Nano-Raman; Nanocomposite fibers; PFM; Piezoelectric generator; PVDF-KBT; Electrospuns; Nano-raman; Nanoscale mapping; Piezoelectric generators; Piezoelectric property; Piezoelectric response; Polyvinylidene fluoride-KBT; Polyvinylidene fluorides; Electronic, Optical and Magnetic Materials; Ceramics and Composites; Process Chemistry and Technology; Surfaces, Coatings and Films; Materials Chemistry
Abstract :
[en] The piezoelectric properties of polyvinylidene fluoride (PVDF) and K0·5Bi0·5TiO3 (KBT) electrospun composite nanofibers were studied in view of their application for Piezoelectric generator (PEG) devices. The orientation of the polar β-phase throughout the PVDF/KBT nanofibers was investigated at the nanoscale, revealing a maximum β-phase content of 67%. Remarkably enhanced piezoelectric responses were observed in the PVDF-KBT composite, supported by comprehensive analyses including local hysteresis loops piezoresponse mapping and advanced mapping AFM-based techniques. The PVDF/KBT nanofiber-based PEG demonstrated consistent performance, with an output voltage of 16 V, a current of 0.85 μA/cm2, and a power density of 13.6 μW/cm2 at 107 Ω, showcasing its potential as a sustainable energy solution with the ability to recharge portable electronic devices.
Disciplines :
Physical, chemical, mathematical & earth Sciences: Multidisciplinary, general & others
Author, co-author :
Tran, Van Dang ; International Training Institute for Materials Science, Hanoi University of Science and Technology, Hanoi, Viet Nam
Truong, Hong-Cuong; International Training Institute for Materials Science, Hanoi University of Science and Technology, Hanoi, Viet Nam
Nguyen, Thanh Vinh; International Training Institute for Materials Science, Hanoi University of Science and Technology, Hanoi, Viet Nam
Leclère, Philippe ; Université de Mons - UMONS > Faculté des Science > Service de Physique des Nanomatériaux et Energie
Duong, Thanh-Tung; International Training Institute for Materials Science, Hanoi University of Science and Technology, Hanoi, Viet Nam
Bui, Thi Hang; International Training Institute for Materials Science, Hanoi University of Science and Technology, Hanoi, Viet Nam
Nguyen, Van Quy; International Training Institute for Materials Science, Hanoi University of Science and Technology, Hanoi, Viet Nam
Language :
English
Title :
Piezoelectric responses of PVDF-KBT electrospun nanocomposite fibres via nanoscale mapping
IEA, World Energy Outlook. https://www.iea.org/reports/world-energy-outlook-2022, 2022.
Fan, F.R., Tang, W., Wang, Z.L., Flexible nanogenerators for energy harvesting and self-powered electronics. Adv. Mater. 28 (2016), 4283–4305, 10.1002/adma.201504299.
Bowen, C.R., Kim, H.A., Weaver, P.M., Dunn, S., Piezoelectric and ferroelectric materials and structures for energy harvesting applications. Energy Environ. Sci. 7:1 (2014), 25–44, 10.1039/C3EE42454E.
Liu, H., Zhong, J., Lee, C., Lee, S.W., Lin, L., A comprehensive review on piezoelectric energy harvesting technology: materials, mechanisms, and applications. Appl. Phys. Rev., 5(4), 2018, 041306, 10.1063/1.5074184.
Hu, D., Yao, M., Fan, Y., Ma, C., Fan, M., Liu, M., Strategies to achieve high performance piezoelectric nanogenerators. Nano Energy 55 (2019), 288–304, 10.1016/j.nanoen.2018.10.053.
Covaci, C., Gontean, A., Piezoelectric energy harvesting solutions: a review. Sensors, 20, 2020, 3512, 10.3390/s20123512.
Lin, X., Zhang, X., Fei, X., Wang, C., Liu, H., Huang, S., Flexible three-dimensional interconnected PZT skeleton based piezoelectric nanogenerator for energy harvesting. Ceram. Int. 16 (2023), 27526–27534, 10.1016/j.ceramint.2023.06.028.
Banerjee, S., Bairagi, S., Ali, S.W., A critical review on lead-free hybrid materials for next generation piezoelectric energy harvesting and conversion. Ceram. Int. 12 (2021), 16402–16421, 10.1016/j.ceramint.2021.03.054.
Veeralingam, S., Badhulika, S., Lead-free transparent flexible piezoelectric nanogenerator for self-powered wearable electronic sensors and energy harvesting through rainwater. ACS Appl. Energy Mater. 5 (2022), 12884–12896, 10.1021/acsaem.2c02521.
Qiao, L., Li, G., Tao, H., Wu, J., Xu, Z., Li, F., Full characterization for material constants of a promising KNN-based lead-free piezoelectric ceramic. Ceram. Int. 46 (2020), 5641–5644, 10.1016/j.ceramint.2019.11.009.
Sukumaran, S., Chatbouri, S., Rouxel, D., Tisserand, E., Thiebaud, F., Ben Zineb, T., Recent advances in flexible PVDF based piezoelectric polymer devices for energy harvesting applications. J. Intell. Mater. Syst. Struct. 32:7 (2021), 746–780, 10.1177/1045389X20966058.
Li, J., Zhou, G., Hong, Y., He, W., Wang, S., Chen, Y., Wang, C., Tang, Y., Sun, Y., Zhu, Y., Highly sensitive, flexible and wearable piezoelectric motion sensor based on PT promoted-phase PVDF. Sens. Actuators Phys., 337, 2022, 113415, 10.1016/j.sna.2022.113415.
Wu, W., Bai, S., Yuan, M.M., Quin, Y., Wang, Z.L., Wang, Jing, T., Lead zirconate titanate nanowire textile nanogenerator for wearable energy-harvesting and self-powered devices. ACS Nano 6 (2012), 6231–6235, 10.1021/nn3016585.
Swathy, S., Panicker, S., Rajeev, S.P., Thomas, V., Impact of PVDF and its copolymer-based nanocomposites for flexible and wearable energy harvesters. Nano-Struct. & Nano-Objects, 34, 2023, 100949, 10.1016/j.nanoso.2023.100949.
Hasegawa, R., Takahashi, Y., Chatani, Y., Crystal structures of three crystalline forms of poly(vinylidene fluoride). Polym. J. 3 (1972), 600–610, 10.1295/polymj.3.600.
Paralı, L., Koç, M., Akça, E., Fabrication and Characterization of High Performance PVDF-based flexible piezoelectric nanogenerators using PMN-xPT (x:30, 32.5, and 35) particles. Ceram. Int. 11 (2023), 18388–18396, 10.1016/j.ceramint.2023.02.211.
Umasankar Patro, T., Mhalgi, Milind V., Khakhar, D.V., Misra, Ashok, Studies on poly(vinylidene fluoride)–clay nanocomposites: effect of different clay modifiers. Polymer 49 (2008), 3486–3499, 10.1016/j.polymer.2008.05.034.
Lee, J.E., Eom, Y., Shin, Y.E., Hwang, S.H., Ko, H., Chae, H.G., Effect of interfacial interaction on the conformational variation of poly(vinylidene fluoride) (PVDF) chains in PVDF/graphene oxide (GO) nanocomposite fibers and corresponding mechanical properties. ACS Appl. Mater. Interfaces 11 (2019), 13665–13675, 10.1021/acsami.8b22586.
Liu, X., Ma, J., Wu, X., Lin, L., Wang, X., Polymeric nanofibers with ultrahigh piezoelectricity via self-orientation of nanocrystals. ACS Nano 11 (2017), 1901–1910, 10.1021/acsnano.6b07961.
Wei, Y., Zhang, N., Jin, C., Zhu, W., Zeng, Y., Xu, G., Gao, L., Jian, Z., Bi0.5K0.5TiO3–CaTiO3 ceramics: appearance of the pseudocubic structure and ferroelectric–relaxor transition characters. J. Am. Ceram. Soc. 102 (2019), 3598–3608, 10.1111/jace.16244.
Krad, I., Bidault, O., Geoffroy, N., El Maaoui, M., Preparation and characterization of K0.5Bi0.5TiO3 particles synthesized by a stirring hydrothermal method. Ceram. Int. 3 (2016), 3751–3756, 10.1016/j.ceramint.2015.10.158.
Hou, Y., Zhu, M., Hou, L., Liu, J., Tang, J., Wang, H., Yan, H., Synthesis and characterization of lead-free K0.5Bi0.5TiO3 ferroelectrics by sol–gel technique. J. Cryst. Growth 273 (2005), 500–503, 10.1016/j.jcrysgro.2004.09.055.
Cuong, N.T., Barrau, S., Dufay, M., Tabary, N., Da Costa, A., Ferri, A., Lazzaroni, R., Raquez, J.M., Leclère, P., On the nanoscale mapping of the mechanical and piezoelectric properties of poly (L-Lactic acid) electrospun nanofibers. Appl. Sci., 10, 2020, 652, 10.3390/app1002065.
Abdullah, I.Y., Yahaya, M., Jumali, M.H.H., Shanshool, H.M., Effect of annealing process on the phase formation in poly(vinylidene fluoride) thinfilms. AIP Conf. Proc., 1614, 2014, 147, 10.1063/1.4895187.
Hong, H., Song, S.A., Kim, S.S., Phase transformation of poly (vinylidene fluoride)/TiO2 nanocomposite flm prepared by microwave-assisted solvent evaporation: an experimental and molecular dynamics study. Compos. Sci. Technol., 199, 2020, 108375, 10.1016/j.compscitech.2020.108375.
Gaur, A., Shukla, R., Kumar, B., Pal, A., Chatterji, S., Ranjan, R., Maiti, P., Processing and nanoclay induced piezoelectricity in poly(vinylidene fluoride-co-hexafluoro propylene) nanohybrid for device application. Polymer 97 (2016), 362–369, 10.1016/j.polymer.2016.05.049.
Greeshma, T., Balaji, R., S, J., PVDF phase formation and its influence on electrical and structural properties of PZT-PVDF composites. Ferroelectr. Lett. 40 (2013), 41–55, 10.1080/07315171.2013.814460.
Jiang, S., Wan, H., Liu, H., Zeng, Y., Liu, J., Wu, Y., Zhang, G., High β phase content in PVDF/CoFe2O4 nanocomposites induced by DC magnetic fields. Appl. Phys. Lett., 109, 2016, 102904, 10.1063/1.4962489.
Singh, R.K., Lye, S.W., Miao, J., Holistic investigation of the electrospinning parameters for high percentage of β-phase in PVDF nanofibers. Polymer, 214, 2021, 123366, 10.1016/j.polymer.2020.123366.
Mondal, S., Paul, T., Maiti, S., Das, B.K., Chattopadhyay, K.K., Human motion interactive mechanical energy harvester based on all inorganic perovskite-PVDF. Nano Energy, 74, 2020, 104870, 10.1016/j.nanoen.2020.104870.