biodegradable polymers; long chain branching; molecular engineering; polymer synthesis; rheology; Branched architecture; Long chains; Long-chain branching; Melt strength; Molecular engineering; Poly (butylenes succinate); Polybutylene succinate; Polymer synthesis; Strength property; Terephthalate; Chemical Engineering (all); Physical and Theoretical Chemistry; Polymers and Plastics; Organic Chemistry; Materials Chemistry; General Chemical Engineering
Abstract :
[en] Highly biobased poly(butylene succinate-co-terephthalate) (PBST) with processing temperatures close to those of commodity polymers (160–180°C) and long-chain branched architectures (LCB) are synthesized by different strategies. Their rheological properties are investigated, in particular their melt strength properties. A two-step synthesis route is first proposed based on linear LCBs produced by polycondensation followed by reactive extrusion with an epoxy-based multifunctional agent Joncryl® at concentrations up to 2 wt%. A one-step synthesis strategy is also developed using glycerol as a branching agent, introduced at a low concentration (0.5 wt%) directly during the PBST polycondensation process. The molecular weights, LCB structures, and thermal properties are determined by triple detection size exclusion chromatography and differential scanning calorimetry. For PBSTs synthesized in two steps, gelation takes place simultaneously with the branching reactions. However, a concentration of Joncryl® close to 2 wt% is required to improve the melt strength properties, with strain hardening effects under elongation conditions. Interestingly, PBSTs synthesized by in-situ addition of glycerol show remarkable melt strength and a high melt stabilization process. Dynamic rheology investigations allow attributing these effects to statistical/ho-mogeneous gel-free LCB architectures obtained during reactive extrusion without any additional post-processing. The effec-tiveness of approaches to easily improve the melt strength of highly biobased aliphatic-aromatic copolyesters (theoretical biobased content up to 85%) and to eliminate extrusion defects/instabilities in PBSTs is thus demonstrated, allowing the pos-sibility of expanding the industrial application domains of these polymers in packaging and sustainable applications.
Disciplines :
Chemistry
Author, co-author :
Yousfi, Mohamed; IMT Nord Europe, Institut Mines-Télécom, Univ. Lille, Centre for Materials and Processes, Lille, France ; Univ Lyon, CNRS, UMR 5223, Ingénierie des Matériaux Polymères, Université Claude Bernard Lyon 1, INSA Lyon, Université Jean Monnet, Villeurbanne, France
Samuel, Cédric; IMT Nord Europe, Institut Mines-Télécom, Univ. Lille, Centre for Materials and Processes, Lille, France
Dadouche, Tarek; Univ Lyon, CNRS, UMR 5223, Ingénierie des Matériaux Polymères, Université Claude Bernard Lyon 1, INSA Lyon, Université Jean Monnet, Villeurbanne, France
Mincheva, Rosica ; Université de Mons - UMONS > Faculté des Science > Service des Matériaux Polymères et Composites
Lacrampe, Marie-France; Univ Lyon, CNRS, UMR 5223, Ingénierie des Matériaux Polymères, Université Claude Bernard Lyon 1, INSA Lyon, Université Jean Monnet, Villeurbanne, France
Language :
English
Title :
Long-chain branched poly(butylene succinate-co-terephthalate) copolyesters: Impact of (reactive) synthesis strategies on melt strength properties
Publication date :
March 2023
Journal title :
eXPRESS Polymer Letters
ISSN :
1788-618X
Publisher :
BME-PT and GTE
Volume :
17
Issue :
3
Pages :
300 - 316
Peer reviewed :
Peer Reviewed verified by ORBi
Research unit :
S816 - Matériaux Polymères et Composites
Research institute :
Matériaux
Funding text :
The authors gratefully acknowledge Ms. Agnes Crepet from the University Claude Bernard Lyon 1 and Mr. Ahmed Belhadj from INSA Lyon for their experimental support and recommendations regarding the SEC-MALS and gel determination measurements. The authors acknowledge the European Com-munity (FEDER funds) and the International Campus on Safety and Intermodality in Transportation (CISIT, France) as well as the Hauts-de-France Region (France) for the fi-nancial contribution of the dynamic rheometer and extrusion machines.
Marinova D., Bogueva D.: Reducing food waste and packaging. in ‘Food in a planetary emergency’ (eds.: Marinova D., Bogueva D.) Springer, Singapore, 57–72 (2022). https://doi.org/10.1007/978-981-16-7707-6_4
Shi Y., Zheng C., Zhu G., Ren Y., Liu L-Z., Zhang W., Han L.: A heat initiated 3D shape recovery and biodegradable thermoplastic tolerating a strain of 5. Reactive and Functional Polymers, 154, 104680 (2020). https://doi.org/10.1016/j.reactfunctpolym.2020.104680
Jacquel N., Saint-Loup R., Pascault J-P., Rousseau A., Fenouillot F.: Bio-based alternatives in the synthesis of aliphatic–aromatic polyesters dedicated to biodegradable film applications. Polymer, 59, 234–242 (2015). https://doi.org/10.1016/j.polymer.2014.12.021
Li F., Luo S., Ma C., Yu J., Cao A.: The crystallization and morphology of biodegradable poly(butylene succi-nate-co-terephthalate) copolyesters with high content of BT units. Journal of Applied Polymer Science, 118, 623–630 (2010). https://doi.org/10.1002/app.32381
Tsai P-H., Wang C-H., Kan L-S., Chen C. W.: Studies on the optimal conditions for synthesizing poly(buty-lene succinate-co-terephthalate) copolyesters with tar-geted properties. Asia-Pacific Journal of Chemical En-gineering, 7, S88-S94 (2012). https://doi.org/10.1002/apj.645
Honda N., Taniguchi I., Miyamoto M., Kimura Y.: Reaction mechanism of enzymatic degradation of poly (butylene succinate-co-terephthalate) (PBST) with a li-pase originated from Pseudomonas cepacia. Macro-molecular Bioscience, 3, 189–197 (2003). https://doi.org/10.1002/mabi.200390023
Qin P., Wu L., Li B., Li N., Pan X., Dai J.: Superior gas barrier properties of biodegradable PBST vs. PBAT copolyesters: A comparative study. Polymers, 13, 3449 (2021). https://doi.org/10.3390/polym13193449
Li F., Luo S., Zhang J., Yu J.: Temperature dependences of solid structure and properties of biodegradable poly(butylene succinate-co-terephthalate) (PBST) copoly-ester. Journal of Thermal Analysis and Calorimetry, 113, 915–921 (2013). https://doi.org/10.1007/s10973-012-2772-x
Zhang J., Wang X., Li F., Yu J.: Mechanical properties and crystal structure transition of biodegradable poly (butylene succinate-co-terephthalate) (PBST) fibers. Fibers and Polymers, 13, 1233–1238 (2012). https://doi.org/10.1007/s12221-012-1233-2
Xu M., Lu J., Zhao J., Wei L., Liu T., Zhao L., Park C. B.: Rheological and foaming behaviors of long-chain branched polyamide 6 with controlled branch length. Polymer, 224, 123730 (2021). https://doi.org/10.1016/j.polymer.2021.123730
Candal M. V., Safari M., Fernández M., Otaegi I., Múgica A., Zubitur M., Gerrica-Echevarria G., Sebastián V., Irusta S., Loaeza D., Maspoch M. L., Santana O. O., Müller A. J.: Structure and properties of reactively extruded opaque post-consumer recycled PET. Polymers, 13, 3531 (2021). https://doi.org/10.3390/polym13203531
Seo Y. P., Seo Y.: Effect of molecular structure change on the melt rheological properties of a polyamide (nylon 6). ACS omega, 3, 16549–16555 (2018). https://doi.org/10.1021/acsomega.8b02355
Larson R. G., Zhou Q., Shanbhag S., Park S. J.: Advances in modeling of polymer melt rheology. AIChE Journal, 53, 542–548 (2007). https://doi.org/10.1002/aic.11064
Liu J., Yu W., Zhou C.: Polymer chain topological map as determined by linear viscoelasticity. Journal of Rhe-ology, 55, 545–570 (2011). https://doi.org/10.1122/1.3569136
Narimissa E., Wagner M. H.: Review on tube model based constitutive equations for polydisperse linear and long-chain branched polymer melts. Journal of Rheol-ogy, 63, 361–375 (2019). https://doi.org/10.1122/1.5064642
Al-Itry R., Lamnawar K., Maazouz A.: Biopolymer blends based on poly(lactic acid): Shear and elongation rheology/structure/blowing process relationships. Poly-mers, 7, 939–962 (2015). https://doi.org/10.3390/polym7050939
Sugimoto M., Tanaka T., Masubuchi Y., Takimoto J-I., Koyama K.: Effect of chain structure on the melt rhe-ology of modified polypropylene. Journal of Applied Polymer Science, 73, 1493–1500 (1999). https://doi.org/10.1002/(SICI)1097-4628(19990822)73:8<1493::AID-APP18>3.0.CO;2-2
Yan D., Wang W-J., Zhu S.: Effect of long chain branching on rheological properties of metallocene polyethyl-ene. Polymer, 40, 1737–1744 (1999). https://doi.org/10.1016/S0032-3861(98)00318-8
Romanini D., Savadori A., Gianotti G.: Long chain branching in low density polyethylene: 2. Rheological behaviour of the polymers. Polymer, 21, 1092–1101 (1980). https://doi.org/10.1016/0032-3861(80)90045-2
Forsythe J. S., Cheah K., Nisbet D. R., Gupta R. K., Lau A., Donovan A. R., O'Shea M. S., Moad G.: Rhe-ological properties of high melt strength poly(ethylene terephthalate) formed by reactive extrusion. Journal of Applied Polymer Science, 100, 3646–3652 (2006). https://doi.org/10.1002/app.23166
Cao K., Li Y., Lu Z-Q., Wu S-L., Chen Z-H., Yao Z., Huang Z-M.: Preparation and characterization of high melt strength polypropylene with long chain branched structure by the reactive extrusion process. Journal of Applied Polymer Science, 121, 3384–3392 (2011). https://doi.org/10.1002/app.34007
Stanic S., Gottlieb G., Koch T., Göpperl L., Schmid K., Knaus S., Archodoulaki V-M.: Influence of different types of peroxides on the long-chain branching of PP via reactive extrusion. Polymers, 12, 886 (2020). https://doi.org/10.3390/polym12040886
Corre Y-M., Duchet J., Reignier J., Maazouz A.: Melt strengthening of poly(lactic acid) through reactive extrusion with epoxy-functionalized chains. Rheologica Acta, 50, 613–629 (2011). https://doi.org/10.1007/s00397-011-0538-1
Wang L., Jing X., Cheng H., Hu X., Yang L., Huang Y.: Blends of linear and long-chain branched poly(L-lac-tide)s with high melt strength and fast crystallization rate. Industrial and Engineering Chemistry Research, 51, 10088–10099 (2012). https://doi.org/10.1021/ie300526u
Zhang H., Bai H., Liu Z., Zhang Q., Fu Q.: Toward high-performance poly(L-lactide) fibers via tailoring crystallization with the aid of fibrillar nucleating agent. ACS Sustainable Chemistry and Engineering, 4, 3939– 3947 (2016). https://doi.org/10.1021/acssuschemeng.6b00784
Dadouche T., Yousfi M., Samuel C., Lacrampe M-F., Soulestin J.: (Nano)fibrillar morphology development in biobased poly(butylene succinate-co-adipate)/poly (amide-11) blown films. Polymer Engineering and Sci-ence, 61, 1324–1337 (2021). https://doi.org/10.1002/pen.25645
Yousfi M., Dadouche T., Chomat D., Samuel C., Soulestin J., Lacrampe M-F., Krawczak P.: Development of nanofibrillar morphologies in poly(L-lactide)/ poly(amide) blends: Role of the matrix elasticity and identification of the critical shear rate for the nodular/ fibrillar transition. RSC Advances, 8, 22023–22041 (2018). https://doi.org/10.1039/C8RA03339K
Yousfi M., Soulestin J., Marcille S., Lacrampe M-F.: In-situ nano-fibrillation of poly(butylene succinate-co-adipate) in isosorbide-based polycarbonate matrix. Re-lationship between rheological parameters and induced morphological and mechanical properties. Polymer, 217, 123445 (2021). https://doi.org/10.1016/j.polymer.2021.123445
Zhang Z., Wan D., Xing H., Zhang Z., Tan H., Wang L., Zheng J., An Y., Tang T.: A new grafting monomer for synthesizing long chain branched polypropylene through melt radical reaction. Polymer, 53, 121–129 (2012). https://doi.org/10.1016/j.polymer.2011.11.033
Wang L., Jing X., Cheng H., Hu X., Yang L., Huang Y.: Rheology and crystallization of long-chain branched poly(L-lactide)s with controlled branch length. Industrial and Engineering Chemistry Research, 51, 10731– 10741 (2012). https://doi.org/10.1021/ie300524j
Wei L., McDonald A. G.: Peroxide induced cross-link-ing by reactive melt processing of two biopolyesters: Poly(3-hydroxybutyrate) and poly(L-lactic acid) to improve their melting processability. Journal of Applied Polymer Science, 132, 41724 (2015). https://doi.org/10.1002/app.41724
Przybysz-Romatowska M., Haponiuk J., Formela K.: Reactive extrusion of biodegradable aliphatic polyesters in the presence of free-radical-initiators: A re-view. Polymer Degradation and Stability, 182, 109383 (2020). https://doi.org/10.1016/j.polymdegradstab.2020.109383
Reichert C. L., Bugnicourt E., Coltelli M-B., Cinelli P., Lazzeri A., Canesi I., Braca F., Martínez B. M., Alonso R., Agostinis L., Verstichel S., Six L., de Mets S., Gómez E. C., Ißbrücker C., Geerinck R., Nettleton D. F., Campos I., Sauter E., Pieczyk P., Schmid M.: Bio-based pack-aging: Materials, modifications, industrial applications and sustainability. Polymers, 12, 1558 (2020). https://doi.org/10.3390/polym12071558
Al-Itry R., Lamnawar K., Maazouz A.: Improvement of thermal stability, rheological and mechanical properties of PLA, PBAT and their blends by reactive extrusion with functionalized epoxy. Polymer Degradation and Stability, 97, 1898–1914 (2012). https://doi.org/10.1016/j.polymdegradstab.2012.06.028
Li S., He G., Liao X., Park C. B., Yang Q., Li G.: Intro-duction of a long-chain branching structure by ultravi-olet-induced reactive extrusion to improve cell morphology and processing properties of polylactide foam. RSC Advances, 7, 6266–6277 (2017). https://doi.org/10.1039/C6RA26457C
Sun Y., Wu L., Bu Z., Li B-G., Li N., Dai J.: Synthesis and thermomechanical and rheological properties of biodegradable long-chain branched poly(butylene suc-cinate-co-butylene terephthalate) copolyesters. Industrial and Engineering Chemistry Research, 53, 10380– 10386 (2014). https://doi.org/10.1021/ie501504b
Lu J., Wu L., Li B-G.: Long chain branched poly (buty-lene succinate-co-terephthalate) copolyesters using pentaerythritol as branching agent: Synthesis, thermo-mechanical, and rheological properties. Journal of Applied Polymer Science, 134, 44544 (2017). https://doi.org/10.1002/app.44544
Quiles-Carrillo L., Fenollar O., Balart R., Torres-Giner S., Rallini M., Dominici F., Torre L.: A comparative study on the reactive compatibilization of melt-processed polyamide 1010/polylactide blends by multi-function-alized additives derived from linseed oil and petroleum. Express Polymer Letters, 14, 583–604 (2020). https://doi.org/10.3144/expresspolymlett.2020.48
Cailloux J., Santana O. O., Franco-Urquiza E., Bou J. J., Carrasco F., Gámez-Pérez J., Maspoch M. L.: Sheets of branched poly(lactic acid) obtained by one step reactive extrusion calendering process: Melt rheology analysis. Express Polymer Letters, 7, 304–318 (2013). https://doi.org/10.3144/expresspolymlett.2013.27
Celli A., Marchese P., Sullalti S., Berti C., Barbiroli G., Commereuc S., Verney V.: Preparation of new biobased polyesters containing glycerol and their photodurability for outdoor applications. Green Chemistry, 14, 182–187 (2012). https://doi.org/10.1039/C1GC15973A
Härth M., Kaschta J., Schubert D. W.: Shear and elon-gational flow properties of long-chain branched poly (ethylene terephthalates) and correlations to their molecular structure. Macromolecules, 47, 4471–4478 (2014). https://doi.org/10.1021/ma5002657
Ren L., Wang Y., Ge J., Lu D., Liu Z.: Enzymatic synthesis of high-molecular-weight poly(butylene succi-nate) and its copolymers. Macromolecular Chemistry and Physics, 216, 636–640 (2015). https://doi.org/10.1002/macp.201400550
Wang J-M., Ding S-J., Wu T-M.: Rheology, crystallization behavior, and mechanical properties of poly(buty-lene succinate-co-terephthalate)/cellulose nanocrystal composites. Polymer Testing, 87, 106551 (2020). https://doi.org/10.1016/j.polymertesting.2020.106551
Garin M., Tighzert L., Vroman I., Marinkovic S., Estrine B.: The influence of molar mass on rheological and di-lute solution properties of poly(butylene succinate). Journal of Applied Polymer Science, 131, 40887 (2014). https://doi.org/10.1002/app.40887
Härth M., Dörnhöfer A.: Film blowing of linear and long-chain branched poly(ethylene terephthalate). Poly-mers, 12, 1605 (2020). https://doi.org/10.3390/polym12071605
Charlier Q., Girard E., Freyermouth F., Vandesteene M., Jacquel N., Ladavière C., Rousseau A., Fenouillot F.: Solution viscosity – molar mass relationships for poly (butylene succinate) and discussion on molar mass analysis. Express Polymer Letters, 9, 424–434 (2015). https://doi.org/10.3144/expresspolymlett.2015.41
Härth M., Dörnhöfer A., Kaschta J., Münstedt H., Schubert D. W.: Molecular structure and rheological properties of a poly(ethylene terephthalate) modified by two different chain extenders. Journal of Applied Polymer Science, 138, 50110 (2021). https://doi.org/10.1002/app.50110
Nifant’ev I. E., Bagrov V. V., Komarov P. D., Ilyin S. O., Ivchenko P. V.: The use of branching agents in the synthesis of PBAT. Polymers, 14, 1720 (2022). https://doi.org/10.3390/polym14091720
Standau T., Nofar M., Dörr D., Ruckdäschel H., Altstädt V.: A review on multifunctional epoxy-based Joncryl® ADR chain extended thermoplastics. Polymer Reviews, 62, 296–350 (2022). https://doi.org/10.1080/15583724.2021.1918710
Jie Z., Fa-xue L., Jiang-yong Y.: Multiple melting behavior of biodegradable poly(butylene succinate-co-terephthalate) (PBST) copolyester. Journal of Thermal Analysis and Calorimetry, 111, 711–715 (2013). https://doi.org/10.1007/s10973-012-2229-2
Li F., Xu X., Hao Q., Li Q., Yu J., Cao A.: Effects of comonomer sequential structure on thermal and crystallization behaviors of biodegradable poly(butylene succinate-co-butylene terephthalate)s. Journal of Polymer Science Part B: Polymer Physics, 44, 1635–1644 (2006). https://doi.org/10.1002/polb.20797
Luo S., Li F., Yu J., Cao A.: Synthesis of poly(butylene succinate-co-butylene terephthalate) (PBST) copoly-esters with high molecular weights via direct esterifi-cation and polycondensation. Journal of Applied Polymer Science, 115, 2203–2211 (2010). https://doi.org/10.1002/app.31346
Luo S., Li F., Yu J.: The thermal, mechanical and vis-coelastic properties of poly(butylene succinate-co-terephthalate) (PBST) copolyesters with high content of BT units. Journal of Polymer Research, 18, 393–400 (2011). https://doi.org/10.1007/s10965-010-9429-x
Wojtczak M., Dutkiewicz S., Galeski A., Gutowska A.: Classification of aliphatic-butylene terephthalate copoly-esters in relation to aliphatic/aromatic ratio. Polymer, 113, 119–134 (2017). https://doi.org/10.1016/j.polymer.2017.02.054
Zheng C., Zhu G., Shi Y., Liu L-Z., Ren M., Zhang W., Han L.: Crystallization, structures and properties of biodegradable poly(butylene succinate-co-butylene terephthalate) with a symmetric composition. Materials Chemistry and Physics, 260, 124183 (2021). https://doi.org/10.1016/j.matchemphys.2020.124183
Ishioka R., Kitakuni E., Ichikawa Y.: Aliphatic poly-esters: ‘Bionolle’. in ‘Biopolymers online’ (eds.: Hofrichter M., Steinbüchel A.) Wiley-VCH, Weinheim, Vol 4, 275–297 (2002). https://doi.org/10.1002/3527600035.bpol4010
Duborper C., Samuel C., Akue-Asseko A. C., Loux C., Lacrampe M-F., Krawczak P.: Design of biobased poly (butylene succinate) foams by single-screw extrusion: Identification of relevant rheological parameters con-trolling foam morphologies. Polymer Engineering and Science, 58, 503–512 (2018). https://doi.org/10.1002/pen.24733
Arayesh H., Ebrahimi N. G., Khaledi B., Esfahani M. K.: Introducing four different branch structures in PET by reactive processing – A rheological investigation. Journal of Applied Polymer Science, 137, 49243 (2020). https://doi.org/10.1002/app.49243
Han Y-K., Um J. W., Im S. S., Kim B. C.: Synthesis and characterization of high molecular weight branched PBA. Journal of Polymer Science Part A: Polymer Chemistry, 39, 2143–2150 (2001). https://doi.org/10.1002/pola.1190
Purohit P. J., Huacuja-Sánchez J. E., Wang D-Y., Em-merling F., Thünemann A., Heinrich G., Schönhals A.: Structure–property relationships of nanocomposites based on polypropylene and layered double hydroxides. Macromolecules, 44, 4342–4354 (2011). https://doi.org/10.1021/ma200323k
Henton D. E., Gruber P., Lunt J., Randall J.: Polylactic acid technology. in ‘Natural fibers, biopolymers, and biocomposites’ (eds.: Mohanty A. K., Misra L., Drzal L. T.) Taylor and Francis, Michigan, 527–577 (2005). https://doi.org/10.1201/9780203508206
Witzke D. R., Narayan R., Kolstad J. J.: Reversible kinetics and thermodynamics of the homopolymerization of L-lactide with 2-ethylhexanoic acid tin(II) salt. Macromolecules, 30, 7075–7085 (1997). https://doi.org/10.1021/ma970631m
Gupta M. C., Deshmukh V. G.: Thermal oxidative degradation of poly-lactic acid. Part I: Activation energy of thermal degradation in air. Colloid and Polymer Science, 260, 308–311 (1982). https://doi.org/10.1007/BF01447969
Sivasamy P., Palaniandavar M., Vijayakumar C., Lederer K.: The role of β-hydrogen in the degradation of poly-esters. Polymer Degradation and Stability, 38, 15–21 (1992). https://doi.org/10.1016/0141-3910(92)90017-Y
Nguyen Q. T., Japon S., Luciani A., Leterrier Y., Månson J-A. E.: Molecular characterization and rheological properties of modified poly(ethylene terephthalate) obtained by reactive extrusion. Polymer Engineering and Science, 41, 1299–1309 (2001). https://doi.org/10.1002/pen.10830
Yang Z., Xin C., Mughal W., Li X., He Y.: High-melt-elasticity poly(ethylene terephthalate) produced by reactive extrusion with a multi-functional epoxide for foaming. Journal of Applied Polymer Science, 135, 45805 (2018). https://doi.org/10.1002/app.45805
Dhavalikar R., Yamaguchi M., Xanthos M.: Molecular and structural analysis of a triepoxide-modified poly (ethylene terephthalate) from rheological data. Journal of Polymer Science Part A: Polymer Chemistry, 41, 958–969 (2003). https://doi.org/10.1002/pola.10641
Chen P., Zhao L., Gao X., Xu Z., Liu Z., Hu D.: Engineering of polybutylene succinate with long-chain branching toward high foamability and degradation. Polymer Degradation and Stability, 194, 109745 (2021). https://doi.org/10.1016/j.polymdegradstab.2021.109745
Honerkamp J., Weese J.: Determination of the relaxation spectrum by a regularization method. Macromol-ecules, 22, 4372–4377 (1989). https://doi.org/10.1021/ma00201a036
Maroufkhani M., Ebrahimi N. G.: Melt rheology of linear and long-chain branched polypropylene blends. Iranian Polymer Journal, 24, 715–724 (2015). https://doi.org/10.1007/s13726-015-0357-9
Trinkle S., Walter P., Friedrich C.: van Gurp-Palmen plot II – Classification of long chain branched polymers by their topology. Rheologica Acta, 41, 103–113 (2002). https://doi.org/10.1007/s003970200010
Stadler F. J., Kaschta J., Münstedt H.: Thermorheolog-ical behavior of various long-chain branched polyeth-ylenes. Macromolecules, 41, 1328–1333 (2008). https://doi.org/10.1021/ma702367a
Bourg V., Valette R., le Moigne N., Ienny P., Guillard V., Bergeret A.: Shear and extensional rheology of linear and branched polybutylene succinate blends. Poly-mers, 13, 652 (2021). https://doi.org/10.3390/polym13040652
Münstedt H., Kurzbeck S., Stange J.: Importance of elongational properties of polymer melts for film blowing and thermoforming. Polymer Engineering and Sci-ence, 46, 1190–1195 (2006). https://doi.org/10.1002/pen.20588
Liu G., Ma H., Lee H., Xu H., Cheng S., Sun H., Chang T., Quirk R. P., Wang S-Q.: Long-chain branched polymers to prolong homogeneous stretching and to resist melt breakup. Polymer, 54, 6608–6616 (2013). https://doi.org/10.1016/j.polymer.2013.10.007