[en] The interaction between SARS-CoV-2 spike RBD and ACE2 proteins is a crucial step for host cell infection by the virus. Without it, the entire virion entrance mechanism is compromised. The aim of this study was to evaluate the capacity of various natural product classes, including flavonoids, anthraquinones, saponins, ivermectin, chloroquine, and erythromycin, to modulate this interaction. To accomplish this, we applied a recently developed a microfluidic diffusional sizing (MDS) technique that allows us to probe protein-protein interactions via measurements of the hydrodynamic radius (Rh) and dissociation constant (KD); the evolution of Rh is monitored in the presence of increasing concentrations of the partner protein (ACE2); and the KD is determined through a binding curve experimental design. In a second time, with the protein partners present in equimolar amounts, the Rh of the protein complex was measured in the presence of different natural products. Five of the nine natural products/extracts tested were found to modulate the formation of the protein complex. A methanol extract of Chenopodium quinoa Willd bitter seed husks (50 µg/mL; bisdesmoside saponins) and the flavonoid naringenin (1 µM) were particularly effective. This rapid selection of effective modulators will allow us to better understand agents that may prevent SARS-CoV-2 infection.
Disciplines :
Pharmacy, pharmacology & toxicology
Author, co-author :
FAUQUET, Jason ✱; Université de Mons - UMONS > Faculté de Médecine et de Pharmac > Service de Chimie thérapeutique et Pharmacognosie
Carette, Julie ✱; Université de Mons - UMONS > Faculté de Médecine et de Pharmac > Service de Chimie thérapeutique et Pharmacognosie
DUEZ, Pierre ; Université de Mons - UMONS > Faculté de Médecine et de Pharmac > Service de Chimie thérapeutique et Pharmacognosie
Zhang, Jiuliang ; College of Food Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
NACHTERGAEL, Amandine ; Université de Mons - UMONS > Faculté de Médecine et de Pharmac > Service de Chimie thérapeutique et Pharmacognosie
✱ These authors have contributed equally to this work.
Language :
English
Title :
Microfluidic Diffusion Sizing Applied to the Study of Natural Products and Extracts That Modulate the SARS-CoV-2 Spike RBD/ACE2 Interaction.
Publication date :
13 December 2023
Journal title :
Molecules
ISSN :
1420-3049
eISSN :
1420-3049
Publisher :
Multidisciplinary Digital Publishing Institute (MDPI), Switzerland
R550 - Institut des Sciences et Technologies de la Santé
Funders :
project Wallonie-Bruxelles/China F.R.S.-FNRS - Fonds de la Recherche Scientifique National Key R&D Program of China
Funding number :
CDR J.0058.21; 2021YFE0194000
Funding text :
This work was partly supported by Wallonie-Bruxelles International through the project Wallonie-Bruxelles/China (MOST) “Anti-inflammatory herbal medicines and their active components to fight the cytokine storm associated with COVID-19 diseases (TCM-Cyt) ”. This work was supported by the Fonds pour la Recherche Scientifique FNRS under grant N° CDR J.0058.21 “PlasmLip”, which contributed to the acquisition of the fluidity instrument. Veronica Taco is warmly thanked for her analysis of the Chenopodium quinoa husk extract and for giving us access to this sample; Veronica Taco is a scholarship holder from the Académie de Recherche et d’Enseignement Supérieur (ARES, Belgium). This work was also supported by the National Key R&D Program of China, 2021YFE0194000.
WHO World Health Orgarnization Available online: https://covid19.who.int/table (accessed on 21 October 2023)
Bhakti K. Insuffisance Respiratoire Hypoxémique Aigüe (Syndrome de Détresse Respiratoire Aiguë [SDRA], Ou [ARDS], Acute Respiratory Distress Syndrome) N. Engl. J. Med. 2006 354 2564 2575 10.1056/NEJMoa062200
Patel K.P. Vunnam S.R. Patel P.A. Krill K.L. Korbitz P.M. Gallagher J.P. Suh J.E. Vunnam R.R. Transmission of SARS-CoV-2: An update of current literature Eur. J. Clin. Microbiol. Infect. Dis. 2020 39 2005 2011 10.1007/s10096-020-03961-1 32638221
Goel N. Jain A. Kumari A. The role of ACE2 receptor and its age related immunity in COVID-19 Int. J. Pharm. Sci. Rev. Res. 2020 63 190 194
Prashantha C.N. Gouthami K. Lavanya L. Bhavanam S. Jakhar A. Shakthiraju R.G. Suraj V. Sahana K.V. Sujana H.S. Guruprasad N.M. et al. Molecular screening of antimalarial, antiviral, anti-inflammatory and HIV protease inhibitors against spike glycoprotein of coronavirus J. Mol. Graph. Model. 2021 102 107769 10.1016/j.jmgm.2020.107769 33152616
Rajah M.M. Bernier A. Buchrieser J. Schwartz O. The Mechanism and Consequences of SARS-CoV-2 Spike-Mediated Fusion and Syncytia Formation J. Mol. Biol. 2022 434 167280 10.1016/j.jmb.2021.167280
Cai Y. Zhang J. Xiao T. Peng H. Sterling S.M. Walsh R.M. Rawson S. Rits-Volloch S. Chen B. Distinct conformational states of SARS-CoV-2 spike protein Science 2020 369 1586 1592 10.1126/science.abd4251
Jackson C.B. Farzan M. Chen B. Choe H. Mechanisms of SARS-CoV-2 entry into cells Nat. Rev. Mol. Cell Biol. 2022 23 3 20 10.1038/s41580-021-00418-x
Ke Z. Oton J. Qu K. Cortese M. Zila V. McKeane L. Nakane T. Zivanov J. Neufeldt C.J. Cerikan B. et al. Structures and distributions of SARS-CoV-2 spike proteins on intact virions Nature 2020 588 498 502 10.1038/s41586-020-2665-2 32805734
Watanabe Y. Allen J.D. Wrapp D. McLellan J.S. Crispin M. Site-specific glycan analysis of the SARS-CoV-2 spike Science 2020 369 330 333 10.1126/science.abb9983
Yan R. Zhang Y. Li Y. Ye F. Guo Y. Xia L. Zhong X. Chi X. Zhou Q. Structural basis for the different states of the spike protein of SARS-CoV-2 in complex with ACE2 Cell Res. 2021 31 717 719 10.1038/s41422-021-00490-0
Camargo S.M.R. Vuille-Dit-Bille R.N. Meier C.F. Verrey F. ACE2 and gut amino acid transport Clin. Sci. 2020 134 2823 2833 10.1042/CS20200477
Wiese O. Zemlin A.E. Pillay T.S. Molecules in pathogenesis: Angiotensin converting enzyme 2 (ACE2) J. Clin. Pathol. 2021 74 285 290 10.1136/jclinpath-2020-206954 32759311
Zhang H. Penninger J.M. Li Y. Zhong N. Slutsky A.S. Angiotensin-converting enzyme 2 (ACE2) as a SARS-CoV-2 receptor: Molecular mechanisms and potential therapeutic target Intensive Care Med. 2020 46 586 590 10.1007/s00134-020-05985-9
Han P. Li L. Liu S. Wang Q. Zhang D. Xu Z. Han P. Li X. Peng Q. Su C. et al. Receptor binding and complex structures of human ACE2 to spike RBD from omicron and delta SARS-CoV-2 Cell 2022 185 630 640.e610 10.1016/j.cell.2022.01.001 35093192
Fiedler S. Piziorska M.A. Denninger V. Morgunov A.S. Ilsley A. Malik A.Y. Schneider M.M. Devenish S.R.A. Meisl G. Kosmoliaptsis V. et al. Antibody Affinity Governs the Inhibition of SARS-CoV-2 Spike/ACE2 Binding in Patient Serum ACS Infect. Dis. 2021 7 2362 2369 10.1021/acsinfecdis.1c00047 33876632
Arosio P. Müller T. Rajah L. Yates E.V. Aprile F.A. Zhang Y. Cohen S.I.A. White D.A. Herling T.W. De Genst E.J. et al. Microfluidic diffusion analysis of the sizes and interactions of proteins under native solution conditions ACS Nano 2016 10 333 341 10.1021/acsnano.5b04713 26678709
Alqathama A.A. Ahmad R. Alsaedi R.B. Alghamdi R.A. Abkar E.H. Alrehaly R.H. Abdalla A.N. The vital role of animal, marine, and microbial natural products against COVID-19 Pharm. Biol. 2022 60 509 524 10.1080/13880209.2022.2039215
Frediansyah A. Sofyantoro F. Alhumaid S. Al Mutair A. Albayat H. Altaweil H.I. Al-Afghani H.M. AlRamadhan A.A. AlGhazal M.R. Turkistani S.A. et al. Microbial natural products with antiviral activities, including anti-SARS-CoV-2: A review Molecules 2022 27 4305 10.3390/molecules27134305
Low Z. Lani R. Tiong V. Poh C. AbuBakar S. Hassandarvish P. COVID-19 therapeutic potential of natural products Int. J. Mol. Sci. 2023 24 9589 10.3390/ijms24119589
Lingwan M. Shagun S. Pant Y. Nanda R. Masakapalli S. Antiviral phytochemicals identified in Rhododendron arboreum petals exhibited strong binding to SARS-CoV-2 MPro and Human ACE2 receptor Preprints 2020 2020080530 10.20944/preprints202008.0530.v1
Liu W. Zheng W. Cheng L. Li M. Huang J. Bao S. Xu Q. Ma Z. Citrus fruits are rich in flavonoids for immunoregulation and potential targeting ACE2 Nat. Prod. Bioprospecting 2022 12 4 10.1007/s13659-022-00325-4 35157175
Liu X. Raghuvanshi R. Ceylan F.D. Bolling B.W. Quercetin and Its Metabolites Inhibit Recombinant Human Angiotensin-Converting Enzyme 2 (ACE2) Activity J. Agric. Food Chem. 2020 68 13982 13989 10.1021/acs.jafc.0c05064
Pan B. Fang S. Zhang J. Pan Y. Liu H. Wang Y. Li M. Liu L. Chinese herbal compounds against SARS-CoV-2: Puerarin and quercetin impair the binding of viral S-protein to ACE2 receptor Comput. Struct. Biotechnol. J. 2020 18 3518 3527 10.1016/j.csbj.2020.11.010
Priyandoko D. Molecular Docking Study of the Potential Relevance of the Natural Compounds Isoflavone and Myricetin to COVID-19 Int. J. Bioautomation 2021 25 271 282 10.7546/ijba.2021.25.3.000796
Shakhsi-Niaei M. Soureshjani E.H. Babaheydari A.K. In Silico Comparison of Separate or Combinatorial Effects of Potential Inhibitors of the SARS-CoV-2 Binding Site of ACE2 Iran J. Public Health 2021 50 1028 1036 10.18502/ijph.v50i5.6120
Tutunchi H. Naeini F. Ostadrahimi A. Hosseinzadeh-Attar M.J. Naringenin, a flavanone with antiviral and anti-inflammatory effects: A promising treatment strategy against COVID-19 Phytother. Res. 2020 30 3137 3147 10.1002/ptr.6781
Abdelli I. Hassani F. Bekkel Brikci S. Ghalem S. In Silico study the inhibition of angiotensin converting enzyme 2 receptor of COVID-19 by Ammoides verticillata components harvested from Western Algeria J. Biomol. Struct. Dyn. 2020 39 3263 3276 10.1080/07391102.2020.1763199
Badraoui R. Saoudi M. Hamadou W.S. Elkahoui S. Siddiqui A.J. Alam J.M. Jamal A. Adnan M. Suliemen A.M.E. Alreshidi M.M. et al. Antiviral effects of artemisinin and Its derivatives against SARS-CoV-2 main protease: Computational evidences and interactions with ACE2 allelic variants Pharmaceuticals 2022 15 129 10.3390/ph15020129
Chen Z. Liu L. Gao C. Chen W. Vong C.T. Yao P. Yang Y. Li X. Tang X. Wang S. et al. Astragali Radix (Huangqi): A promising edible immunomodulatory herbal medicine J. Ethnopharmacol. 2020 258 112895 10.1016/j.jep.2020.112895 32330511
Goswami T. Bagchi B. Molecular Docking study of Receptor Binding Domain of SARS-CoV-2 Spike Glycoprotein with Saikosaponin, a Triterpenoid Natural Product ChemRxiv. Camb. Camb. Open Engag. 2020 10.26434/chemrxiv.12033774.v1
Rolta R. Salaria D. Sharma P. Sharma B. Kumar V. Rathi B. Verma M. Sourirajan A. Baumler D.J. Dev K. Phytocompounds of Rheum emodi, Thymus serpyllum, and Artemisia annua Inhibit spike protein of SARS-CoV-2 binding to ACE2 receptor: In silico approach Curr. Pharmacol. Rep. 2021 7 135 149 10.1007/s40495-021-00259-4 34306988
Sinha S.K. Shakya A. Prasad S.K. Singh S. Gurav N.S. Prasad R.S. Gurav S.S. An in-silico evaluation of different saikosaponins for their potency against SARS-CoV-2 using NSP15 and fusion spike glycoprotein as targets J. Biomol. Struct. Dyn. 2021 39 3244 3255 10.1080/07391102.2020.1762741 32345124
Zeng M.-S. Yu W.-D. Wang H.-X. Liu J.-Y. Xu P.-P. A potential antiviral activity of esculentoside A against binding interactions of SARS-COV-2 spike protein and angiotensin converting enzyme 2 (ACE2) Int. J. Biol. Macromol. 2021 183 2248 2261 10.1016/j.ijbiomac.2021.06.017 34111482
Anwar F. Altayb H.N. Al-Abbasi F.A. Kumar V. Kamal M.A. The computational intervention of macrolide antibiotics in the treatment of COVID-19 Curr. Pharm. Des. 2021 27 1202 1210 10.2174/1381612827666210125121954 33550966
Braz H.L.B. Silveira J.A.d.M. Marinho A.D. de Moraes M.E.A. Moraes Filho M.O.d. Monteiro H.S.A. Jorge R.J.B. In Silico study of azithromycin, chloroquine and hydroxychloroquine and their potential mechanisms of action against SARS-CoV-2 infection Int. J. Antimicrob. Agents 2020 56 106119 10.1016/j.ijantimicag.2020.106119
Kalhor H. Sadeghi S. Abolhasani H. Kalhor R. Rahimi H. Repurposing of the approved small molecule drugs in order to inhibit SARS-CoV-2 S protein and human ACE2 interaction through virtual screening approaches J. Biomol. Struct. Dyn. 2022 40 1299 1315 10.1080/07391102.2020.1824816 32969333
Lehrer S. Rheinstein P.H. Ivermectin docks to the SARS-CoV-2 spike receptor-binding domain attached to ACE2 In Vivo 2020 34 3023 3026 10.21873/invivo.12134
Basu A. Sarkar A. Maulik U. Molecular docking study of potential phytochemicals and their effects on the complex of SARS-CoV2 spike protein and human ACE2 Sci. Rep. 2020 10 17699 10.1038/s41598-020-74715-4
Du H.-X. Zhu J.-Q. Chen J. Zhou H.-F. Yang J.-H. Wan H.-T. Revealing the therapeutic targets and molecular mechanisms of emodin-treated coronavirus disease 2019 via a systematic study of network pharmacology Aging 2021 13 14571 14589 10.18632/aging.203098
Zhan Y. Ta W. Tang W. Hua R. Wang J. Wang C. Lu W. Potential antiviral activity of isorhamnetin against SARS-CoV-2 spike pseudotyped virus in vitro Drug Dev. Res. 2021 82 1124 1130 10.1002/ddr.21815
Gangadevi S. Badavath V.N. Thakur A. Yin N. De Jonghe S. Acevedo O. Jochmans D. Leyssen P. Wang K. Neyts J. et al. Kobophenol A Inhibits Binding of Host ACE2 Receptor with Spike RBD Domain of SARS-CoV-2, a Lead Compound for Blocking COVID-19 J. Phys. Chem. Lett. 2021 12 1793 1802 10.1021/acs.jpclett.0c03119
Perrella F. Coppola F. Petrone A. Platella C. Montesarchio D. Stringaro A. Ravagnan G. Fuggetta M.P. Rega N. Musumeci D. Interference of Polydatin/Resveratrol in the ACE2:Spike Recognition during COVID-19 Infection. A Focus on Their Potential Mechanism of Action through Computational and Biochemical Assays Biomolecules 2021 11 1048 10.3390/biom11071048
Chen R.H. Yang L.J. Hamdoun S. Chung S.K. Lam C.W.-K. Zhang K.X. Guo X. Xia C. Law B.Y.K. Wong V.K.W. 1,2,3,4,6-Pentagalloyl Glucose, a RBD-ACE2 Binding Inhibitor to Prevent SARS-CoV-2 Infection Front. Pharmacol. 2021 12 634176 10.3389/fphar.2021.634176 33897423
Yang L.J. Chen R.H. Hamdoun S. Coghi P. Ng J.P.L. Zhang D.W. Guo X. Xia C. Law B.Y.K. Wong V.K.W. Corilagin prevents SARS-CoV-2 infection by targeting RBD-ACE2 binding Phytomedicine 2021 87 153591 10.1016/j.phymed.2021.153591 34029937
Balkrishna A. Pokhrel S. Singh H. Joshi M. Mulay V.P. Haldar S. Varshney A. Withanone from Withania somnifera attenuates SARS-CoV-2 RBD and host ACE2 interactions to rescue spike protein induced pathologies in humanized zebrafish model Drug Des. Devel. Ther. 2021 15 1111 1133 10.2147/DDDT.S292805 33737804
Caohuy H. Eidelman O. Chen T. Liu S. Yang Q. Bera A. Walton N.I. Wang T.T. Pollard H.B. Common cardiac medications potently inhibit ACE2 binding to the SARS-CoV-2 Spike, and block virus penetration and infectivity in human lung cells Sci. Rep. 2021 11 22195 10.1038/s41598-021-01690-9
Chitsike L. Krstenansky J. Duerksen-Hughes P.J. ACE2: S1 RBD interaction-targeted peptides and small molecules as potential COVID-19 therapeutics Adv. Pharmacol. Pharm. Sci. 2021 2021 e1828792 10.1155/2021/1828792 34746794
Clementi N. Scagnolari C. D’Amore A. Palombi F. Criscuolo E. Frasca F. Pierangeli A. Mancini N. Antonelli G. Clementi M. et al. Naringenin is a powerful inhibitor of SARS-CoV-2 infection in vitro Pharmacol. Res. 2021 163 105255 10.1016/j.phrs.2020.105255 33096221
van Breemen R.B. Muchiri R.N. Bates T.A. Weinstein J.B. Leier H.C. Farley S. Tafesse F.G. Cannabinoids block cellular entry of SARS-CoV-2 and the emerging variants J. Nat. Prod. 2022 85 176 184 10.1021/acs.jnatprod.1c00946
Kim T. Jeon S. Jang Y. Gotina L. Won J. Ju Y. Kim S. Jang M. Won W. Park M. et al. Platycodin D, a natural component of Platycodon grandiflorum, prevents both lysosome- and TMPRSS2-driven SARS-CoV-2 infection by hindering membrane fusion Exp. Mol. Med. 2021 53 956 972 10.1038/s12276-021-00624-9
Senthil Kumar K.J. Gokila Vani M. Wang C.-S. Chen C.-C. Chen Y.-C. Lu L.-P. Huang C.-H. Lai C.-S. Wang S.-Y. Geranium and lemon essential oils and their active compounds downregulate angiotensin-converting enzyme 2 (ACE2), a SARS-CoV-2 spike receptor-binding domain, in epithelial cells Plants 2020 9 770 10.3390/plants9060770
Xu H. Liu B. Xiao Z. Zhou M. Ge L. Jia F. Liu Y. Jin H. Zhu X. Gao J. et al. Computational and experimental studies reveal that thymoquinone blocks the entry of coronaviruses into in vitro cells Infect. Dis. Ther. 2021 10 483 494 10.1007/s40121-021-00400-2 33532909
Caly L. Druce J.D. Catton M.G. Jans D.A. Wagstaff K.M. The FDA-approved drug ivermectin inhibits the replication of SARS-CoV-2 in vitro Antivir. Res. 2020 178 104787 10.1016/j.antiviral.2020.104787 32251768
Große M. Ruetalo N. Layer M. Hu D. Businger R. Rheber S. Setz C. Rauch P. Auth J. Fröba M. et al. Quinine Inhibits Infection of Human Cell Lines with SARS-CoV-2 Viruses 2021 13 647 10.3390/v13040647
Wang N. Han S. Liu R. Meng L. He H. Zhang Y. Wang C. Lv Y. Wang J. Li X. et al. Chloroquine and hydroxychloroquine as ACE2 blockers to inhibit viropexis of 2019-nCoV Spike pseudotyped virus Phytomedicine 2020 79 153333 10.1016/j.phymed.2020.153333 32920291
Ho T.-Y. Wu S.-L. Chen J.-C. Li C.-C. Hsiang C.-Y. Emodin blocks the SARS coronavirus spike protein and angiotensin-converting enzyme 2 interaction Antivir. Res. 2007 74 92 101 10.1016/j.antiviral.2006.04.014
Lan J. Ge J. Yu J. Shan S. Zhou H. Fan S. Zhang Q. Shi X. Wang Q. Zhang L. et al. Structure of the SARS-CoV-2 spike receptor-binding domain bound to the ACE2 receptor Nature 2020 581 215 220 10.1038/s41586-020-2180-5 32225176
Barton M.I. MacGowan S.A. Kutuzov M.A. Dushek O. Barton G.J. van der Merwe P.A. Effects of common mutations in the SARS-CoV-2 Spike RBD and its ligand, the human ACE2 receptor on binding affinity and kinetics eLife 2021 10 e70658 10.7554/eLife.70658 34435953
Laffeber C. de Koning K. Kanaar R. Lebbink J.H.G. Experimental Evidence for Enhanced Receptor Binding by Rapidly Spreading SARS-CoV-2 Variants J. Mol. Biol. 2021 433 167058 10.1016/j.jmb.2021.167058
Liu H. Zhang Q. Wei P. Chen Z. Aviszus K. Yang J. Downing W. Jiang C. Liang B. Reynoso L. et al. The basis of a more contagious 501Y.V1 variant of SARS-CoV-2 Cell Res. 2021 31 720 722 10.1038/s41422-021-00496-8
Shang J. Ye G. Shi K. Wan Y. Luo C. Aihara H. Geng Q. Auerbach A. Li F. Structural basis of receptor recognition by SARS-CoV-2 Nature 2020 581 221 224 10.1038/s41586-020-2179-y 32225175
Supasa P. Zhou D. Dejnirattisai W. Liu C. Mentzer A.J. Ginn H.M. Zhao Y. Duyvesteyn H.M.E. Nutalai R. Tuekprakhon A. et al. Reduced neutralization of SARS-CoV-2 B.1.1.7 variant by convalescent and vaccine sera Cell 2021 184 2201 2211.e7 10.1016/j.cell.2021.02.033 33743891
Prévost J. Richard J. Gasser R. Ding S. Fage C. Anand S.P. Adam D. Vergara N.G. Tauzin A. Benlarbi M. et al. Impact of temperature on the affinity of SARS-CoV-2 Spike for ACE2 bioRxiv 2021 451812 10.1101/2021.07.09.451812
Wrapp D. Wang N. Corbett K.S. Goldsmith J.A. Hsieh C.-L. Abiona O. Graham B.S. McLellan J.S. Cryo-EM structure of the 2019-nCoV spike in the prefusion conformation Science 2020 367 1260 1263 10.1126/science.abb2507
ReactionBiology. Reaction Biology Available online: https://www.reactionbiology.com/sites/default/files/Images/Content/Biophysical_Assay/SPR_S%20protein%20ACE2_ReactionBiology_V2.pdf (accessed on 25 October 2023)
Allen J.D. Watanabe Y. Chawla H. Newby M.L. Crispin M. Subtle Influence of ACE2 Glycan Processing on SARS-CoV-2 Recognition J. Mol. Biol. 2021 433 166762 10.1016/j.jmb.2020.166762 33340519
Kuznetsov A. Arukuusk P. Härk H. Juronen E. Langel Ü. Ustav M. Järv J. ACE2 peptide fragment interacts with several sites on the SARS-CoV-2 spike protein S1 bioRxiv 2020 424682 10.1101/2020.12.29.424682
Walls A.C. Park Y.-J. Tortorici M.A. Wall A. McGuire A.T. Veesler D. Structure, Function, and Antigenicity of the SARS-CoV-2 Spike Glycoprotein Cell 2020 181 281 292.e6 10.1016/j.cell.2020.02.058
Zhang J. Cai Y. Xiao T. Lu J. Peng H. Sterling S.M. Walsh R.M. Rits-Volloch S. Zhu H. Woosley A.N. et al. Structural impact on SARS-CoV-2 spike protein by D614G substitution Science 2021 372 525 530 10.1126/science.abf2303
Ru J. Li P. Wang J. Zhou W. Li B. Huang C. Li P. Guo Z. Tao W. Yang Y. et al. TCMSP: A database of systems pharmacology for drug discovery from herbal medicines J. Cheminform. 2014 6 13 10.1186/1758-2946-6-13
Smith M.D. Smith J.C. Repurposing Therapeutics for COVID-19: Supercomputer-Based Docking to the SARS-CoV-2 Viral Spike Protein and Viral Spike Protein-Human ACE2 Interface ChemRxiv 2020 preprint
Charles C. Nachtergael A. Ouedraogo M. Belayew A. Duez P. Effects of chemopreventive natural products on non-homologous end-joining DNA double-strand break repair Mutat. Res./Genet. Toxicol. Environ. Mutagen. 2014 768 33 41 10.1016/j.mrgentox.2014.04.014 24786628
Rebello C.J. Beyl R.A. Lertora J.J.L. Greenway F.L. Ravussin E. Ribnicky D.M. Poulev A. Kennedy B.J. Castro H.F. Campagna S.R. et al. Safety and pharmacokinetics of naringenin: A randomized, controlled, single-ascending-dose clinical trial Diabetes Obes. Metab. 2020 22 91 98 10.1111/dom.13868 31468636
Biber A. Harmelin G. Lev D. Ram L. Shaham A. Nemet I. Kliker L. Erster O. Mandelboim M. Schwartz E. The effect of ivermectin on the viral load and culture viability in early treatment of nonhospitalized patients with mild COVID-19—A double-blind, randomized placebo-controlled trial Int. J. Infect. Dis. 2022 122 733 740 10.1016/j.ijid.2022.07.003 35811080
González Canga A. Sahagún Prieto A.M. Diez Liébana M.J. Fernández Martínez N. Sierra Vega M. García Vieitez J.J. The pharmacokinetics and interactions of ivermectin in humans—A mini-review AAPS J. 2008 10 42 46 10.1208/s12248-007-9000-9
Lee J.-H. Kim J.M. Kim C. Pharmacokinetic analysis of rhein in Rheum undulatum L. J. Ethnopharmacol. 2003 84 5 9 10.1016/S0378-8741(02)00222-2 12499069
Zhu W. Wang X.-M. Zhang L. Li X.-Y. Wang B.-X. Pharmacokinetic of rhein in healthy male volunteers following oral and retention enema administration of rhubarb extract: A single dose study Am. J. Chin. Med. 2005 33 839 850 10.1142/S0192415X05003508 16355440
Mieres-Castro D. Mora-Poblete F. Saponins: Research Progress and Their Potential Role in the Post-COVID-19 Pandemic Era Pharmaceutics 2023 15 348 10.3390/pharmaceutics15020348
Ogunyemi O.M. Gyebi G.A. Ibrahim I.M. Olaiya C.O. Ocheje J.O. Fabusiwa M.M. Adebayo J.O. Dietary stigmastane-type saponins as promising dual-target directed inhibitors of SARS-CoV-2 proteases: A structure-based screening RSC Adv. 2021 11 33380 33398 10.1039/D1RA05976A
Rehan M. Shafiullah Medicinal plant-based saponins targeting COVID-19 Mpro in silico Tradit Med. Res. 2021 6 21 30 10.53388/TMR20201130210
Falade V.A. Adelusi T.I. Adedotun I.O. Abdul-Hammed M. Lawal T.A. Agboluaje S.A. In Silico investigation of saponins and tannins as potential inhibitors of SARS-CoV-2 main protease (Mpro) Silico Pharmacol. 2021 9 9 10.1007/s40203-020-00071-w
Chen H. Du Q. Potential Natural Compounds for Preventing SARS-CoV-2 (2019-nCoV) Infection Preprints 2020 10.20944/preprints202001.0358.v3
Yan Y. Shen X. Cao Y. Zhang J. Wang Y. Cheng Y. Discovery of Anti-2019-nCoV Agents from Chinese Patent Drugs via Docking Screening Preprints 2020 2020020254 10.20944/preprints202002.0254.v1
Cheng P.W. Ng L.T. Chiang L.C. Lin C.C. Antiviral effects of saikosaponins on human coronavirus 229E in vitro Clin. Exp. Pharmacol. Physiol. 2006 33 612 616 10.1111/j.1440-1681.2006.04415.x 16789928
Cinatl J. Morgenstern B. Bauer G. Chandra P. Rabenau H. Doerr H.W. Glycyrrhizin, an active component of liquorice roots, and replication of SARS-associated coronavirus Lancet 2003 361 2045 2046 10.1016/S0140-6736(03)13615-X 12814717
Chen F. Chan K.H. Jiang Y. Kao R.Y. Lu H.T. Fan K.W. Cheng V.C. Tsui W.H. Hung I.F. Lee T.S. et al. In Vitro susceptibility of 10 clinical isolates of SARS coronavirus to selected antiviral compounds J. Clin. Virol. 2004 31 69 75 10.1016/j.jcv.2004.03.003 15288617
Hoever G. Baltina L. Michaelis M. Kondratenko R. Baltina L. Tolstikov G.A. Doerr H.W. Cinatl J. Jr. Antiviral activity of glycyrrhizic acid derivatives against SARS-coronavirus J. Med. Chem. 2005 48 1256 1259 10.1021/jm0493008
Wu C.Y. Jan J.T. Ma S.H. Kuo C.J. Juan H.F. Cheng Y.S. Hsu H.H. Huang H.C. Wu D. Brik A. et al. Small molecules targeting severe acute respiratory syndrome human coronavirus Proc. Natl. Acad. Sci. USA 2004 101 10012 10017 10.1073/pnas.0403596101
Yu K. Chen F. Li C. Absorption, disposition, and pharmacokinetics of saponins from chinese medicinal herbs: What do we know and what do we need to know more? Curr. Drug Metab. 2012 13 577 598 10.2174/1389200211209050577 22292787
Taco V. Savarino P. Benali S. Villacrés E. Raquez J.-M. Gerbaux P. Duez P. Nachtergael A. Deep eutectic solvents for the extraction and stabilization of Ecuadorian quinoa (Chenopodium quinoa Willd.) saponins J. Clean. Prod. 2022 363 132609 10.1016/j.jclepro.2022.132609
Sha A. Liu Y. Hao H. Current state-of-the-art and potential future therapeutic drugs against COVID-19 Front. Cell Dev. Biol. 2023 11 1238027 10.3389/fcell.2023.1238027
Wu A. Shi K. Wang J. Zhang R. Wang Y. Targeting SARS-CoV-2 entry processes: The promising potential and future of host-targeted small-molecule inhibitors Eur. J. Med. Chem. 2024 263 115923 10.1016/j.ejmech.2023.115923
Lin Y.-L. Wu C.-F. Huang Y.-T. Phenols from the roots of Rheum palmatum attenuate chemotaxis in rat hepatic stellate cells Planta Med. 2008 74 1246 1252 10.1055/s-2008-1074581 18612943
Sigma-Aldrich Available online: https://www.sigmaaldrich.com/certificates/Graphics/COfAInfo/fluka/pdf/rtc/PHR1380_LRAC6468.pdf (accessed on 18 November 2023)
van Beek T.A. Montoro P. Chemical analysis and quality control of Ginkgo biloba leaves, extracts, and phytopharmaceuticals J. Chromatogr. A 2009 1216 2002 2032 10.1016/j.chroma.2009.01.013 19195661
Wang C.-C. Huang Y.-J. Chen L.-G. Lee L.-T. Yang L.-L. Inducible nitric oxide synthase inhibitors of chinese herbs III. Rheum palmatum Planta Med. 2002 68 869 874 10.1055/s-2002-34918 12391547
EMA Assessment Report on Rheum palmatum L. and Rheum Officinale Baillon, Radix HMPC—European Medicines Agency Amsterdam The Netherlands 2020
Fluidic Analytics Available online: https://www.fluidic.com/ (accessed on 21 October 2023)
Fluidic Analytics User Guide for Fluidity™ One-M IFU-0011 v4 Fluidic Analytics Cambridge, UK 2022 12
Fluidic Analytics User Manual for Fluidity One-W and Fluidity One-W Serum IFU-0007v8 Fluidic Analytics Cambridge, UK 2021 9
Overduin M. Esmaili M. Memtein: The fundamental unit of membrane-protein structure and function Chem. Phys. Lipids 2019 218 73 84 10.1016/j.chemphyslip.2018.11.008
Fluidic Analytics Available online: https://www.fluidic.com/resources/hydrodynamicradius-and-protein-weight/ (accessed on 9 April 2022)
Fluidic Analytics Available online: https://www.fluidic.com/calculators-page/ (accessed on 23 October 2023)