[en] Neuropeptides are one of the largest and most diverse families of signaling molecules in animals and, accordingly, they regulate many physiological processes and behaviors. Genome and transcriptome sequencing has enabled the identification of genes encoding neuropeptide precursor proteins in species from a growing variety of taxa, including bilaterian and non-bilaterian animals. Of particular interest are deuterostome invertebrates such as the phylum Echinodermata, which occupies a phylogenetic position that has facilitated reconstruction of the evolution of neuropeptide signaling systems in Bilateria. However, our knowledge of neuropeptide signaling in echinoderms is largely based on bioinformatic and experimental analysis of eleutherozoans-Asterozoa (starfish and brittle stars) and Echinozoa (sea urchins and sea cucumbers). Little is known about neuropeptide signaling in crinoids (feather stars and sea lilies), which are a sister clade to the Eleutherozoa. Therefore, we have analyzed transcriptome/genome sequence data from three feather star species, Anneissia japonica, Antedon mediterranea, and Florometra serratissima, to produce the first comprehensive identification of neuropeptide precursors in crinoids. These include representatives of bilaterian neuropeptide precursor families and several predicted crinoid neuropeptide precursors. Using A. mediterranea as an experimental model, we have investigated the expression of selected neuropeptides in larvae (doliolaria), post-metamorphic pentacrinoids and adults, providing new insights into the cellular architecture of crinoid nervous systems. Thus, using mRNA in situ hybridization F-type SALMFamide precursor transcripts were revealed in a previously undescribed population of peptidergic cells located dorso-laterally in doliolaria. Furthermore, using immunohistochemistry a calcitonin-type neuropeptide was revealed in the aboral nerve center, circumoral nerve ring and oral tube feet in pentacrinoids and in the ectoneural and entoneural compartments of the nervous system in adults. Moreover, functional analysis of a vasopressin/oxytocin-type neuropeptide (crinotocin), which is expressed in the brachial nerve of the arms in A. mediterranea, revealed that this peptide causes a dose-dependent change in the mechanical behavior of arm preparations in vitro-the first reported biological action of a neuropeptide in a crinoid. In conclusion, our findings provide new perspectives on neuropeptide signaling in echinoderms and the foundations for further exploration of neuropeptide expression/function in crinoids as a sister clade to eleutherozoan echinoderms.
Disciplines :
Zoology
Author, co-author :
Aleotti, Alessandra ; Department of Environmental Science and Policy, University of Milan, Milan, Italy ; School of Biological & Behavioural Sciences, Queen Mary University of London, London, United Kingdom
Wilkie, Iain C; Institute of Biodiversity, Animal Health and Comparative Medicine, University of Glasgow, Glasgow, United Kingdom
Yañez-Guerra, Luis A; School of Biological & Behavioural Sciences, Queen Mary University of London, London, United Kingdom
Gattoni, Giacomo; Department of Environmental Science and Policy, University of Milan, Milan, Italy ; School of Biological & Behavioural Sciences, Queen Mary University of London, London, United Kingdom
Rahman, Tahshin A; School of Biological & Behavioural Sciences, Queen Mary University of London, London, United Kingdom
Wademan, Richard F; School of Biological & Behavioural Sciences, Queen Mary University of London, London, United Kingdom
Ahmad, Zakaryya; School of Biological & Behavioural Sciences, Queen Mary University of London, London, United Kingdom
Ivanova, Deyana A; School of Biological & Behavioural Sciences, Queen Mary University of London, London, United Kingdom
Semmens, Dean C; School of Biological & Behavioural Sciences, Queen Mary University of London, London, United Kingdom
Delroisse, Jérôme ; Université de Mons - UMONS > Faculté des Science > Service de Biologie des Organismes Marins et Biomimétism
Cai, Weigang; School of Biological & Behavioural Sciences, Queen Mary University of London, London, United Kingdom
Odekunle, Esther; School of Biological & Behavioural Sciences, Queen Mary University of London, London, United Kingdom
Egertová, Michaela; School of Biological & Behavioural Sciences, Queen Mary University of London, London, United Kingdom
Ferrario, Cinzia; Department of Environmental Science and Policy, University of Milan, Milan, Italy
Sugni, Michela; Department of Environmental Science and Policy, University of Milan, Milan, Italy
Bonasoro, Francesco; Department of Environmental Science and Policy, University of Milan, Milan, Italy
Elphick, Maurice R; School of Biological & Behavioural Sciences, Queen Mary University of London, London, United Kingdom
S864 - Biologie des Organismes Marins et Biomimétisme
Research institute :
Research Institute for Biosciences
Funders :
Biotechnology and Biological Sciences Research Council Leverhulme Trust
Funding text :
This research was supported by a Leverhulme Trust Emeritus Fellowship (EM-2016-018) awarded to IW, a BBSRC grant (BB/M001644/1) awarded to MRE, and Erasmus Scholarships awarded to AA (Erasmus+ 2015/16 and Erasmus+ 2016/17).
Abraham G. N. Podell D. N. (1981). Pyroglutamic acid. Non-metabolic formation, function in proteins and peptides, and characteristics of the enzymes effecting its removal. Mol. Cell. Biochem. 38 181–190. 10.1007/BF00235695 6117006
Barbaglio A. Turchi C. Melone G. Di Benedetto C. Martinello T. Patruno M. et al. (2012). Larval development in the feather star Antedon mediterranea. Invertebr. Reprod. Dev. 56 124–137.
Ben Khadra Y. Sugni M. Ferrario C. Bonasoro F. Oliveri P. Martinez P. et al. (2018). Regeneration in stellate echinoderms Crinoidea, Asteroidea and Ophiuroidea. Results Probl. Cell. Differ. 65 285–320. 10.1007/978-3-319-92486-1_14
Bohn J. M. Heinzeller T. (1999). Morphology of the bourgueticrinid and isocrinid aboral nervous system and its possible phylogenetic implications (Echinodermata, Crinoidea). Acta Zool. 80 241–249.
Bolger A. M. Lohse M. Usadel B. (2014). Trimmomatic: A flexible trimmer for Illumina sequence data. Bioinformatics 30 2114–2120.
Bonasoro F. Candia Carnevali M. D. Thorndyke M. C. Welsch U. (1995). “Neural factors in crinoid arm regeneration,” in Echinoderm research 1995, eds Emson R. Smith A. Campbell A. (Boca Raton: CRC Press).
Burke R. D. Angerer L. M. Elphick M. R. Humphrey G. W. Yaguchi S. Kiyama T. et al. (2006). A genomic view of the sea urchin nervous system. Dev. Biol. 300 434–460.
Byrne M. Fontaine A. (1981). The feeding behaviour of Florometra serratissima (Echinodermata: Crinoidea). Can. J. Zool. 59 11–18.
Cai W. Kim C. H. Go H. J. Egertová M. Zampronio C. G. Jones A. M. et al. (2018). Biochemical, anatomical, and pharmacological characterization of calcitonin-type neuropeptides in starfish: Discovery of an ancient role as muscle relaxants. Front. Neurosci. 12:382. 10.3389/fnins.2018.00382 29937709
Candia Carnevali M. D. Bonasoro F. (2001). Microscopic overview of crinoid regeneration. Microsc. Res. Tech. 55 403–426. 10.1002/jemt.1187 11782071
Candia Carnevali M. D. Bonasoro F. Invernizzi R. Lucca E. Welsch U. Thorndyke M. C. (1996). Tissue distribution of monoamine neurotransmitters in normal and regenerating arms of the feather star Antedon mediterranea. Cell Tissue Res. 285 341–352.
Candia Carnevali M. D. Bonasoro F. Welsch U. Thorndyke M. C. (1998). “Arm regeneration and growth factors in crinoids,” in Echinoderms, eds Mooi R. Telford M. (San Francisco: Balkema).
Chen M. Talarovicova A. Zheng Y. Storey K. B. Elphick M. R. (2019). Neuropeptide precursors and neuropeptides in the sea cucumber Apostichopus japonicus: A genomic, transcriptomic and proteomic analysis. Sci. Rep. 9:8829. 10.1038/s41598-019-45271-3 31222106
Chieu H. D. Turner L. Smith M. K. Wang T. Nocillado J. Palma P. et al. (2019). Aquaculture breeding enhancement: Maturation and spawning in sea cucumbers using a recombinant relaxin-like gonad-stimulating peptide. Front. Genet. 10:77. 10.3389/fgene.2019.00077 30838021
Dockray G. J. (1987). The biosynthesis of regulatory peptides. Am. Rev. Respir. Dis. 136 S9–S15.
Elphick M. R. (2014). SALMFamide salmagundi: The biology of a neuropeptide family in echinoderms. Gen. Comp. Endocrinol. 205 23–35. 10.1016/j.ygcen.2014.02.012 24583124
Elphick M. R. (2020). “Neuropeptide signaling in echinoderms: From “Physiologic Activity of Nerve Extracts” to neuropeptidomics and beyond,” in Advances in invertebrate (Neuro)endocrinology. a collection of reviews in the post-genomic era: Volume 1: Phyla other than Arthropoda, eds Saleuddin S. Lange A. B. Orchard I. (New York: Apple Academic Press), 125–171.
Elphick M. R. Rowe M. L. (2009). NGFFFamide and echinotocin: Structurally unrelated myoactive neuropeptides derived from neurophysin-containing precursors in sea urchins. J. Exp. Biol. 212 1067–1077.
Elphick M. R. Emson R. Thorndyke M. C. (1989). FMRFamide-like immunoreactivity in the nervous system of the starfish Asterias rubens. Biol. Bull. 177 141–145.
Elphick M. R. Mirabeau O. Larhammar D. (2018). Evolution of neuropeptide signalling systems. J. Exp. Biol. 221:jeb151092.
Elphick M. R. Newman S. J. Thorndyke M. C. (1995). Distribution and action of SALMFamide neuropeptides in the starfish Asterias rubens. J. Exp. Biol. 198 2519–2525. 10.1242/jeb.198.12.2519 8576682
Elphick M. R. Price D. A. Lee T. D. Thorndyke M. C. (1991a). The SALMFamides: A new family of neuropeptides isolated from an echinoderm. Proc. Biol. Sci. 243 121–127.
Elphick M. R. Reeve J. R. Jr. Burke R. D. Thorndyke M. C. (1991b). Isolation of the neuropeptide SALMFamide-1 from starfish using a new antiserum. Peptides 12 455–459. 10.1016/0196-9781(91)90083-2
Elphick M. R. Semmens D. C. Blowes L. M. Levine J. Lowe C. J. Arnone M. I. et al. (2015). Reconstructing SALMFamide neuropeptide precursor evolution in the phylum Echinodermata: Ophiuroid and crinoid sequence data provide new insights. Front. Endocrinol (Lausanne) 6:2. 10.3389/fendo.2015.00002 25699014
Escudero Castelán N. Semmens D. C. Yañez-Guerra L. A. Zandawala M. Reiss M. D. Slade S. E. et al. (2022). Receptor deorphanization in an echinoderm reveals kisspeptin evolution and relationship with SALMFamide neuropeptides. BMC Biol. 20:187. 10.1186/s12915-022-01387-z 36002813
Frickey T. Lupas A. (2004). CLANS: A Java application for visualizing protein families based on pairwise similarity. Bioinformatics 20 3702–3704. 10.1093/bioinformatics/bth444 15284097
Fu L. Niu B. Zhu Z. Wu S. Li W. (2012). CD-HIT: Accelerated for clustering the next-generation sequencing data. Bioinformatics 28 3150–3152. 10.1093/bioinformatics/bts565 23060610
Garcia-Arraras J. E. Enamorado-Ayala I. Torres-Avillan I. Rivera V. (1991). FMRFamide-like immunoreactivity in cells and fibers of the holothurian nervous system. Neurosci. Lett. 132 199–202. 10.1016/0304-3940(91)90301-9
Grabherr M. G. Haas B. J. Yassour M. Levin J. Z. Thompson D. A. Amit I. et al. (2011). Full-length transcriptome assembly from RNA-Seq data without a reference genome. Nat. Biotechnol. 29 644–652.
Haas B. J. Papanicolaou A. Yassour M. Grabherr M. Blood P. D. Bowden J. et al. (2013). De novo transcript sequence reconstruction from RNA-seq using the Trinity platform for reference generation and analysis. Nat. Protoc. 8 1494–1512. 10.1038/nprot.2013.084 23845962
Hauser F. Cazzamali G. Williamson M. Blenau W. Grimmelikhuijzen C. J. (2006). A review of neurohormone GPCRs present in the fruitfly Drosophila melanogaster and the honey bee Apis mellifera. Prog. Neurobiol. 80 1–19. 10.1016/j.pneurobio.2006.07.005 17070981
Heinzeller T. (1998). “The nervous system of crinoids: Survey and taxonomic implications,” in Echinoderms: San Francisco. Proceedings of the Ninth International Echinoderm Conference, San Francisco, California, USA, 5–9 August 1996, eds Mooi R. Telford M. (Rotterdam: A. A. Balkema), 169–174.
Heinzeller T. Welsch U. (1994). “Crinoidea,” in Microscopic anatomy of invertebrates: Volume 14 Echinodermata, eds Harrison F. W. Chia F.-S. (New York: Wiley-Liss), 9–148.
Hewes R. S. Taghert P. H. (2001). Neuropeptides and neuropeptide receptors in the Drosophila melanogaster genome. Genome Res. 11 1126–1142.
Hiller K. Grote A. Scheer M. Munch R. Jahn D. (2004). PrediSi: Prediction of signal peptides and their cleavage positions. Nucleic Acids Res. 32 W375–W379. 10.1093/nar/gkh378 15215414
Hoekstra L. A. Moroz L. L. Heyland A. (2012). Novel insights into the echinoderm nervous system from histaminergic and FMRFaminergic-like cells in the sea cucumber Leptosynapta clarki. PLoS One 7:e44220. 10.1371/journal.pone.0044220 22970182
Holland N. D. (1967). Some observations on the saccules of Antedon mediterranea (Echinodermata, Crinoidea). Pubbl. Staz. Zool. Napoli. 35 257–262.
Hyman L. H. (1955). The invertebrates. IV. Echinodermata. New York: McGraw Hill.
Jekely G. (2013). Global view of the evolution and diversity of metazoan neuropeptide signaling. Proc. Natl. Acad. Sci. U.S.A. 110 8702–8707. 10.1073/pnas.1221833110 23637342
Jekely G. Melzer S. Beets I. Kadow I. C. G. Koene J. Haddad S. et al. (2018). The long and the short of it - a perspective on peptidergic regulation of circuits and behaviour. J. Exp. Biol. 221:jeb166710. 10.1242/jeb.166710 29439060
Kapustin Y. Souvorov A. Tatusova T. Lipman D. (2008). Splign: Algorithms for computing spliced alignments with identification of paralogs. Biol. Direct 3:20. 10.1186/1745-6150-3-20 18495041
Kato S. Tsurumaru S. Taga M. Yamane T. Shibata Y. Ohno K. et al. (2009). Neuronal peptides induce oocyte maturation and gamete spawning of sea cucumber Apostichopus japonicus. Dev. Biol. 326 169–176. 10.1016/j.ydbio.2008.11.003 19059232
Katoh K. Standley D. M. (2013). MAFFT multiple sequence alignment software version 7: Improvements in performance and usability. Mol. Biol. Evol. 30 772–780. 10.1093/molbev/mst010 23329690
Katoh K. Misawa K. Kuma K. Miyata T. (2002). MAFFT: A novel method for rapid multiple sequence alignment based on fast Fourier transform. Nucleic Acids Res. 30 3059–3066. 10.1093/nar/gkf436 12136088
Kim C. H. Go H. J. Oh H. Y. Elphick M. R. Park N. G. (2018). Identification of evolutionarily conserved residues required for the bioactivity of a pedal peptide/orcokinin-type neuropeptide. Peptides 103 10–18. 10.1016/j.peptides.2018.03.007 29535005
La Touche R. W. (1978). The feeding behaviour of the featherstar Antedon bifida (Echinodermata: Crinoidea). J. Marine Biol. Assoc. U K 58 877–890.
Li C. Nelson L. S. Kim K. Nathoo A. Hart A. C. (1999). Neuropeptide gene families in the nematode Caenorhabditis elegans. Ann. N Y Acad. Sci. 897 239–252.
Li W. Godzik A. (2006). Cd-hit: A fast program for clustering and comparing large sets of protein or nucleotide sequences. Bioinformatics 22 1658–1659.
Li Y. Omori A. Flores R. L. Satterfield S. Nguyen C. Ota T. et al. (2020). Genomic insights of body plan transitions from bilateral to pentameral symmetry in Echinoderms. Commun. Biol. 3:371.
Lin M. Mita M. Egertová M. Zampronio C. G. Jones A. M. Elphick M. R. (2017b). Cellular localization of relaxin-like gonad-stimulating peptide expression in Asterias rubens: New insights into neurohormonal control of spawning in starfish. J. Comp. Neurol. 525 1599–1617. 10.1002/cne.24141 27806429
Lin M. Egertová M. Zampronio C. G. Jones A. M. Elphick M. R. (2017a). Pedal peptide/orcokinin-type neuropeptide signaling in a deuterostome: The anatomy and pharmacology of starfish myorelaxant peptide in Asterias rubens. J. Comp. Neurol. 525 3890–3917. 10.1002/cne.24309 28880392
Lin M. Egertová M. Zampronio C. G. Jones A. M. Elphick M. R. (2018). Functional characterization of a second pedal peptide/orcokinin-type neuropeptide signaling system in the starfish Asterias rubens. J. Comp. Neurol. 526 858–876. 10.1002/cne.24371 29218721
Liu W. Xie Y. Ma J. Luo X. Nie P. Zuo Z. et al. (2015). IBS: An illustrator for the presentation and visualization of biological sequences. Bioinformatics 31 3359–3361.
Manni M. Berkeley M. R. Seppey M. Simao F. A. Zdobnov E. M. (2021). BUSCO Update: Novel and streamlined workflows along with broader and deeper phylogenetic coverage for scoring of eukaryotic. Prokaryotic, and viral genomes. Mol. Biol. Evol. 38 4647–4654. 10.1093/molbev/msab199 34320186
Mashanov V. Zueva O. Rubilar T. Epherra L. García-Arrarás J. E. (2016). “Echinodermata,” in Structure and evolution of invertebrate nervous systems, eds Schmidt-Rhaesa A. Harzsch S. Purschke G. (Oxford: Oxford University Press).
Mayorova T. D. Tian S. Cai W. Semmens D. C. Odekunle E. A. Zandawala M. et al. (2016). Localization of neuropeptide gene expression in larvae of an echinoderm, the starfish Asterias rubens. Front. Neurosci. 10:553. 10.3389/fnins.2016.00553 27990106
Mercurio S. Gattoni G. Messinetti S. Sugni M. Pennati R. (2019). Nervous system characterization during the development of a basal echinoderm, the feather star Antedon mediterranea. J. Comp. Neurol. 527 1127–1139. 10.1002/cne.24596 30520044
Mirabeau O. Joly J. S. (2013). Molecular evolution of peptidergic signaling systems in bilaterians. Proc. Natl. Acad. Sci. U.S.A. 110 E2028–E2037.
Mita M. (2013). Relaxin-like gonad-stimulating substance in an echinoderm, the starfish: A novel relaxin system in reproduction of invertebrates. Gen. Comp. Endocrinol. 181 241–245. 10.1016/j.ygcen.2012.07.015 22841765
Mita M. Yoshikuni M. Ohno K. Shibata Y. Paul-Prasanth B. Pitchayawasin S. et al. (2009). A relaxin-like peptide purified from radial nerves induces oocyte maturation and ovulation in the starfish Asterina pectinifera. Proc. Natl. Acad. Sci. U.S.A. 106 9507–9512.
Monroe E. B. Annangudi S. P. Wadhams A. A. Richmond T. A. Yang N. Southey B. R. et al. (2018). Exploring the sea urchin neuropeptide landscape by mass spectrometry. J. Am. Soc. Mass. Spectrom. 29 923–934. 10.1007/s13361-018-1898-x 29667164
Moore S. J. Thorndyke M. C. (1993). Immunocytochemical mapping of the novel echinoderm neuropeptide SALMFamide 1 (S1) in the starfish Asterias rubens. Cell Tissue Res. 274 605–618. 10.1007/BF00314559 8293452
Nakano H. Nakajima Y. Amemiya S. (2009). Nervous system development of two crinoid species, the sea lily Metacrinus rotundus and the feather star Oxycomanthus japonicus. Dev. Genes Evol. 219 565–576. 10.1007/s00427-010-0317-5 20099068
Odekunle E. A. Elphick M. R. (2020). Comparative and evolutionary physiology of vasopressin/oxytocin-type neuropeptide signaling in invertebrates. Front. Endocrinol (Lausanne) 11:225. 10.3389/fendo.2020.00225 32362874
Odekunle E. A. Semmens D. C. Martynyuk N. Tinoco A. B. Garewal A. K. Patel R. R. et al. (2019). Ancient role of vasopressin/oxytocin-type neuropeptides as regulators of feeding revealed in an echinoderm. BMC Biol. 17:60. 10.1186/s12915-019-0680-2 31362737
Ofer D. Linial M. (2014). NeuroPID: A predictor for identifying neuropeptide precursors from metazoan proteomes. Bioinformatics 30 931–940. 10.1093/bioinformatics/btt725 24336809
Omori A. Shibata T. F. Akasaka K. (2020). Gene expression analysis of three homeobox genes throughout early and late development of a feather star Anneissia japonica. Dev. Genes Evol. 230 305–314. 10.1007/s00427-020-00665-6 32671457
Perillo M. Paganos P. Mattiello T. Cocurullo M. Oliveri P. Arnone M. I. (2018). New Neuronal subtypes with a “Pre-Pancreatic” signature in the sea urchin Stongylocentrotus purpuratus. Front. Endocrinol (Lausanne) 9:650. 10.3389/fendo.2018.00650 30450080
Rowe M. L. Achhala S. Elphick M. R. (2014). Neuropeptides and polypeptide hormones in echinoderms: New insights from analysis of the transcriptome of the sea cucumber Apostichopus japonicus. Gen. Comp. Endocrinol. 197 43–55. 10.1016/j.ygcen.2013.12.002 24345384
Rowe M. L. Elphick M. R. (2012). The neuropeptide transcriptome of a model echinoderm, the sea urchin Strongylocentrotus purpuratus. Gen. Comp. Endocrinol. 179 331–344. 10.1016/j.ygcen.2012.09.009 23026496
Schoofs L. Loof A. D. Hiel M. B. V. (2017). Neuropeptides as regulators of behavior in insects. Ann. Rev. Entomol. 62 35–52.
Semmens D. C. Elphick M. R. (2017). The evolution of neuropeptide signalling: Insights from echinoderms. Brief Funct. Genomics 16 288–298.
Semmens D. C. Mirabeau O. Moghul I. Pancholi M. R. Wurm Y. Elphick M. R. (2016). Transcriptomic identification of starfish neuropeptide precursors yields new insights into neuropeptide evolution. Open Biol. 6:150224. 10.1098/rsob.150224 26865025
Smith M. K. Wang T. Suwansa-Ard S. Motti C. A. Elizur A. Zhao M. et al. (2017). The neuropeptidome of the crown-of-thorns starfish Acanthaster planci. J. Proteomics 165 61–68. 10.1016/j.jprot.2017.05.026 28577918
Sugni M. Wilkie I. C. Burighel P. Candia Carnevali M. D. (2010). New evidence of serotonin involvement in the neurohumoral control of crinoid arm regeneration: Effects of parachlorophenilanine and methiothepin. J. Marine Biol. Assoc. U K 90 555–562.
Suwansa-Ard S. Chaiyamoon A. Talarovicova A. Tinikul R. Tinikul Y. Poomtong T. et al. (2018). Transcriptomic discovery and comparative analysis of neuropeptide precursors in sea cucumbers (Holothuroidea). Peptides 99 231–240. 10.1016/j.peptides.2017.10.008 29054501
Telford M. J. Lowe C. J. Cameron C. B. Ortega-Martinez O. Aronowicz J. Oliveri P. et al. (2014). Phylogenomic analysis of echinoderm class relationships supports Asterozoa. Proc. Biol. Sci. 281:20140479.
Tessmar-Raible K. Raible F. Christodoulou F. Guy K. Rembold M. Hausen H. et al. (2007). Conserved sensory-neurosecretory cell types in annelid and fish forebrain: Insights into hypothalamus evolution. Cell 129 1389–1400. 10.1016/j.cell.2007.04.041 17604726
Thiel D. Yañez-Guerra L. A. Franz-Wachtel M. Hejnol A. Jekely G. (2021). Nemertean, brachiopod, and phoronid neuropeptidomics reveals ancestral spiralian signaling systems. Mol. Biol. Evol. 38 4847–4866. 10.1093/molbev/msab211 34272863
Tian S. Zandawala M. Beets I. Baytemur E. Slade S. E. Scrivens J. H. et al. (2016). Urbilaterian origin of paralogous GnRH and corazonin neuropeptide signalling pathways. Sci. Rep. 6:28788. 10.1038/srep28788 27350121
Tinoco A. B. Barreiro-Iglesias A. Yañez-Guerra L. A. Delroisse J. Zhang Y. Gunner E. F. et al. (2021). Ancient role of sulfakinin/cholecystokinin-type signalling in inhibitory regulation of feeding processes revealed in an echinoderm. Elife 10:e65667. 10.7554/eLife.65667 34488941
Tinoco A. B. Semmens D. C. Patching E. C. Gunner E. F. Egertová M. Elphick M. R. (2018). Characterization of NGFFYamide signaling in starfish reveals roles in regulation of feeding behavior and locomotory systems. Front. Endocrinol (Lausanne) 9:507. 10.3389/fendo.2018.00507 30283399
van den Pol A. N. (2012). Neuropeptide transmission in brain circuits. Neuron 76 98–115.
Van Loy T. Vandersmissen H. P. Van Hiel M. B. Poels J. Verlinden H. Badisco L. et al. (2008). Comparative genomics of leucine-rich repeats containing G protein-coupled receptors and their ligands. Gen. Comp. Endocrinol. 155 14–21.
Veenstra J. A. (2000). Mono- and dibasic proteolytic cleavage sites in insect neuroendocrine peptide precursors. Arch. Insect Biochem. Physiol. 43 49–63. 10.1002/(SICI)1520-6327(200002)43:2<49::AID-ARCH1>3.0.CO;2-M
Welsch U. Lange A. Bals R. Heinzeller T. (1995). “Juxtaligamental cells in feather stars and isocrinids,” in Echinoderm research, eds Emson R. H. Smith A. B. Campbell A. C. (Rotterdam: Balkema), 129–135.
Carnevali Wilkie Candia Wilkie I. C. Candia Carnevali M. D. (in press). “The juxtaligamental cells of echinoderms and their role in the mechano-effector function of connective tissue,” in Frontiers in invertebrate physiology: A collection of reviews, Volume 3: Annelida and Echinodermata, eds Saleuddin S. Leys S. Roer R. Wilkie I. C. (New York: Apple Academic Press). 10.1007/BF00233574 455412
Wilkie I. C. Barbaglio A. Maclaren W. M. Candia Carnevali M. D. (2010). Physiological and immunocytochemical evidence that glutamatergic neurotransmission is involved in the activation of arm autotomy in the featherstar Antedon mediterranea (Echinodermata: Crinoidea). J. Exp. Biol. 213 2104–2115. 10.1242/jeb.039578 20511525
Wilkie I. C. Sugni M. Gupta H. S. Candia Carnevali M. D. C. Elphick M. R. (2021). “Chapter 1 The mutable collagenous tissue of echinoderms: From biology to biomedical applications,” in Soft matter for biomedical applications, (London: The Royal Society of Chemistry), 1–33. 10.1007/3-540-27683-1_10
Wood N. J. Mattiello T. Rowe M. L. Ward L. Perillo M. Arnone M. I. et al. (2018). Neuropeptidergic systems in pluteus larvae of the sea urchin Strongylocentrotus purpuratus: Neurochemical complexity in a “Simple” nervous system. Front. Endocrinol (Lausanne) 9:628. 10.3389/fendo.2018.00628 30410468
Yañez-Guerra L. A. Elphick M. R. (2020). Evolution and comparative physiology of luqin-type neuropeptide signaling. Front. Neurosci. 14:130. 10.3389/fnins.2020.00130 32132900
Yañez-Guerra L. A. Delroisse J. Barreiro-Iglesias A. Slade S. E. Scrivens J. H. Elphick M. R. (2018). Discovery and functional characterisation of a luqin-type neuropeptide signalling system in a deuterostome. Sci. Rep. 87220. 10.1038/s41598-018-25606-2 29740074
Yañez-Guerra L. A. Thiel D. Jekely G. (2022). Premetazoan origin of neuropeptide signaling. Mol. Biol. Evol. 39:msac051.
Yañez-Guerra L. A. Zhong X. Moghul I. Butts T. Zampronio C. G. Jones A. M. et al. (2020). Echinoderms provide missing link in the evolution of PrRP/sNPF-type neuropeptide signalling. eLife 9:e57640. 10.7554/eLife.57640 32579512
Zandawala M. Moghul I. Yañez-Guerra L. A. Delroisse J. Abylkassimova N. Hugall A. F. et al. (2017). Discovery of novel representatives of bilaterian neuropeptide families and reconstruction of neuropeptide precursor evolution in ophiuroid echinoderms. Open Biol. 7:170129. 10.1098/rsob.170129 28878039
Zhang Y. Yañez-Guerra L. A. Tinoco A. B. Escudero Castelan N. Egertová M. Elphick M. R. (2022). Somatostatin-type and allatostatin-C-type neuropeptides are paralogous and have opposing myoregulatory roles in an echinoderm. Proc. Natl. Acad. Sci. U.S.A. 119:e2113589119. 10.1073/pnas.2113589119 35145030