extrusion; orientation; piezoelectricity; poly(; process−structure−property relationships; D-isomers; Draw ratio; High draw ratios; Mesophases; Orientation; Piezoelectric property; Poly films; Poly(; Poly-l-lactide films; Process-structure-property relationship; Process Chemistry and Technology; Polymers and Plastics; Organic Chemistry
Abstract :
[en] Shear piezoelectric properties of uniaxially stretched poly(l-lactide) (US-PLA) films manufactured by an industrially relevant technique (i.e., extrusion-orientation without poling) are investigated, and specific insight on the process-structure-properties relationships is provided. Two commercially available PLA grades with d-isomer content between 2 and 4% are selected. The shear piezoelectric coefficient d14 of US-PLA films tends to increase with the draw ratio applied during the orientation stage, and a maximal d14 of 5.9 pC/N is reported. However, a dramatic degradation of piezoelectric properties could be observed at elevated draw ratios, in particular for PLA grades with low d-isomer content. Structures induced by the orientation stage are subsequently explored, and relations with shear piezoelectric properties are discussed. The mesophase is detected by DSC/WAXS up to draw ratio 4 after being replaced by strain-induced crystallization at higher draw ratios. The orientation state of the amorphous phase, mesophase, and α′-crystals is assessed by 2D-WAXS and polarized FTIR. Piezoelectric properties obtained at a moderate draw ratio are supported by the amount/orientation of each phase (partly oriented amorphous phase and fully oriented mesophase/α′-crystal phase). A model is proposed to evaluate the contribution of each phase. However, other structural parameters deserve careful attention at elevated draw ratios, in particular mechanical damage and formation of voids/cavities. 2D-SAXS analysis coupled with complementary characterizations indicates that the amount of voids/cavities controls the deterioration of shear piezoelectric performances at high draw ratios. This phenomenon is critical for highly crystalline PLA grades. A final discussion is dedicated to the quality of α′-crystals formed by current orientation conditions, a factor that could also limit the d14 coefficient of US-PLA films. This work consequently demonstrates that environmentally friendly piezoelectric films could be manufactured by a straightforward process of the plastic industry and opens up several scientific/technological perspectives for their future implementation into practical applications.
Disciplines :
Materials science & engineering
Author, co-author :
Ben Achour, Mohamed Aymen; Université Polytechnique Hauts-de-France, INSA Hauts-de-France, Laboratoire de Matériaux Céramiques et de Mathématiques (CERAMATHS), Valenciennes, France
Barrau, Sophie ; Université de Lille, CNRS, INRAE, Centrale Lille, UMR 8207, Unité Matériaux et Transformations (UMET), Lille, France
Tahon, Jean-François; Université de Lille, CNRS, INRAE, Centrale Lille, UMR 8207, Unité Matériaux et Transformations (UMET), Lille, France
Rguiti, Mohamed ; Université de Mons - UMONS > Faculté Polytechnique > Service de Science des Matériaux ; Université Polytechnique Hauts-de-France, INSA Hauts-de-France, Laboratoire de Matériaux Céramiques et de Mathématiques (CERAMATHS), Valenciennes, France
Courtois, Christian ; Université de Mons - UMONS > Faculté Polytechnique > Service de Science des Matériaux ; Université Polytechnique Hauts-de-France, INSA Hauts-de-France, Laboratoire de Matériaux Céramiques et de Mathématiques (CERAMATHS), Valenciennes, France
Stubbe, Birgit; Centexbel, Zwijnaarde, Belgium
Raquez, Jean-Marie ; Université de Mons - UMONS > Faculté des Science > Service des Matériaux Polymères et Composites
Lacrampe, Marie-France; IMT Nord Europe, Institut Mines-Télécom, Université de Lille, Centre for Materials and Processes, Lille, France
Samuel, Cédric ; IMT Nord Europe, Institut Mines-Télécom, Université de Lille, Centre for Materials and Processes, Lille, France
Language :
English
Title :
Shear Piezoelectricity of Poly(l-lactide) Films Manufactured by Extrusion-Orientation: An Insight on Process-Structure-Property Relationships
R400 - Institut de Recherche en Science et Ingénierie des Matériaux
Funders :
Interreg Agentschap Innoveren en Ondernemen Service Public de Wallonie Institut Chevreul Interreg Vlaanderen-Nederland R?gion Hauts-de-France International Campus on Safety and Intermodality in Transportation Minist?re de l?Enseignement Sup?rieur, de la Recherche et de l?Innovation
Funding text :
All authors gratefully acknowledge Wallonia Region/Service Public de Wallonie (Belgium), West Vlaanderen Region (Belgium), Agentschap Innoveren Ondernemen (Belgium), and European Commission (FEDER) for the financial support in the framework of the INTERREG France-Wallonie-Vlaanderen program (BIOHARV project, GoToS3 portofolio). C.S. and M.-F.L. gratefully acknowledge both International Campus on Safety and Intermodality in Transportation (CISIT, France) and Hauts-de-France Region (France) for their contributions to funding extrusion equipment and important characterization tools (dynamic rheometers, microscopes, and tensile benches). S.B. and J.-F.T. gratefully acknowledge both Chevreul Institute (FR 2638, France), Ministère de l’Enseignement Supérieur, de la Recherche et de l’Innovation (France), Hauts-de-France Region (France), and European Commission (FEDER) for funding X-ray facilities.
Ferroelectric Polymers: Chemistry: Physics, and Applications; Nalwa, H. S., Ed.; CRC Press: Boca Raton, 2014. 10.1201/9781482295450.
Marcus, M. A. Ferroelectric Polymers and Their Applications. Ferroelectrics 1982, 40 ( 1), 29- 41, 10.1080/00150198208210593
Sessler, G. M. Piezoelectricity in Polyvinylidenefluoride. J. Acoust. Soc. Am. 1981, 70 ( 6), 1596- 1608, 10.1121/1.387225
Murayama, N.; Nakamura, K.; Obara, H.; Segawa, M. The Strong Piezoelectricity in Polyvinylidene Fluoride (PVDF). Ultrasonics 1976, 14 ( 1), 15- 24, 10.1016/0041-624X(76)90067-6
Martins, P.; Lopes, A. C.; Lanceros-Mendez, S. Electroactive Phases of Poly(Vinylidene Fluoride): Determination. Processing and Applications. Prog. Polym. Sci. 2014, 39 ( 4), 683- 706, 10.1016/j.progpolymsci.2013.07.006
Gomes, J.; Serrado Nunes, J.; Sencadas, V.; Lanceros-Mendez, S. Influence of the β-Phase Content and Degree of Crystallinity on the Piezo- and Ferroelectric Properties of Poly(Vinylidene Fluoride). Smart Mater. Struct. 2010, 19 ( 6), 065010 10.1088/0964-1726/19/6/065010
De Neef, A.; Samuel, C.; Stoclet, G.; Rguiti, M.; Courtois, C.; Dubois, P.; Soulestin, J.; Raquez, J.-M. Processing of PVDF-Based Electroactive/Ferroelectric Films: Importance of PMMA and Cooling Rate from the Melt State on the Crystallization of PVDF Beta-Crystals. Soft Matter 2018, 14 ( 22), 4591- 4602, 10.1039/C8SM00268A
De Neef, A.; Samuel, C.; Amorín, H.; Stoclet, G.; Jiménez, R.; Dubois, P.; Soulestin, J.; Raquez, J.-M. Beta Phase Crystallization and Ferro- and Piezoelectric Performances of Melt-Processed Poly(Vinylidene Difluoride) Blends with Poly(Methyl Methacrylate) Copolymers Containing Ionizable Moieties. ACS Appl. Polym. Mater. 2020, 2 ( 9), 3766- 3780, 10.1021/acsapm.0c00351
Gusarov, B.; Gusarova, E.; Viala, B.; Gimeno, L.; Cugat, O.; Gusarov, B.; Gusarova, E.; Viala, B.; Gimeno, L.; Cugat, O. PVDF Piezoelectric Voltage Coefficient in Situ Measurements as a Function of Applied Stress. J. Appl. Polym. Sci. 2016, 133 ( 14), 43248, 10.1002/app.43248
Mishra, S.; Unnikrishnan, L.; Nayak, S. K.; Mohanty, S. Advances in Piezoelectric Polymer Composites for Energy Harvesting Applications: A Systematic Review. Macromol. Mater. Eng. 2019, 304 ( 1), 1800463 10.1002/mame.201800463
Abbasipour, M.; Khajavi, R.; Akbarzadeh, A. H. A Comprehensive Review on Piezoelectric Polymeric and Ceramic Nanogenerators. Adv. Eng. Mater. 2022, 24 ( 6), 2101312 10.1002/adem.202101312
Ramadan, K. S.; Sameoto, D.; Evoy, S. A Review of Piezoelectric Polymers as Functional Materials for Electromechanical Transducers. Smart Mater. Struct. 2014, 23 ( 3), 033001 10.1088/0964-1726/23/3/033001
Yang, Z.; Zhou, S.; Zu, J.; Inman, D. High-Performance Piezoelectric Energy Harvesters and Their Applications. Joule 2018, 2 ( 4), 642- 697, 10.1016/j.joule.2018.03.011
Wan, C.; Bowen, C. R. Multiscale-Structuring of Polyvinylidene Fluoride for Energy Harvesting: The Impact of Molecular-, Micro- and Macro-Structure. J. Mater. Chem. A 2017, 5 ( 7), 3091- 3128, 10.1039/C6TA09590A
Song, H.; Kim, S.; Kim, H. S.; Lee, D.; Kang, C.; Nahm, S. Piezoelectric Energy Harvesting Design Principles for Materials and Structures: Material Figure-of-Merit and Self-Resonance Tuning. Adv. Mater. 2020, 32 ( 51), 2002208 10.1002/adma.202002208
Mahapatra, S. D.; Mohapatra, P. C.; Aria, A. I.; Christie, G.; Mishra, Y. K.; Hofmann, S.; Thakur, V. K. Piezoelectric Materials for Energy Harvesting and Sensing Applications: Roadmap for Future Smart Materials. Adv. Sci. 2021, 8 ( 17), 2100864 10.1002/advs.202100864
Jiao, P.; Egbe, K.-J. I.; Xie, Y.; Matin Nazar, A.; Alavi, A. H. Piezoelectric Sensing Techniques in Structural Health Monitoring: A State-of-the-Art Review. Sensors 2020, 20 ( 13), 3730, 10.3390/s20133730
Farahani, A.; Zarei-Hanzaki, A.; Abedi, H. R.; Tayebi, L.; Mostafavi, E. Polylactic Acid Piezo-Biopolymers: Chemistry, Structural Evolution, Fabrication Methods, and Tissue Engineering Applications. J. Funct. Biomater. 2021, 12 ( 4), 71, 10.3390/jfb12040071
Fukada, E. Piezoelectricity of Biopolymers. Biorheology 1995, 32 ( 6), 593- 609, 10.1016/0006-355X(95)00039-C
Ochiai, T.; Fukada, E. Electromechanical Properties of Poly-L-Lactic Acid. Jpn. J. Appl. Phys. 1998, 37 ( 6R), 3374, 10.1143/JJAP.37.3374
Lovell, C. S.; Fitz-Gerald, J. M.; Park, C. Decoupling the Effects of Crystallinity and Orientation on the Shear Piezoelectricity of Polylactic Acid. J. Polym. Sci., Part B: Polym. Phys. 2011, 49 ( 21), 1555- 1562, 10.1002/polb.22345
Mat Zin, S. H.; Velayutham, T. S.; Furukawa, T.; Kodama, H.; Gan, W. C.; Chio-Srichan, S.; Kriechbaum, M.; Nakajima, T. Quantitative Study on the Face Shear Piezoelectricity and Its Relaxation in Uniaxially-Drawn and Annealed Poly-l-Lactic Acid. Polymer 2022, 254, 125095 10.1016/j.polymer.2022.125095
Bernard, F.; Gimeno, L.; Viala, B.; Gusarov, B.; Cugat, O. Direct Piezoelectric Coefficient Measurements of PVDF and PLLA under Controlled Strain and Stress. Proceedings 2017, 1 ( 4), 335, 10.3390/proceedings1040335
Zhao, C.; Zhang, J.; Wang, Z. L.; Ren, K. A Poly(L-Lactic Acid) Polymer-Based Thermally Stable Cantilever for Vibration Energy Harvesting Applications. Adv. Sustain. Syst. 2017, 1 ( 9), 1700068 10.1002/adsu.201700068
Zhang, J.; Gong, S.; Li, X.; Liang, J.; Wang, Z. L.; Ren, K. A Wind-Driven Poly(Tetrafluoroethylene) Electret and Polylactide Polymer-Based Hybrid Nanogenerator for Self-Powered Temperature Detection System. Adv. Sustain. Syst. 2021, 5 ( 1), 2000192 10.1002/adsu.202000192
Ando, M.; Kawamura, H.; Kitada, H.; Sekimoto, Y.; Inoue, T.; Tajitsu, Y. Pressure-Sensitive Touch Panel Based on Piezoelectric Poly(L-Lactic Acid). Film. Jpn. J. Appl. Phys. 2013, 52 ( 9S1), 09KD17 10.7567/JJAP.52.09KD17
Imoto, K.; Date, M.; Fukada, E.; Tahara, K.; Kamaiyama, Y.; Yamakita, T.; Tajitsu, Y. Piezoelectric Motion of Poly(L-Lactic Acid) Film Improved by Supercritical CO2 Treatment. Jpn. J. Appl. Phys. 2009, 48 ( 9), 09KE06 10.1143/JJAP.48.09KE06
Ito, S.; Imoto, K.; Takai, K.; Kuroda, S.; Kamimura, Y.; Kataoka, T.; Kawai, N.; Date, M.; Fukada, E.; Tajitsu, Y. Sensing Using Piezoelectric Chiral Polymer Fiber. Jpn. J. Appl. Phys. 2012, 51, 09LD16 10.1143/JJAP.51.09LD16
Shiomi, Y.; Onishi, K.; Nakiri, T.; Imoto, K.; Ariura, F.; Miyabo, A.; Date, M.; Fukada, E.; Tajitsu, Y. Improvement of Piezoelectricity of Poly(L-Lactide) Film by Using Acrylic Symmetric Block Copolymer as Additive. Jpn. J. Appl. Phys. 2013, 52 ( 9S1), 09KE02 10.7567/JJAP.52.09KE02
Tajitsu, Y. Development of Environmentally Friendly Piezoelectric Polymer Film Actuator Having Multilayer Structure. Jpn. J. Appl. Phys. 2016, 55 ( 4S), 04EA07 10.7567/JJAP.55.04EA07
Tajitsu, Y. Fundamental Study on Improvement of Piezoelectricity of Poly(ι-Lactic Acid) and Its Application to Film Actuators. IEEE Trans. Ultrason. Ferroelectr. Freq. Control 2013, 60 ( 8), 1625- 1629, 10.1109/TUFFC.2013.2744
Tajitsu, Y. Piezoelectricity of Chiral Polymeric Fiber and Its Application in Biomedical Engineering. IEEE Trans. Ultrason. Ferroelectr. Freq. Control 2008, 55 ( 5), 1000- 1008, 10.1109/TUFFC.2008.746
Tajitsu, Y. Sensing Complicated Motion of Human Body Using Piezoelectric Chiral Polymer Fiber. Ferroelectrics 2015, 480 ( 1), 32- 38, 10.1080/00150193.2015.1012410
Yoshida, M.; Onogi, T.; Onishi, K.; Inagaki, T.; Tajitsu, Y. High Piezoelectric Performance of Poly(Lactic Acid) Film Manufactured by Solid-State Extrusion. Jpn. J. Appl. Phys. 2014, 53 ( 9S), 09PC02 10.7567/JJAP.53.09PC02
Yoshida, T.; Imoto, K.; Tahara, K.; Naka, K.; Uehara, Y.; Kataoka, S.; Date, M.; Fukada, E.; Tajitsu, Y. Piezoelectricity of Poly(L-Lactic Acid) Composite Film with Stereocomplex of Poly(L-Lactide) and Poly(D-Lactide). Jpn. J. Appl. Phys. 2010, 49 ( 9), 09MC11 10.1143/JJAP.49.09MC11
Roh, Y.; Varadan, V. V.; Varadan, V. K. Characterization of All the Elastic, Dielectric, and Piezoelectric Constants of Uniaxially Oriented Poled PVDF Films. IEEE Trans. Ultrason. Ferroelectr. Freq. Control 2002, 49 ( 6), 836- 847, 10.1109/TUFFC.2002.1009344
Ben Achour, M. A.; Rguiti, M.; Samuel, C.; Barrau, S.; Lacrampe, M.-F.; Courtois, C. Energy Harvesting by Uniaxially-Stretched Poly(Lactide) Films at Low Tensile Strain Frequencies for Powering Wearable Sensors: Experimental Results and Theoretical Extrapolation. Smart Mater. Struct. 2023, 32 ( 7), 075009 10.1088/1361-665X/acd972
Newnham, R. E. Properties of Materials: Anisotropy, Symmetry, Structure; Oxford University Press: Oxford, New York, 2005.
Ben Achour, M. A.; Samuel, C.; Rguiti, M.; Barrau, S.; Courtois, C.; Lacrampe, M. Evaluation of Shear Piezoelectric Coefficients by a bimorph Cantilever Technique for Extruded and Oriented Poly(l -lactide) Films. Polym. Adv. Technol. 2022, 939, 10.1002/pat.5942
Wang, Y.; Zhang, H.; Li, M.; Cao, W.; Liu, C.; Shen, C. Orientation and Structural Development of Semicrystalline Poly(Lactic Acid) under uniaxial Drawing Assessed by Infrared Spectroscopy and X-Ray Diffraction. Polym. Test. 2015, 41, 163- 171, 10.1016/j.polymertesting.2014.11.010
Hu, J.; Zhang, T.; Gu, M.; Chen, X.; Zhang, J. Spectroscopic Analysis on Cold Drawing-Induced PLLA mesophase. Polymer 2012, 53 ( 22), 4922- 4926, 10.1016/j.polymer.2012.09.012
Billimoria, K.; Heeley, E. L.; Parsons, N.; Figiel, Ł. An Investigation into the Crystalline Morphology Transitions in Poly-L-Lactic Acid (PLLA) under uniaxial Deformation in the Quasi-Solid-State Regime. Eur. Polym. J. 2018, 101, 127- 139, 10.1016/j.eurpolymj.2018.01.031
Stoclet, G.; Seguela, R.; Lefebvre, J. M.; Elkoun, S.; Vanmansart, C. Strain-Induced Molecular Ordering in Polylactide upon uniaxial Stretching. Macromolecules 2010, 43 ( 3), 1488- 1498, 10.1021/ma9024366
Stoclet, G.; Seguela, R.; Lefebvre, J.-M.; Rochas, C. New Insights on the Strain-Induced mesophase of Poly(d, l -Lactide): In Situ WAXS and DSC Study of the Thermo-Mechanical Stability. Macromolecules 2010, 43 ( 17), 7228- 7237, 10.1021/ma101430c
Baptista, C.; Azagury, A.; Baker, C. M.; Mathiowitz, E. The Characterization and Quantification of the Induced Mesophases of Poly-l-Lactic Acid. Polymer 2021, 226, 123822 10.1016/j.polymer.2021.123822
Janeczek, H.; Duale, K.; Sikorska, W.; Godzierz, M.; Kordyka, A.; Marcinkowski, A.; Hercog, A.; Musioł, M.; Kowalczuk, M.; Christova, D.; Rydz, J. Poly(l -Lactide) Liquid Crystals with Tailor-Made Properties Toward a Specific Nematic mesophase Texture. ACS Sustain. Chem. Eng. 2022, 10 ( 10), 3323- 3334, 10.1021/acssuschemeng.1c08282
Zhang, J.; Duan, Y.; Sato, H.; Tsuji, H.; Noda, I.; Yan, S.; Ozaki, Y. Crystal Modifications and Thermal Behavior of Poly(l -Lactic Acid) Revealed by Infrared Spectroscopy. Macromolecules 2005, 38 ( 19), 8012- 8021, 10.1021/ma051232r
Pan, P.; Zhu, B.; Kai, W.; Dong, T.; Inoue, Y. Polymorphic Transition in Disordered Poly(l -Lactide) Crystals Induced by Annealing at Elevated Temperatures. Macromolecules 2008, 41 ( 12), 4296- 4304, 10.1021/ma800343g
Puchalski, M.; Kwolek, S.; Szparaga, G.; Chrzanowski, M.; Krucińska, I. Investigation of the Influence of PLA Molecular Structure on the Crystalline Forms (α’ and α) and Mechanical Properties of Wet Spinning Fibres. Polymers 2017, 9 ( 12), 18, 10.3390/polym9010018
Hatfield, E. Machine Direction-Oriented Film Technology. In Multilayer Flexible Packaging; Elsevier, 2016; pp 147- 152. 10.1016/B978-0-323-37100-1.00011-9.
Drobny, J. G. Processing Methods Applicable to Thermoplastic Elastomers. In Handbook of Thermoplastic Elastomers; Elsevier, 2014; pp 33- 173. 10.1016/B978-0-323-22136-8.00004-1.
Standau, T.; Zhao, C.; Murillo Castellón, S.; Bonten, C.; Altstädt, V. Chemical Modification and Foam Processing of Polylactide (PLA). Polymers 2019, 11 ( 2), 306, 10.3390/polym11020306
Kmetty, Á.; Litauszki, K. Development of Poly (Lactide Acid) Foams with Thermally Expandable Microspheres. Polymers 2020, 12 ( 2), 463, 10.3390/polym12020463
Samuel, C.; Raquez, J.-M.; Dubois, P. PLLA/PMMA Blends: A Shear-Induced Miscibility with Tunable Morphologies and Properties?. Polymer 2013, 54 ( 15), 3931- 3939, 10.1016/j.polymer.2013.05.021
Samuel, C.; Cayuela, J.; Barakat, I.; Müller, A. J.; Raquez, J.-M.; Dubois, P. Stereocomplexation of Polylactide Enhanced by Poly(Methyl Methacrylate): Improved Processability and Thermomechanical Properties of Stereocomplexable Polylactide-Based Materials. ACS Appl. Mater. Interfaces 2013, 5 ( 22), 11797- 11807, 10.1021/am403443m
Samuel, C.; Barrau, S.; Lefebvre, J.-M.; Raquez, J.-M.; Dubois, P. Designing Multiple-Shape Memory Polymers with Miscible Polymer Blends: Evidence and Origins of a Triple-Shape Memory Effect for Miscible PLLA/PMMA Blends. Macromolecules 2014, 47 ( 19), 6791- 6803, 10.1021/ma500846x
Meaurio, E.; López-Rodríguez, N.; Sarasua, J. R. Infrared Spectrum of Poly(l -Lactide): Application to Crystallinity Studies. Macromolecules 2006, 39 ( 26), 9291- 9301, 10.1021/ma061890r
Stoclet, G.; Lefebvre, J. M.; Séguéla, R.; Vanmansart, C. In-Situ SAXS Study of the Plastic Deformation Behavior of Polylactide upon Cold-Drawing. Polymer 2014, 55 ( 7), 1817- 1828, 10.1016/j.polymer.2014.02.010