Article (Scientific journals)
Plasmonic Ag/Cu/PEG nanofluids prepared when solids meet liquids in the gas phase.
Biliak, Kateryna; Nikitin, Daniil; Ali-Ogly, Suren et al.
2023In Nanoscale Advances, 5 (3), p. 955 - 969
Peer Reviewed verified by ORBi
 

Files


Full Text
cmn1127.pdf
Publisher postprint (3.27 MB)
Download

All documents in ORBi UMONS are protected by a user license.

Send to



Details



Keywords :
Gas-phases; Host mediums; Inverse system; Nanofluids; Non-aqueous; Optical response; Plasmonics; Poly(ethylene glycol)(PEG); Steric interactions; Water based; Bioengineering; Atomic and Molecular Physics, and Optics; Chemistry (all); Materials Science (all); Engineering (all); General Engineering; General Materials Science; General Chemistry
Abstract :
[en] Since the time of Faraday's experiments, the optical response of plasmonic nanofluids has been tailored by the shape, size, concentration, and material of nanoparticles (NPs), or by mixing different types of NPs. To date, water-based liquids have been the most extensively investigated host media, while polymers, such as poly(ethylene glycol) (PEG), have frequently been added to introduce repulsive steric interactions and protect NPs from agglomeration. Here, we introduce an inverse system of non-aqueous nanofluids, in which Ag and Cu NPs are dispersed in PEG (400 g mol-1), with no solvents or chemicals involved. Our single-step approach comprises the synthesis of metal NPs in the gas phase using sputtering-based gas aggregation cluster sources, gas flow transport of NPs, and their deposition (optionally simultaneous) on the PEG surface. Using computational fluid dynamics simulations, we show that NPs diffuse into PEG at an average velocity of the diffusion front of the order of μm s-1, which is sufficient for efficient loading of the entire polymer bulk. We synthesize yellow Ag/PEG, green Cu/PEG, and blue Ag/Cu/PEG nanofluids, in which the color is given by the position of the plasmon resonance. NPs are prone to partial agglomeration and sedimentation, with a slower kinetics for Cu. Density functional theory calculations combined with UV-vis data and zeta-potential measurements prove that the surface oxidation to Cu2O and stronger electrostatic repulsion are responsible for the higher stability of Cu NPs. Adopting the De Gennes formalism, we estimate that PEG molecules adsorb on the NP surface in mushroom coordination, with the thickness of the adsorbed layer L < 1.4 nm, grafting density σ < 0.20, and the average distance between the grafted chains D > 0.8 nm. Such values provide sufficient steric barriers to retard, but not completely prevent, agglomeration. Overall, our approach offers an excellent platform for fundamental research on non-aqueous nanofluids, with metal-polymer and metal-metal interactions unperturbed by the presence of solvents or chemical residues.
Disciplines :
Chemistry
Author, co-author :
Biliak, Kateryna ;  Department of Macromolecular Physics, Faculty of Mathematics and Physics, Charles University V Holešovičkách 2 180 00 Prague Czech Republic choukourov@kmf.troja.mff.cuni.cz
Nikitin, Daniil ;  Department of Macromolecular Physics, Faculty of Mathematics and Physics, Charles University V Holešovičkách 2 180 00 Prague Czech Republic choukourov@kmf.troja.mff.cuni.cz
Ali-Ogly, Suren ;  Department of Macromolecular Physics, Faculty of Mathematics and Physics, Charles University V Holešovičkách 2 180 00 Prague Czech Republic choukourov@kmf.troja.mff.cuni.cz
Protsak, Mariia ;  Department of Macromolecular Physics, Faculty of Mathematics and Physics, Charles University V Holešovičkách 2 180 00 Prague Czech Republic choukourov@kmf.troja.mff.cuni.cz
Pleskunov, Pavel ;  Department of Macromolecular Physics, Faculty of Mathematics and Physics, Charles University V Holešovičkách 2 180 00 Prague Czech Republic choukourov@kmf.troja.mff.cuni.cz
Tosca, Marco ;  Department of Macromolecular Physics, Faculty of Mathematics and Physics, Charles University V Holešovičkách 2 180 00 Prague Czech Republic choukourov@kmf.troja.mff.cuni.cz ; ELI-Beamlines Centre, Institute of Physics, Czech Academy of Sciences Dolni Brezany Czech Republic
SERGIEVSKAYA, Anastasiya  ;  Université de Mons - UMONS > Faculté des Sciences > Service de Chimie des Interactions Plasma-Surface
Cornil, David  ;  Université de Mons - UMONS > Faculté des Science > Service de Chimie des matériaux nouveaux
Cornil, Jérôme  ;  Université de Mons - UMONS > Faculté des Science > Service de Chimie des matériaux nouveaux
KONSTANTINIDIS, Stéphanos  ;  Université de Mons - UMONS > Faculté des Science > Service de Chimie des Interactions Plasma-Surface
Košutová, Tereza ;  Department of Condensed Matter Physics, Faculty of Mathematics and Physics, Charles University Ke Karlovu 5 121 16 Prague Czech Republic
Černochová, Zulfiya ;  Institute of Macromolecular Chemistry, Czech Academy of Sciences Heyrovského nám. 2 162 06 Prague Czech Republic
Štěpánek, Petr ;  Institute of Macromolecular Chemistry, Czech Academy of Sciences Heyrovského nám. 2 162 06 Prague Czech Republic
Hanuš, Jan ;  Department of Macromolecular Physics, Faculty of Mathematics and Physics, Charles University V Holešovičkách 2 180 00 Prague Czech Republic choukourov@kmf.troja.mff.cuni.cz
Kousal, Jaroslav ;  Department of Macromolecular Physics, Faculty of Mathematics and Physics, Charles University V Holešovičkách 2 180 00 Prague Czech Republic choukourov@kmf.troja.mff.cuni.cz
Hanyková, Lenka ;  Department of Macromolecular Physics, Faculty of Mathematics and Physics, Charles University V Holešovičkách 2 180 00 Prague Czech Republic choukourov@kmf.troja.mff.cuni.cz
Krakovský, Ivan;  Department of Macromolecular Physics, Faculty of Mathematics and Physics, Charles University V Holešovičkách 2 180 00 Prague Czech Republic choukourov@kmf.troja.mff.cuni.cz
Choukourov, Andrei ;  Department of Macromolecular Physics, Faculty of Mathematics and Physics, Charles University V Holešovičkách 2 180 00 Prague Czech Republic choukourov@kmf.troja.mff.cuni.cz
More authors (8 more) Less
Language :
English
Title :
Plasmonic Ag/Cu/PEG nanofluids prepared when solids meet liquids in the gas phase.
Publication date :
31 January 2023
Journal title :
Nanoscale Advances
eISSN :
2516-0230
Publisher :
Royal Society of Chemistry, England
Volume :
5
Issue :
3
Pages :
955 - 969
Peer reviewed :
Peer Reviewed verified by ORBi
Research unit :
S817 - Chimie des matériaux nouveaux
Research institute :
R150 - Institut de Recherche sur les Systèmes Complexes
R400 - Institut de Recherche en Science et Ingénierie des Matériaux
Funders :
Grantová Agentura, Univerzita Karlova
Grantová Agentura České Republiky
Univerzita Karlova v Praze
Fonds De La Recherche Scientifique - FNRS
Funding text :
This work was supported by the Czech Science Foundation via the grant GACR 21-12828S. Kateryna Biliak acknowledges the support from the Charles University via the student grant GAUK 298722. Students S. A.-O. and M. P. acknowledge the support from the Charles University via the grant SVV 260 579-2022. The DFT calculations were supported by the Consortium des Équipements de Calcul Intensif (CÉCI), funded by the Fonds National de la Recherche Scientifique (F. R. S.-FNRS) under Grant No. 2.5020.11. J.C. and S.K. are FNRS research fellows.
Available on ORBi UMONS :
since 22 December 2023

Statistics


Number of views
13 (2 by UMONS)
Number of downloads
11 (0 by UMONS)

Scopus citations®
 
14
Scopus citations®
without self-citations
3
OpenCitations
 
7
OpenAlex citations
 
15

Bibliography


Similar publications



Contact ORBi UMONS