnh.scu.edu.cn/soft/blog/RASP.
Zachos, J. C., Dickens, G. R., & Zeebe, R. E. (2008). An early Cenozoic perspective on greenhouse warming and carbon-cycle dynamics. Nature, 451 (7176), 279–283.