Active targeting, head cancer; Bioconjugation; Coupling; Iron oxide; Magnetic Nanoparticles; Neck cancer; Peptide 22; Ligands; Epidermal Growth Factor; ErbB Receptors; Magnetite Nanoparticles; Humans; ErbB Receptors/metabolism; Magnetic Iron Oxide Nanoparticles; Magnetic Resonance Imaging/methods; Hyperthermia, Induced; Nanoparticles/chemistry; Head and Neck Neoplasms/drug therapy; Magnetite Nanoparticles/chemistry; Head and Neck Neoplasms; Magnetic Resonance Imaging; Nanoparticles; Pharmaceutical Science
Abstract :
[en] A major challenge in nanomedicine is designing nanoplatforms (NPFs) to selectively target abnormal cells to ensure early diagnosis and targeted therapy. Among developed NPFs, iron oxide nanoparticles (IONPs) are good MRI contrast agents and can be used for therapy by hyperthermia and as radio-sensitizing agents. Active targeting is a promising method for selective IONPs accumulation in cancer tissues and is generally performed by using targeting ligands (TL). Here, a TL specific for the epidermal growth factor receptor (EGFR) is bound to the surface of dendronized IONPs to produce nanostructures able to specifically recognize EGFR-positive FaDu and 93-Vu head and neck cancer cell lines. Several parameters were optimized to ensure a high coupling yield and to adequately quantify the amount of TL per nanoparticle. Nanostructures with variable amounts of TL on the surface were produced and evaluated for their potential to specifically target and be thereafter internalized by cells. Compared to the bare NPs, the presence of the TL at the surface was shown to be effective to enhance their internalization and to play a role in the total amount of iron present per cell.
Research center :
CMMI - Centre de Recherche en Microscopie et Imagerie Médicale CISMA - Centre Interdisciplinaire de Spectrométrie de Masse
Disciplines :
Chemistry
Author, co-author :
Freis, Barbara ; Université de Mons - UMONS > Faculté de Médecine et de Pharmacie > Service de Chimie générale, organique et biomédicale
Ramírez, María De Los Ángeles; Université de Strasbourg, CNRS, Institut de Physique et Chimie des Matériaux, UMR CNRS-UdS 7504, 23 Rue du Loess, BP 43, 67034 Strasbourg, France
Furgiuele, Sonia ; Université de Mons - UMONS > Faculté de Médecine et de Pharmacie > Service d'Anatomie humaine et Oncologie expérimentale
Journe, Fabrice ; Université de Mons - UMONS > Faculté de Médecine et de Pharmac > Service d'Anatomie humaine et Oncologie expérimentale
Cheignon, Clémence; Université de Strasbourg, CNRS, Institut Pluridisciplinaire Hubert Curien, UMR 7178, 25, rue Becquerel, 67087 Strasbourg, France
Charbonnière, Loïc J; Université de Strasbourg, CNRS, Institut Pluridisciplinaire Hubert Curien, UMR 7178, 25, rue Becquerel, 67087 Strasbourg, France
Henoumont, Céline ; Université de Mons - UMONS > Faculté de Médecine et de Pharmac > Service de Chimie générale, organique et biomédicale
Kiefer, Celine; Université de Strasbourg, CNRS, Institut de Physique et Chimie des Matériaux, UMR CNRS-UdS 7504, 23 Rue du Loess, BP 43, 67034 Strasbourg, France
Mertz, Damien; Université de Strasbourg, CNRS, Institut de Physique et Chimie des Matériaux, UMR CNRS-UdS 7504, 23 Rue du Loess, BP 43, 67034 Strasbourg, France
Affolter-Zbaraszczuk, Christine; Inserm U1121, Centre de recherche en biomédecine de Strasbourg, 1 rue Eugène Boeckel, CS 60026, 67084 Strasbourg Cedex, France
Meyer, Florent; Inserm U1121, Centre de recherche en biomédecine de Strasbourg, 1 rue Eugène Boeckel, CS 60026, 67084 Strasbourg Cedex, France
Saussez, Sven ; Université de Mons - UMONS > Faculté de Médecine et de Pharmac > Service d'Anatomie humaine et Oncologie expérimentale
Laurent, Sophie ; Université de Mons - UMONS > Faculté de Médecine et de Pharmac > Service de Chimie générale, organique et biomédicale
Tasso, Mariana; Université de Strasbourg, CNRS, Institut de Physique et Chimie des Matériaux, UMR CNRS-UdS 7504, 23 Rue du Loess, BP 43, 67034 Strasbourg, France, Instituto de Investigaciones Fisicoquímicas Teóricas y Aplicadas (INIFTA), Departamento de Química, Facultad de Ciencias Exactas, Universidad Nacional de La Plata - CONICET, Diagonal 113 y 64, 1900 La Plata, Argentina
Bégin-Colin, Sylvie; Université de Strasbourg, CNRS, Institut de Physique et Chimie des Matériaux, UMR CNRS-UdS 7504, 23 Rue du Loess, BP 43, 67034 Strasbourg, France. Electronic address: sylvie.begin@unistra.fr
M108 - Chimie générale, organique et biomédicale M112 - Anatomie humaine et Oncologie expérimentale
Research institute :
R550 - Institut des Sciences et Technologies de la Santé R100 - Institut des Biosciences
Funders :
Region wallonne EuroNanoMed III
Funding text :
The Region Alsace, France, and the University of Mons are gratefully acknowledged for the doctoral fellowship to Barbara Freis. This project received funding from ANR (EURONANOMED2020-121 - THERAGET) under the umbrella of the ERA-NET EuroNanoMed (GA N°723770) of the EU Horizon 2020 Research and Innovation and ProtherWal “Walloon Region via the ProtherWal Society (Agreement 7289). SuperBranche is thanked for providing dendron molecules. M.T. acknowledges support from CONICET (Argentina) and from the Ministry of Science, Technology and Innovation. UMONS acknowledges the financial support of the Fond National de la Recherche Scientifique (FNRS), the ARC Programs of the French Community of Belgium, COST actions and the Walloon region (ProtherWal and Interreg projects). S.F. acknowledges UMONS, EpiCURA Hospital, ProtherWal and the Fund for Medical Research in Hainaut (FRMH). The authors thank the XRD platform of the IPCMS.
Ahmad, A., Khan, F., Mishra, R.K., Khan, R., Precision Cancer Nanotherapy: Evolving Role of Multifunctional Nanoparticles for Cancer Active Targeting. J. Med. Chem. 62:23 (2019), 10475–10496, 10.1021/acs.jmedchem.9b00511.
Allen, T.M., Ligand-Targeted Therapeutics in Anticancer Therapy. Nat. Rev. Cancer 2:10 (2002), 750–763, 10.1038/nrc903.
Alphandéry, E., Biodistribution and Targeting Properties of Iron Oxide Nanoparticles for Treatments of Cancer and Iron Anemia Disease. Nanotoxicology 13:5 (2019), 573–596, 10.1080/17435390.2019.1572809.
Alsahafi, E., Begg, K., Amelio, I., Raulf, N., Lucarelli, P., Sauter, T., Tavassoli, M., Clinical Update on Head and Neck Cancer: Molecular Biology and Ongoing Challenges. Cell Death Dis., 10(8), 2019, 540, 10.1038/s41419-019-1769-9.
Angelopoulou, A., Kolokithas-Ntoukas, A., Fytas, C., Avgoustakis, K., Folic Acid-Functionalized, Condensed Magnetic Nanoparticles for Targeted Delivery of Doxorubicin to Tumor Cancer Cells Overexpressing the Folate Receptor. ACS Omega 4:26 (2019), 22214–22227, 10.1021/acsomega.9b03594.
Arriortua, O.K., Insausti, M., Lezama, L., Gil de Muro, I., Garaio, E., de la Fuente, J.M., Fratila, R.M., Morales, M.P., Costa, R., Eceiza, M., Sagartzazu-Aizpurua, M., Aizpurua, J.M., RGD-Functionalized Fe3O4 Nanoparticles for Magnetic Hyperthermia. Colloids Surf. B Biointerfaces 165 (2018), 315–324, 10.1016/j.colsurfb.2018.02.031.
Astsaturov, I., Cohen, R.B., Harari, P.M. EGFR-Targeting Monoclonal Antibodies in Head and Neck Cancer. Curr. Cancer Drug Targets 6, 8, 691–710.
Attia, M.F., Anton, N., Wallyn, J., Omran, Z., Vandamme, T.F., An Overview of Active and Passive Targeting Strategies to Improve the Nanocarriers Efficiency to Tumour Sites. J. Pharm. Pharmacol. 71:8 (2019), 1185–1198, 10.1111/jphp.13098.
Baaziz, W., Pichon, B.P., Fleutot, S., Liu, Y., Lefevre, C., Greneche, J.-M., Toumi, M., Mhiri, T., Begin-Colin, S., Magnetic Iron Oxide Nanoparticles: Reproducible Tuning of the Size and Nanosized-Dependent Composition, Defects, and Spin Canting. J. Phys. Chem. C 118:7 (2014), 3795–3810, 10.1021/jp411481p.
Bartczak, D., Kanaras, A.G., Preparation of Peptide-Functionalized Gold Nanoparticles Using One Pot EDC/Sulfo-NHS Coupling. Langmuir 27:16 (2011), 10119–10123, 10.1021/la2022177.
Basly, B., Felder-Flesch, D., Perriat, P., Billotey, C., Taleb, J., Pourroy, G., Begin-Colin, S., Dendronized Iron Oxide Nanoparticles as Contrast Agents for MRI. Chem. Commun. 46:6 (2010), 985–987, 10.1039/B920348F.
Basly, B., Popa, G., Fleutot, S., Pichon, B.P., Garofalo, A., Ghobril, C., Billotey, C., Berniard, A., Bonazza, P., Martinez, H., Felder-Flesch, D., Begin-Colin, S., Effect of the Nanoparticle Synthesis Method on Dendronized Iron Oxides as MRI Contrast Agents. Dalton Trans. 42:6 (2013), 2146–2157, 10.1039/C2DT31788E.
Bazak, R., Houri, M., El Achy, S., Kamel, S., Refaat, T., Cancer Active Targeting by Nanoparticles: A Comprehensive Review of Literature. J. Cancer Res. Clin. Oncol. 141:5 (2015), 769–784, 10.1007/s00432-014-1767-3.
Belbekhouche, S., Guerrouache, M., Carbonnier, B., Thiol-Maleimide Michael Addition Click Reaction: A New Route to Surface Modification of Porous Polymeric Monolith. Macromol. Chem. Phys. 217:8 (2016), 997–1006, 10.1002/macp.201500427.
Bolley, J., Guenin, E., Lievre, N., Lecouvey, M., Soussan, M., Lalatonne, Y., Motte, L., Carbodiimide versus Click Chemistry for Nanoparticle Surface Functionalization: A Comparative Study for the Elaboration of Multimodal Superparamagnetic Nanoparticles Targeting α v β 3 Integrins. Langmuir 29:47 (2013), 14639–14647, 10.1021/la403245h.
Bolley, J., Lalatonne, Y., Haddad, O., Letourneur, D., Soussan, M., Pérard-Viret, J., Motte, L., Optimized Multimodal Nanoplatforms for Targeting Αvβ3 Integrins. Nanoscale 5:23 (2013), 11478–11489, 10.1039/C3NR03763K.
Bordeianu, C., Parat, A., Affolter-Zbaraszczuk, C., Muller, R.N., Boutry, S., Begin-Colin, S., Meyer, F., Laurent, S., Felder-Flesch, D., How a Grafting Anchor Tailors the Cellular Uptake and in Vivo Fate of Dendronized Iron Oxide Nanoparticles. J. Mater. Chem. B 5:26 (2017), 5152–5164, 10.1039/C7TB00781G.
Bordeianu, C., Parat, A., Piant, S., Walter, A., Zbaraszczuk-Affolter, C., Meyer, F., Begin-Colin, S., Boutry, S., Muller, R.N., Jouberton, E., Chezal, J.-M., Labeille, B., Cinotti, E., Perrot, J.-L., Miot-Noirault, E., Laurent, S., Felder-Flesch, D., Evaluation of the Active Targeting of Melanin Granules after Intravenous Injection of Dendronized Nanoparticles. Mol. Pharm. 15:2 (2018), 536–547, 10.1021/acs.molpharmaceut.7b00904.
Boutry, S., Forge, D., Burtea, C., Mahieu, I., Murariu, O., Laurent, S., Vander Elst, L., Muller, R.N., How to Quantify Iron in an Aqueous or Biological Matrix: A Technical Note. Contrast Media Mol. Imaging 4:6 (2009), 299–304, 10.1002/cmmi.291.
Byrne, J.D., Betancourt, T., Brannon-Peppas, L., Active Targeting Schemes for Nanoparticle Systems in Cancer Therapeutics. Adv. Drug Deliv. Rev. 60:15 (2008), 1615–1626, 10.1016/j.addr.2008.08.005.
Cotin, G., Kiefer, C., Perton, F., Ihiawakrim, D., Blanco-Andujar, C., Moldovan, S., Lefevre, C., Ersen, O., Pichon, B., Mertz, D., Bégin-Colin, S., Unravelling the Thermal Decomposition Parameters for The Synthesis of Anisotropic Iron Oxide Nanoparticles. Nanomaterials, 8(11), 2018, 881, 10.3390/nano8110881.
Cotin, G., Kiefer, C., Perton, F., Boero, M., Özdamar, B., Bouzid, A., Ori, G., Massobrio, C., Begin, D., Pichon, B., Mertz, D., Begin-Colin, S., Evaluating the Critical Roles of Precursor Nature and Water Content When Tailoring Magnetic Nanoparticles for Specific Applications. ACS Applied Nano Materials 1:8 (2018), 4306–4316, 10.1021/acsanm.8b01123.
Cotin, G., Blanco-Andujar, C., Nguyen, D.-V., Affolter, C., Boutry, S., Boos, A., Ronot, P., Uring-Lambert, B., Choquet, P., Zorn, P.E., Mertz, D., Laurent, S., Muller, R.N., Meyer, F., Felder Flesch, D., Begin-Colin, S., Dendron Based Antifouling, MRI and Magnetic Hyperthermia Properties of Different Shaped Iron Oxide Nanoparticles. Nanotechnology, 30(37), 2019, 374002, 10.1088/1361-6528/ab2998.
Cotin, G., Blanco-Andujar, C., Perton, F., Asín, L., de la Fuente, J.M., Reichardt, W., Schaffner, D., Ngyen, D.-V., Mertz, D., Kiefer, C., Meyer, F., Spassov, S., Ersen, O., Chatzidakis, M., Botton, G.A., Hénoumont, C., Laurent, S., Greneche, J.-M., Teran, F.J., Ortega, D., Felder-Flesch, D., Begin-Colin, S., Unveiling the Role of Surface, Size, Shape and Defects of Iron Oxide Nanoparticles for Theranostic Applications. Nanoscale 13:34 (2021), 14552–14571, 10.1039/D1NR03335B.
NDong, C., Tate, J.A., Kett, W.C., Batra, J., Demidenko, E., Lewis, L.D., Hoopes, P.J., Gerngross, T.U., 2015. Griswold, K. E. Tumor Cell Targeting by Iron Oxide Nanoparticles Is Dominated by Different Factors In Vitro versus In Vivo. PLoS ONE 10, 2, e0115636. Doi:10.1371/journal.pone.0115636.
Espinosa, A., Kolosnjaj-Tabi, J., Abou-Hassan, A., Plan Sangnier, A., Curcio, A., Silva, A.K.A., Di Corato, R., Neveu, S., Pellegrino, T., Liz-Marzán, L.M., Wilhelm, C., Magnetic (Hyper)Thermia or Photothermia? Progressive Comparison of Iron Oxide and Gold Nanoparticles Heating in Water, in Cells, and In Vivo. Adv. Funct. Mater., 28(37), 2018, 1803660, 10.1002/adfm.201803660.
Filippi, M., Nguyen, D.-V., Garello, F., Perton, F., Bégin-Colin, S., Felder-Flesch, D., Power, L., Scherberich, A., Metronidazole-Functionalized Iron Oxide Nanoparticles for Molecular Detection of Hypoxic Tissues. Nanoscale 11:46 (2019), 22559–22574, 10.1039/C9NR08436C.
Genta, I., Chiesa, E., Colzani, B., Modena, T., Conti, B., Dorati, R., GE11 Peptide as an Active Targeting Agent in Antitumor Therapy: A Minireview. Pharmaceutics, 10(1), 2018, 2, 10.3390/pharmaceutics10010002.
Ghobril, C., Popa, G., Parat, A., Billotey, C., Taleb, J., Bonazza, P., Begin-Colin, S., Felder-Flesch, D., A Bisphosphonate Tweezers and Clickable PEGylated PAMAM Dendrons for the Preparation of Functional Iron Oxide Nanoparticles Displaying Renal and Hepatobiliary Elimination. Chem. Commun. (Camb.) 49:80 (2013), 9158–9160, 10.1039/c3cc43161d.
Guldris, N., Gallo, J., García-Hevia, L., Rivas, J., Bañobre-López, M., Salonen, L.M., Orthogonal Clickable Iron Oxide Nanoparticle Platform for Targeting, Imaging, and On-Demand Release. Chem Eur J 24:34 (2018), 8624–8631, 10.1002/chem.201800389.
Güster, J.D., Weissleder, S.V., Busch, C.-J., Kriegs, M., Petersen, C., Knecht, R., Dikomey, E., Rieckmann, T., The Inhibition of PARP but Not EGFR Results in the Radiosensitization of HPV/P16-Positive HNSCC Cell Lines. Radiother. Oncol. 113:3 (2014), 345–351, 10.1016/j.radonc.2014.10.011.
Han, R., Liu, Q., Lu, Y., Peng, J., Pan, M., Wang, G., Chen, W., Xiao, Y., Yang, C., Qian, Z., Tumor Microenvironment-Responsive Ag2S-PAsp(DOX)-CRGD Nanoparticles-Mediated Photochemotherapy Enhances the Immune Response to Tumor Therapy. Biomaterials, 281, 2022, 121328, 10.1016/j.biomaterials.2021.121328.
Han, D., Zhang, B., Chong, C., Rong, C., Tan, J., Yang, R., A Strategy for Iron Oxide Nanoparticles to Adhere to the Neuronal Membrane in the Substantia Nigra of Mice. J. Mater. Chem. B 8:4 (2020), 758–766, 10.1039/C9TB02066G.
Hossein-Nejad-Ariani, H., Althagafi, E., Kaur, K., Small Peptide Ligands for Targeting EGFR in Triple Negative Breast Cancer Cells. Sci. Rep., 9(1), 2019, 2723, 10.1038/s41598-019-38574-y.
Hoyle, C.E., Lowe, A.B., Bowman, C.N., Thiol-Click Chemistry: A Multifaceted Toolbox for Small Molecule and Polymer Synthesis. Chem. Soc. Rev., 39(4), 2010, 1355, 10.1039/b901979k.
Iwasawa, T., Wash, P., Gibson, C., Rebek, J., Reaction of an Introverted Carboxylic Acid with Carbodiimide. Tetrahedron 63:28 (2007), 6506–6511, 10.1016/j.tet.2007.03.075.
Jia, H., Zhang, Y., Guo, Q., Zeng, X., Yuan, Y., Wang, Z., Gao, Z., Yue, T., Epsilon-Polylysine Based Magnetic Nanospheres as an Efficient and Recyclable Antibacterial Agent for Alicyclobacillus Acidoterrestris. Food Chem., 364, 2021, 130382, 10.1016/j.foodchem.2021.130382.
Kiseleva, A., Beck, T.N., Serebriiskii, I.G., Liu, H., Burtness, B., Golemis, E.A., 2018. Targeting the ErbB Family in Head and Neck Cancer. In: Molecular Determinants of Head and Neck Cancer; Burtness, B., Golemis, E. A., Eds.; Current Cancer Research; Springer International Publishing: Cham, 2018; pp 7–61. Doi:10.1007/978-3-319-78762-6_2.
Kolb, H.C., Finn, M.G., Sharpless, K.B., Click Chemistry: Diverse Chemical Function from a Few Good Reactions. Angew. Chem. Int. Ed. 40:11 (2001), 2004–2021, 10.1002/1521-3773(20010601)40:11<2004::AID-ANIE2004>3.0.CO;2-5.
Lamanna, G., Kueny-Stotz, M., Mamlouk-Chaouachi, H., Ghobril, C., Basly, B., Bertin, A., Miladi, I., Billotey, C., Pourroy, G., Begin-Colin, S., Felder-Flesch, D., Dendronized Iron Oxide Nanoparticles for Multimodal Imaging. Biomaterials 32:33 (2011), 8562–8573, 10.1016/j.biomaterials.2011.07.026.
Le Bail, A., Duroy, H., Fourquet, J.L., Ab-Initio Structure Determination of LiSbWO6 by X-Ray Powder Diffraction. Mater. Res. Bull. 23:3 (1988), 447–452, 10.1016/0025-5408(88)90019-0.
Lee, H.-Y., Li, Z., Chen, K., Hsu, A.R., Xu, C., Xie, J., Sun, S., Chen, X., PET/MRI Dual-Modality Tumor Imaging Using Arginine-Glycine-Aspartic (RGD)–Conjugated Radiolabeled Iron Oxide Nanoparticles. J. Nucl. Med. 49:8 (2008), 1371–1379, 10.2967/jnumed.108.051243.
Lozano-Pedraza, C., Plaza-Mayoral, E., Espinosa, A., Sot, B., Serrano, A., Salas, G., Blanco-Andujar, C., Cotin, G., Felder-Flesch, D., Begin-Colin, S., Teran, F.J., Assessing the Parameters Modulating Optical Losses of Iron Oxide Nanoparticles under near Infrared Irradiation. Nanoscale Adv. 3:22 (2021), 6490–6502, 10.1039/D1NA00601K.
Makhani, E.Y., Zhang, A., Haun, J.B., Quantifying and Controlling Bond Multivalency for Advanced Nanoparticle Targeting to Cells. Nano Convergence, 8(1), 2021, 38, 10.1186/s40580-021-00288-1.
Matsumura, Y., Maeda, H., A New Concept for Macromolecular Therapeutics in Cancer Chemotherapy: Mechanism of Tumoritropic Accumulation of Proteins and the Antitumor Agent Smancs. Cancer Res. 46:12 Pt 1 (1986), 6387–6392.
Mittelheisser, V., Coliat, P., Moeglin, E., Goepp, L., Goetz, J.G., Charbonnière, L.J., Pivot, X., Detappe, A., Optimal Physicochemical Properties of Antibody-Nanoparticle Conjugates for Improved Tumor Targeting. Adv. Mater., 34(24), 2022, 2110305, 10.1002/adma.202110305.
Moradi, N., Muhammadnejad, S., Delavari, H., Pournoori, N., Oghabian, M.A., Ghafouri, H., Bio-Conjugation of Anti-Human CD3 Monoclonal Antibodies to Magnetic Nanoparticles by Using Cyanogen Bromide: A Potential for Cell Sorting and Noninvasive Diagnosis. Int. J. Biol. Macromol. 192 (2021), 72–81, 10.1016/j.ijbiomac.2021.09.129.
Nair, D.P., Podgórski, M., Chatani, S., Gong, T., Xi, W., Fenoli, C.R., Bowman, C.N., The Thiol-Michael Addition Click Reaction: A Powerful and Widely Used Tool in Materials Chemistry. Chem. Mater. 26:1 (2014), 724–744, 10.1021/cm402180t.
Nam, J., Won, N., Bang, J., Jin, H., Park, J., Jung, S., Jung, S., Park, Y., Kim, S., Surface Engineering of Inorganic Nanoparticles for Imaging and Therapy. Adv. Drug Deliv. Rev. 65:5 (2013), 622–648, 10.1016/j.addr.2012.08.015.
Palanisamy, S., Wang, Y.-M., Superparamagnetic Iron Oxide Nanoparticulate System: Synthesis, Targeting, Drug Delivery and Therapy in Cancer. Dalton Trans. 48:26 (2019), 9490–9515, 10.1039/C9DT00459A.
Panahifar, A., Mahmoudi, M., Doschak, M.R., Synthesis and in Vitro Evaluation of Bone-Seeking Superparamagnetic Iron Oxide Nanoparticles as Contrast Agents for Imaging Bone Metabolic Activity. ACS Appl. Mater. Interfaces 5:11 (2013), 5219–5226, 10.1021/am4010495.
Pellico, J., Gawne, P.J., de Rosales, R.T.M., Radiolabelling of Nanomaterials for Medical Imaging and Therapy. Chem. Soc. Rev. 50:5 (2021), 3355–3423, 10.1039/D0CS00384K.
Perton, F., Tasso, M., Muñoz Medina, G.A., Ménard, M., Blanco-Andujar, C., Portiansky, E., van Raap, M.B.F., Bégin, D., Meyer, F., Begin-Colin, S., Mertz, D., Fluorescent and Magnetic Stellate Mesoporous Silica for Bimodal Imaging and Magnetic Hyperthermia. Appl. Mater. Today 16 (2019), 301–314, 10.1016/j.apmt.2019.06.006.
Perton, F., Cotin, G., Kiefer, C., Strub, J.-M., Cianferani, S., Greneche, J.-M., Parizel, N., Heinrich, B., Pichon, B., Mertz, D., Begin-Colin, S., Iron Stearate Structures: An Original Tool for Nanoparticles Design. Inorg. Chem. 60:16 (2021), 12445–12456, 10.1021/acs.inorgchem.1c01689.
Ratushny, V., Astsaturov, I., Burtness, B.A., Golemis, E.A., Silverman, J.S., Targeting EGFR Resistance Networks in Head and Neck Cancer. Cell. Signal. 21:8 (2009), 1255–1268, 10.1016/j.cellsig.2009.02.021.
Richard, S., Boucher, M., Lalatonne, Y., Mériaux, S., Motte, L., Iron Oxide Nanoparticle Surface Decorated with CRGD Peptides for Magnetic Resonance Imaging of Brain Tumors. Biochim. Biophys. Acta Gen. Subj. 1861:6 (2017), 1515–1520, 10.1016/j.bbagen.2016.12.020.
Rimkus, G., Bremer-Streck, S., Grüttner, C., Kaiser, W.A., Hilger, I., Can We Accurately Quantify Nanoparticle Associated Proteins When Constructing High-Affinity MRI Molecular Imaging Probes?. Contrast Media Mol. Imaging 6:3 (2011), 119–125, 10.1002/cmmi.405.
Rodríguez-Carvajal, J., Recent Advances in Magnetic Structure Determination by Neutron Powder Diffraction. Phys. B Condens. Matter 192:1 (1993), 55–69, 10.1016/0921-4526(93)90108-I.
Ruoslahti, E., Tumor Penetrating Peptides for Improved Drug Delivery. Adv. Drug Deliv. Rev. 110–111 (2017), 3–12, 10.1016/j.addr.2016.03.008.
Saha, A., Ben Halima, H., Saini, A., Gallardo-Gonzalez, J., Zine, N., Viñas, C., Elaissari, A., Errachid, A., Teixidor, F., Magnetic Nanoparticles Fishing for Biomarkers in Artificial Saliva. Molecules, 25(17), 2020, 3968, 10.3390/molecules25173968.
Specenier, P., Vermorken, J.B., Cetuximab: Its Unique Place in Head and Neck Cancer Treatment. Biologics 7 (2013), 77–90, 10.2147/BTT.S43628.
Sun, E. Y.; Josephson, L.; Weissleder, R. “Clickable” Nanoparticles for Targeted Imaging. Mol Imaging 2006, 5 (2), 7290.2006.00013. Doi:10.2310/7290.2006.00013.
Tasso, M., Singh, M.K., Giovanelli, E., Fragola, A., Loriette, V., Regairaz, M., Dautry, F., Treussart, F., Lenkei, Z., Lequeux, N., Pons, T., Oriented Bioconjugation of Unmodified Antibodies to Quantum Dots Capped with Copolymeric Ligands as Versatile Cellular Imaging Tools. ACS Appl. Mater. Interfaces 7:48 (2015), 26904–26913, 10.1021/acsami.5b09777.
Tasso, M., Giovanelli, E., Zala, D., Bouccara, S., Fragola, A., Hanafi, M., Lenkei, Z., Pons, T., Lequeux, N., Sulfobetaine-Vinylimidazole Block Copolymers: A Robust Quantum Dot Surface Chemistry Expanding Bioimaging's Horizons. ACS Nano 9:11 (2015), 11479–11489, 10.1021/acsnano.5b05705.
Tasso, M., Pons, T., Lequeux, N., Nguyen, J., Lenkei, Z., Zala, D., NanoPaint: A Tool for Rapid and Dynamic Imaging of Membrane Structural Plasticity at the Nanoscale. Small, 15(47), 2019, 1902796, 10.1002/smll.201902796.
Teesalu, T., Sugahara, K., Ruoslahti, E., Tumor-Penetrating Peptides. Front. Oncol., 2013, 3.
Truffi, M., Colombo, M., Sorrentino, L., Pandolfi, L., Mazzucchelli, S., Pappalardo, F., Pacini, C., Allevi, R., Bonizzi, A., Corsi, F., Prosperi, D., Multivalent Exposure of Trastuzumab on Iron Oxide Nanoparticles Improves Antitumor Potential and Reduces Resistance in HER2-Positive Breast Cancer Cells. Sci. Rep., 8(1), 2018, 6563, 10.1038/s41598-018-24968-x.
Walter, A., Billotey, C., Garofalo, A., Ulhaq-Bouillet, C., Lefèvre, C., Taleb, J., Laurent, S., Vander Elst, L., Muller, R.N., Lartigue, L., Gazeau, F., Felder-Flesch, D., Begin-Colin, S., Mastering the Shape and Composition of Dendronized Iron Oxide Nanoparticles To Tailor Magnetic Resonance Imaging and Hyperthermia. Chem. Mater. 26:18 (2014), 5252–5264, 10.1021/cm5019025.
Walter, A., Parat, A., Garofalo, A., Laurent, S., Elst, L.V., Muller, R.N., Wu, T., Heuillard, E., Robinet, E., Meyer, F., Felder-Flesch, D., Begin-Colin, S., Modulation of Relaxivity, Suspension Stability, and Biodistribution of Dendronized Iron Oxide Nanoparticles as a Function of the Organic Shell Design. Part. Part. Syst. Char. 32:5 (2015), 552–560, 10.1002/ppsc.201400217.
Walter, A., Garofalo, A., Parat, A., Jouhannaud, J., Pourroy, G., Voirin, E., Laurent, S., Bonazza, P., Taleb, J., Billotey, C., Elst, L.V., Muller, R.N., Begin-Colin, S., Felder-Flesch, D., Validation of a Dendron Concept to Tune Colloidal Stability, MRI Relaxivity and Bioelimination of Functional Nanoparticles. J. Mater. Chem. B 3:8 (2015), 1484–1494, 10.1039/C4TB01954G.
Walter, A., Garofalo, A., Bonazza, P., Meyer, F., Martinez, H., Fleutot, S., Billotey, C., Taleb, J., Felder-Flesch, D., Begin-Colin, S., Effect of the Functionalization Process on the Colloidal, Magnetic Resonance Imaging, and Bioelimination Properties of Mono- or Bisphosphonate-Anchored Dendronized Iron Oxide Nanoparticles. ChemPlusChem 82:4 (2017), 647–659, 10.1002/cplu.201700049.
Wang, Y., Tong, L., Wang, J., Luo, J., Tang, J., Zhong, L., Xiao, Q., Niu, W., Li, J., Zhu, J., Chen, H., Li, X., Wang, Y., CRGD-Functionalized Nanoparticles for Combination Therapy of Anti-Endothelium Dependent Vessels and Anti-Vasculogenic Mimicry to Inhibit the Proliferation of Ovarian Cancer. Acta Biomater. 94 (2019), 495–504, 10.1016/j.actbio.2019.06.039.
Wen, Y., Xu, M., Liu, X., Jin, X., Kang, J., Xu, D., Sang, H., Gao, P., Chen, X., Zhao, L., Magnetofluorescent Nanohybrid Comprising Polyglycerol Grafted Carbon Dots and Iron Oxides: Colloidal Synthesis and Applications in Cellular Imaging and Magnetically Enhanced Drug Delivery. Colloids Surf. B Biointerfaces 173 (2019), 842–850, 10.1016/j.colsurfb.2018.10.073.
Yang, C., Mi, X., Su, H., Yang, J., Gu, Y., Zhang, L., Sun, W., Liang, X., Zhang, C., GE11-PDA-Pt@USPIOs Nano-Formulation for Relief of Tumor Hypoxia and MRI/PAI-Guided Tumor Radio-Chemotherapy. Biomater. Sci. 7:5 (2019), 2076–2090, 10.1039/C8BM01492B.
Yoo, J., Park, C., Yi, G., Lee, D., Koo, H., Active Targeting Strategies Using Biological Ligands for Nanoparticle Drug Delivery Systems. Cancers, 11(5), 2019, 640, 10.3390/cancers11050640.
Yu, M.K., Park, J., Jon, S., Targeting Strategies for Multifunctional Nanoparticles in Cancer Imaging and Therapy. Theranostics 2:1 (2012), 3–44, 10.7150/thno.3463.