Gas-phases; Host mediums; Inverse system; Nanofluids; Non-aqueous; Optical response; Plasmonics; Poly(ethylene glycol)(PEG); Steric interactions; Water based; Bioengineering; Atomic and Molecular Physics, and Optics; Chemistry (all); Materials Science (all); Engineering (all); General Engineering; General Materials Science; General Chemistry
Abstract :
[en] Since the time of Faraday's experiments, the optical response of plasmonic nanofluids has been tailored by the shape, size, concentration, and material of nanoparticles (NPs), or by mixing different types of NPs. To date, water-based liquids have been the most extensively investigated host media, while polymers, such as poly(ethylene glycol) (PEG), have frequently been added to introduce repulsive steric interactions and protect NPs from agglomeration. Here, we introduce an inverse system of non-aqueous nanofluids, in which Ag and Cu NPs are dispersed in PEG (400 g mol-1), with no solvents or chemicals involved. Our single-step approach comprises the synthesis of metal NPs in the gas phase using sputtering-based gas aggregation cluster sources, gas flow transport of NPs, and their deposition (optionally simultaneous) on the PEG surface. Using computational fluid dynamics simulations, we show that NPs diffuse into PEG at an average velocity of the diffusion front of the order of μm s-1, which is sufficient for efficient loading of the entire polymer bulk. We synthesize yellow Ag/PEG, green Cu/PEG, and blue Ag/Cu/PEG nanofluids, in which the color is given by the position of the plasmon resonance. NPs are prone to partial agglomeration and sedimentation, with a slower kinetics for Cu. Density functional theory calculations combined with UV-vis data and zeta-potential measurements prove that the surface oxidation to Cu2O and stronger electrostatic repulsion are responsible for the higher stability of Cu NPs. Adopting the De Gennes formalism, we estimate that PEG molecules adsorb on the NP surface in mushroom coordination, with the thickness of the adsorbed layer L < 1.4 nm, grafting density σ < 0.20, and the average distance between the grafted chains D > 0.8 nm. Such values provide sufficient steric barriers to retard, but not completely prevent, agglomeration. Overall, our approach offers an excellent platform for fundamental research on non-aqueous nanofluids, with metal-polymer and metal-metal interactions unperturbed by the presence of solvents or chemical residues.
Disciplines :
Chemistry
Author, co-author :
Biliak, Kateryna ; Department of Macromolecular Physics, Faculty of Mathematics and Physics, Charles University V Holešovičkách 2 180 00 Prague Czech Republic choukourov@kmf.troja.mff.cuni.cz
Nikitin, Daniil ; Department of Macromolecular Physics, Faculty of Mathematics and Physics, Charles University V Holešovičkách 2 180 00 Prague Czech Republic choukourov@kmf.troja.mff.cuni.cz
Ali-Ogly, Suren ; Department of Macromolecular Physics, Faculty of Mathematics and Physics, Charles University V Holešovičkách 2 180 00 Prague Czech Republic choukourov@kmf.troja.mff.cuni.cz
Protsak, Mariia ; Department of Macromolecular Physics, Faculty of Mathematics and Physics, Charles University V Holešovičkách 2 180 00 Prague Czech Republic choukourov@kmf.troja.mff.cuni.cz
Pleskunov, Pavel ; Department of Macromolecular Physics, Faculty of Mathematics and Physics, Charles University V Holešovičkách 2 180 00 Prague Czech Republic choukourov@kmf.troja.mff.cuni.cz
Tosca, Marco ; Department of Macromolecular Physics, Faculty of Mathematics and Physics, Charles University V Holešovičkách 2 180 00 Prague Czech Republic choukourov@kmf.troja.mff.cuni.cz ; ELI-Beamlines Centre, Institute of Physics, Czech Academy of Sciences Dolni Brezany Czech Republic
SERGIEVSKAYA, Anastasiya ; Université de Mons - UMONS > Faculté des Sciences > Service de Chimie des Interactions Plasma-Surface
Cornil, David ; Université de Mons - UMONS > Faculté des Science > Service de Chimie des matériaux nouveaux
Cornil, Jérôme ; Université de Mons - UMONS > Faculté des Science > Service de Chimie des matériaux nouveaux
KONSTANTINIDIS, Stéphanos ; Université de Mons - UMONS > Faculté des Science > Service de Chimie des Interactions Plasma-Surface
Košutová, Tereza ; Department of Condensed Matter Physics, Faculty of Mathematics and Physics, Charles University Ke Karlovu 5 121 16 Prague Czech Republic
Černochová, Zulfiya ; Institute of Macromolecular Chemistry, Czech Academy of Sciences Heyrovského nám. 2 162 06 Prague Czech Republic
Štěpánek, Petr ; Institute of Macromolecular Chemistry, Czech Academy of Sciences Heyrovského nám. 2 162 06 Prague Czech Republic
Hanuš, Jan ; Department of Macromolecular Physics, Faculty of Mathematics and Physics, Charles University V Holešovičkách 2 180 00 Prague Czech Republic choukourov@kmf.troja.mff.cuni.cz
Kousal, Jaroslav ; Department of Macromolecular Physics, Faculty of Mathematics and Physics, Charles University V Holešovičkách 2 180 00 Prague Czech Republic choukourov@kmf.troja.mff.cuni.cz
Hanyková, Lenka ; Department of Macromolecular Physics, Faculty of Mathematics and Physics, Charles University V Holešovičkách 2 180 00 Prague Czech Republic choukourov@kmf.troja.mff.cuni.cz
Krakovský, Ivan; Department of Macromolecular Physics, Faculty of Mathematics and Physics, Charles University V Holešovičkách 2 180 00 Prague Czech Republic choukourov@kmf.troja.mff.cuni.cz
Choukourov, Andrei ; Department of Macromolecular Physics, Faculty of Mathematics and Physics, Charles University V Holešovičkách 2 180 00 Prague Czech Republic choukourov@kmf.troja.mff.cuni.cz
R150 - Institut de Recherche sur les Systèmes Complexes R400 - Institut de Recherche en Science et Ingénierie des Matériaux
Funders :
Grantová Agentura, Univerzita Karlova Grantová Agentura České Republiky Univerzita Karlova v Praze Fonds De La Recherche Scientifique - FNRS
Funding text :
This work was supported by the Czech Science Foundation via the grant GACR 21-12828S. Kateryna Biliak acknowledges the support from the Charles University via the student grant GAUK 298722. Students S. A.-O. and M. P. acknowledge the support from the Charles University via the grant SVV 260 579-2022. The DFT calculations were supported by the Consortium des Équipements de Calcul Intensif (CÉCI), funded by the Fonds National de la Recherche Scientifique (F. R. S.-FNRS) under Grant No. 2.5020.11. J.C. and S.K. are FNRS research fellows.
Faraday M. Philos. Trans. R. Soc. London 1857 147 145 181 10.1098/rstl.1857.0011
Sharaf O. Z. Taylor R. A. Abu-Nada E. Phys. Rep. 2020 867 1 84 10.1016/j.physrep.2020.04.005
Yatsuya S. Mihama K. Uyeda R. Jpn. J. Appl. Phys. 1974 13 749 750 10.1143/JJAP.13.749
Ye G. Zhang Q. Feng C. Ge H. Jiao Z. Phys. Rev. B: Condens. Matter Mater. Phys. 1996 54 14754 14757 10.1103/PhysRevB.54.14754 9985484
Wender H. de Oliveira L. F. Feil A. F. Lissner E. Migowski P. Meneghetti M. R. Teixeira S. R. Dupont J. Chem. Commun. 2010 46 7019 10.1039/C0CC01353F 20737077
Staszek M. Siegel J. Rimpelová S. Lyutakov O. Švorčík V. Mater. Lett. 2015 158 351 354 10.1016/j.matlet.2015.06.021
De Luna M. M. Karandikar P. Gupta M. ACS Appl. Nano Mater. 2018 1 6575 6579 10.1021/acsanm.8b01888
Suzuki S. Morimoto A. Kuwabata S. Torimoto T. Jpn. J. Appl. Phys. 2021 60 SAAC01-1 SAAC01-8 10.35848/1347-4065/abf4a1
Zhu M. Nguyen M. T. Chau Y. R. Deng L. Yonezawa T. Langmuir 2021 37 6096 6105 10.1021/acs.langmuir.1c00916 33960790
Sergievskaya A. O'Reilly A. Chauvin A. Veselý J. Panepinto A. De Winter J. Cornil D. Cornil J. Konstantinidis S. Colloids Surf., A 2021 615 126286 10.1016/j.colsurfa.2021.126286
Dvurečenskij A. Cigáň A. Lobotka P. Radnóczi G. Škrátek M. Benyó J. Kováčová E. Majerová M. Maňka J. J. Alloys Compd. 2022 896 163089 10.1016/j.jallcom.2021.163089
Meischein M. Garzón-Manjón A. Hammerschmidt T. Xiao B. Zhang S. Abdellaoui L. Scheu C. Ludwig A. Nanoscale Adv. 2022 4 3855 3869 10.1039/D2NA00363E 36133350
Okazaki K. Kiyama T. Hirahara K. Tanaka N. Kuwabata S. Torimoto T. Chem. Commun. 2008 691 693 10.1039/B714761A 18478692
Suzuki T. Okazaki K. Kiyama T. Kuwabata S. Torimoto T. Electrochemistry 2009 77 636 638 10.5796/electrochemistry.77.636
Nguyen M. T. Yonezawa T. Wang Y. Tokunaga T. Mater. Lett. 2016 171 75 78 10.1016/j.matlet.2016.02.047
Ishida Y. Corpuz R. D. Yonezawa T. Acc. Chem. Res. 2017 50 2986 2995 10.1021/acs.accounts.7b00470 29190067
Corpuz R. D. Ishida Y. Nguyen M. T. Yonezawa T. Langmuir 2017 33 9144 9150 10.1021/acs.langmuir.7b02011 28799769
Suzuki S. Suzuki T. Tomita Y. Hirano M. Okazaki K. Kuwabata S. Torimoto T. CrystEngComm 2012 14 4922 10.1039/C2CE25235J
Sugioka D. Kameyama T. Kuwabata S. Yamamoto T. Torimoto T. ACS Appl. Mater. Interfaces 2016 8 10874 10883 10.1021/acsami.6b01978 27074631
Deng L. Nguyen M. T. Shi J. Chau Y. R. Tokunaga T. Kudo M. Matsumura S. Hashimoto N. Yonezawa T. Langmuir 2020 36 3004 3015 10.1021/acs.langmuir.0c00152 32150418
Liu C. H. Liu J. Zhou Y. Y. Cai X. L. Lu Y. Gao X. Wang S. D. Carbon N. Y. 2015 94 295 300 10.1016/j.carbon.2015.07.003
Liu C.-H. Liu R.-H. Sun Q.-J. Chang J.-B. Gao X. Liu Y. Lee S.-T. Kang Z.-H. Wang S.-D. Nanoscale 2015 7 6356 6362 10.1039/C4NR06855F 25786139
König D. Richter K. Siegel A. Mudring A.-V. Ludwig A. Adv. Funct. Mater. 2014 24 2049 2056 10.1002/adfm.201303140
Chauvin A. Sergievskaya A. El Mel A.-A. Fucikova A. Antunes Corrêa C. Vesely J. Duverger-Nédellec E. Cornil D. Cornil J. Tessier P.-Y. Dopita M. Konstantinidis S. Nanotechnology 2020 31 455303 10.1088/1361-6528/abaa75 32726767
Deng L. Nguyen M. T. Mei S. Tokunaga T. Kudo M. Matsumura S. Yonezawa T. Langmuir 2019 35 8418 8427
Choukourov A. Nikitin D. Pleskunov P. Tafiichuk R. Biliak K. Protsak M. Kishenina K. Hanuš J. Dopita M. Cieslar M. Popelář T. Ondič L. Varga M. J. Mol. Liq. 2021 336 116319 10.1016/j.molliq.2021.116319
Kousal J. Shelemin A. Schwartzkopf M. Polonskyi O. Hanuš J. Solař P. Vaidulych M. Nikitin D. Pleskunov P. Krtouš Z. Strunskus T. Faupel F. Roth S. V. Biederman H. Choukourov A. Nanoscale 2018 10 18275 18281 10.1039/C8NR06155F 30246834
Shelemin A. Pleskunov P. Kousal J. Drewes J. Hanuš J. Ali-Ogly S. Nikitin D. Solař P. Kratochvíl J. Vaidulych M. Schwartzkopf M. Kylián O. Polonskyi O. Strunskus T. Faupel F. V Roth S. Biederman H. Choukourov A. Part. Part. Syst. Charact. 2020 37 1900436 10.1002/ppsc.201900436
Singh M. K. Manda P. Singh A. K. Mandal R. K. AIP Adv. 2015 5 107108 10.1063/1.4933072
Robinson R. Krause V. Wang S. Yan S. Shang G. Gordon J. Tycko S. Zhong C.-J. Langmuir 2022 38 5633 5644 10.1021/acs.langmuir.2c00221 35475615
Hosny M. Fawzy M. Eltaweil A. S. J. Environ. Manage. 2022 316 115238 10.1016/j.jenvman.2022.115238 35576706
Ilavsky J. Jemian P. R. J. Appl. Crystallogr. 2009 42 347 353 10.1107/S0021889809002222
Li A. Ahmadi G. Aerosol Sci. Technol. 1992 16 209 226 10.1080/02786829208959550
Marsaglia G. Bray T. A. SIAM Rev. 1964 6 260 264 10.1137/1006063
Laven P., MiePlot version 4.6, http://www.philiplaven.com/mieplot.htm
Laven P. Lock J. A. J. Opt. Soc. Am. A 2012 29 1498 10.1364/JOSAA.29.001498 23201864
Lock J. A. Laven P. J. Opt. Soc. Am. A 2012 29 1489 10.1364/JOSAA.29.001489 23201863
Johnson P. B. Christy R. W. Phys. Rev. B: Condens. Matter Mater. Phys. 1972 6 4370 4379 10.1103/PhysRevB.6.4370
Malerba C. Biccari F. Leonor Azanza Ricardo C. D'Incau M. Scardi P. Mittiga A. Sol. Energy Mater. Sol. Cells 2011 95 2848 2854 10.1016/j.solmat.2011.05.047
Shah D. Roychowdhury T. Hilfiker J. N. Linford M. R. Surf. Sci. Spectra 2020 27 016001 10.1116/1.5095949
Carette X. Debièvre B. Cornil D. Cornil J. Leclère P. Maes B. Gautier N. Gautron E. El Mel A.-A. Raquez J.-M. Konstantinidis S. J. Phys. Chem. C 2018 122 26605 26612 10.1021/acs.jpcc.8b06987
Chauvin A. Sergievskaya A. Fucikova A. Corrêa C. A. Vesely J. Cornil J. Cornil D. Dopita M. Konstantinidis S. Nanoscale Adv. 2021 3 4780 4789 10.1039/D1NA00222H 36134317
Sergievskaya A. O’Reilly A. Alem H. De Winter J. Cornil D. Cornil J. Konstantinidis S. Front. Nanotechnol. 2021 3 710612 10.3389/fnano.2021.710612
Artacho E. Anglada E. Diéguez O. Gale J. D. García A. Junquera J. Martin R. M. Ordejón P. Pruneda J. M. Sánchez-Portal D. Soler J. M. J. Phys.: Condens. Matter 2008 20 064208 10.1088/0953-8984/20/6/064208 21693870
Perdew J. P. Burke K. Wang Y. Phys. Rev. B: Condens. Matter Mater. Phys. 1996 54 16533 16539 10.1103/PhysRevB.54.16533 9985776
Manz T. A. Limas N. G. RSC Adv. 2016 6 47771 47801 10.1039/C6RA04656H
Grimme S. J. Comput. Chem. 2006 27 1787 1799 10.1002/jcc.20495 16955487
Manz T. A. RSC Adv. 2017 7 45552 45581 10.1039/C7RA07400J
NIST, Simulation of Electron Spectra for Surface Analysis (SESSA, version 2.2.0)
Seah M. P. Dench W. A. Surf. Interface Anal. 1979 1 2 11 10.1002/sia.740010103
Solař P. Kousal J. Hanuš J. Škorvánková K. Kuzminova A. Kylián O. Sci. Rep. 2021 11 6415 10.1038/s41598-021-85533-7 33742023
Smirnov B. M. Shyjumon I. Hippler R. Phys. Rev. E 2007 75 066402 10.1103/PhysRevE.75.066402 17677367
Nikitin D. Madkour S. Pleskunov P. Tafiichuk R. Shelemin A. Hanuš J. Gordeev I. Sysolyatina E. Lavrikova A. Ermolaeva S. Titov V. Schönhals A. Choukourov A. Soft Matter 2019 15 2884 2896 10.1039/C8SM02413H 30849134
Kelly K. L. Coronado E. Zhao L. L. Schatz G. C. J. Phys. Chem. B 2003 107 668 677 10.1021/jp026731y
Jiang M.-M. Chen H.-Y. Li B.-H. Liu K.-W. Shan C.-X. Shen D.-Z. J. Mater. Chem. C 2014 2 56 63 10.1039/C3TC31910E
Rice K. P. Walker E. J. Stoykovich M. P. Saunders A. E. J. Phys. Chem. C 2011 115 1793 1799 10.1021/jp110483z
Rice K. P. Paterson A. S. Stoykovich M. P. Part. Part. Syst. Charact. 2015 32 373 380 10.1002/ppsc.201400155
Peña-Rodríguez O. Pal U. J. Opt. Soc. Am. B 2011 28 2735 10.1364/JOSAB.28.002735
Pike S. D. White E. R. Regoutz A. Sammy N. Payne D. J. Williams C. K. Shaffer M. S. P. ACS Nano 2017 11 2714 2723 10.1021/acsnano.6b07694 28286946
Snoke D. W. Shields A. J. Cardona M. Phys. Rev. B: Condens. Matter Mater. Phys. 1992 45 11693 11697 10.1103/PhysRevB.45.11693 10001183
Wang L. G. Zunger A. Phys. Rev. B: Condens. Matter Mater. Phys. 2003 67 092103 10.1103/PhysRevB.67.092103
Redapangu P. R. Kidan T. G. Berhane K. J. Appl. Fluid Mech. 2021 14 601 613
Rayleigh L. Proc. London Math. Soc. 1882 1-14 170 177 10.1112/plms/s1-14.1.170
Taylor G. I. Proc. Math. Phys. Eng. Sci. 1950 201 192 196
Debacq M. Fanguet V. Hulin J. P. Salin D. Perrin B. Phys. Fluids 2001 13 3097 3100 10.1063/1.1405442
Perry J. L. Reuter K. G. Kai M. P. Herlihy K. P. Jones S. W. Luft J. C. Napier M. Bear J. E. DeSimone J. M. Nano Lett. 2012 12 5304 5310 10.1021/nl302638g 22920324
de Gennes P. G. Macromolecules 1980 13 1069 1075 10.1021/ma60077a009
Mishra A. K. Roldan A. de Leeuw N. H. J. Chem. Phys. 2016 145 044709 10.1063/1.4958804 27475388