Chemistry (all); Biochemistry, Genetics and Molecular Biology (all); Physics and Astronomy (all); General Physics and Astronomy; General Biochemistry, Genetics and Molecular Biology; General Chemistry; Multidisciplinary
Abstract :
[en] The charge-transport properties of conjugated polymers have been studied extensively for opto-electronic device applications. Some polymer semiconductors not only support the ambipolar transport of electrons and holes, but do so with comparable carrier mobilities. This opens the possibility of gaining deeper insight into the charge-transport physics of these complex materials via comparison between electron and hole dynamics while keeping other factors, such as polymer microstructure, equal. Here, we use field-induced electron spin resonance spectroscopy to compare the spin relaxation behavior of electron and hole polarons in three ambipolar conjugated polymers. Our experiments show unique relaxation regimes as a function of temperature for electrons and holes, whereby at lower temperatures electrons relax slower than holes, but at higher temperatures, in the so-called spin-shuttling regime, the trend is reversed. On the basis of theoretical simulations, we attribute this to differences in the delocalization of electron and hole wavefunctions and show that spin relaxation in the spin shuttling regimes provides a sensitive probe of the intimate coupling between charge and structural dynamics.
Disciplines :
Chemistry
Author, co-author :
Carey, Remington L; Cavendish Laboratory, University of Cambridge, Cambridge, CB3 0HE, UK
Giannini, Samuele ; Université de Mons - UMONS > Faculté des Sciences > Service de Chimie des matériaux nouveaux ; Institute of Chemistry of OrganoMetallic Compounds, National Research Council (ICCOM-CNR), I-56124, Pisa, Italy
Schott, Sam; Cavendish Laboratory, University of Cambridge, Cambridge, CB3 0HE, UK
LEMAUR, Vincent ; Université de Mons - UMONS > Faculté des Science > Service de Chimie des matériaux nouveaux
Xiao, Mingfei; Cavendish Laboratory, University of Cambridge, Cambridge, CB3 0HE, UK
Prodhan, Suryoday ; Université de Mons - UMONS > Faculté des Sciences > Service de Chimie des matériaux nouveaux ; Department of Chemistry, University of Liverpool, Liverpool, L69 3BX, UK
Wang, Linjun ; Université de Mons - UMONS > Faculté des Sciences > Chimie des matériaux nouveaux ; Key Laboratory of Excited-State Materials of Zhejiang Province, Department of Chemistry, Zhejiang University, Hangzhou, 310058, China
Bovoloni, Michelangelo ; Université de Mons - UMONS > Faculté des Sciences > Service de Chimie des matériaux nouveaux
Quarti, Claudio ; Université de Mons - UMONS > Faculté des Science > Service de Chimie des matériaux nouveaux
Beljonne, David ; Université de Mons - UMONS > Faculté des Science > Service de Chimie des matériaux nouveaux
Sirringhaus, Henning ; Cavendish Laboratory, University of Cambridge, Cambridge, CB3 0HE, UK. hs220@cam.ac.uk
Language :
English
Title :
Spin relaxation of electron and hole polarons in ambipolar conjugated polymers.
Research Institute for Materials Science and Engineering
Funding text :
We acknowledge funding from the European Research Council through a Synergy grant (610115). H.S. also acknowledges support by a Royal Society Research Professorship (RP⧹R1⧹201082) and an ERC Advanced grant (101020872). The work in Mons received funding from the European Union’s Horizon 2020 research and innovation program under grant agreement No. 964677, the Consortium des Équipements de Calcul Intensif (CÉCI), funded by the Fonds National de la Recherche Scientifique (F.R.S.-FNRS) under Grant No. 2.5020.11 as well as the Tier-1 supercomputer of the Fédération Wallonie-Bruxelles, infrastructure funded by the Walloon Region under Grant Agreement n1117545, and F.R.S.-FNRS. S.G. is Chargé de recherches FNRS, C.Q. is FNRS research associate and D.B. is FNRS Research Director. L.W. acknowledges support from the National Natural Science Foundation of China (Grant No. 22273082). S.P. acknowledges financial support from the European Research Council (Grant No. 101020369).We acknowledge funding from the European Research Council through a Synergy grant (610115). H.S. also acknowledges support by a Royal Society Research Professorship (RP⧹R1⧹201082) and an ERC Advanced grant (101020872). The work in Mons received funding from the European Union’s Horizon 2020 research and innovation program under grant agreement No. 964677, the Consortium des Équipements de Calcul Intensif (CÉCI), funded by the Fonds National de la Recherche Scientifique (F.R.S.-FNRS) under Grant No. 2.5020.11 as well as the Tier-1 supercomputer of the Fédération Wallonie-Bruxelles, infrastructure funded by the Walloon Region under Grant Agreement n1117545, and F.R.S.-FNRS. S.G. is Chargé de recherches FNRS, C.Q. is FNRS research associate and D.B. is FNRS Research Director. L.W. acknowledges support from the National Natural Science Foundation of China (Grant No. 22273082). S.P. acknowledges financial support from the European Research Council (Grant No. 101020369).
Chua, L.-L. et al. General observation of n-type field-effect behaviour in organic semiconductors. Nature 434, 194–199 (2004). DOI: 10.1038/nature03376
Meijer, E. J. et al. Solution-processed ambipolar organic field-effect transistors and inverters. Nat. Mater. 2, 678–682 (2003). DOI: 10.1038/nmat978
Schmechel, R. et al. Light-emitting field-effect transistor: Simple model and underlying functional mechanisms. In Organic Field Effect Transistors II, 5217, 101–111 (SPIE, 2003).
Chesterfield, R. et al. High electron mobility and ambipolar transport in organic thin-film transistors based on a pi-stacking quinoidal terthiophene. Adv. Mater. 15, 1278–1282 (2003). DOI: 10.1002/adma.200305200
Zaumseil, J. & Sirringhaus, H. Electron and ambipolar transport in organic field-effect transistors. Chem. Rev. 107, 1296–1323 (2007). DOI: 10.1021/cr0501543
Chen, Z. et al. Origin of the different transport properties of electron and hole polarons in an ambipolar polyselenophene-based conjugated polymer. Phys. Rev. B 84, 115211 (2011). DOI: 10.1103/PhysRevB.84.115211
Marumoto, K., Kuroda, S.-i, Takenobu, T. & Iwasa, Y. Spatial extent of wave functions of gate-induced hole carriers in pentacene field-effect devices as investigated by electron spin resonance. Phys. Rev. Lett. 97, 256603 (2006). DOI: 10.1103/PhysRevLett.97.256603
Matsui, H., Mishchenko, A. S. & Hasegawa, T. Distribution of localized states from fine analysis of electron spin resonance spectra in organic transistors. Phys. Rev. Lett. 104, 056602 (2010). DOI: 10.1103/PhysRevLett.104.056602
Matsui, H., Hasegawa, T., Tokura, Y., Hiraoka, M. & Yamada, T. Polaron motional narrowing of electron spin resonance in organic field-effect transistors. Phys. Rev. Lett. 100, 126601 (2008). DOI: 10.1103/PhysRevLett.100.126601
Kuroda, S.-i et al. Electron spin resonance of charge carriers in organic field-effect devices. Appl. Magn. Reson. 36, 357 (2009). DOI: 10.1007/s00723-009-0032-4
Matsui, H. & Hasegawa, T. Direct observation of field-induced carrier dynamics in pentacene thin-film transistors by electron spin resonance spectroscopy. Jpn. J. Appl. Phys. 48, 04C175 (2009). DOI: 10.1143/JJAP.48.04C175
Matsui, H. & Hasegawa, T. Field-induced ESR spectroscopy on rubrene single-crystal field-effect transistors. MRS Proc. 1154, 1154–B08–04 (2009). DOI: 10.1557/PROC-1154-B08-04
Marumoto, K. et al. Microscopic mechanisms behind the high mobility in rubrene single-crystal transistors as revealed by field-induced electron spin resonance. Phys. Rev. B 83, 075302 (2011). DOI: 10.1103/PhysRevB.83.075302
Singh, T. B., Günes, S., Marjanović, N., Sariciftci, N. S. & Menon, R. Correlation between morphology and ambipolar transport in organic field-effect transistors. J. Appl. Phys. 97, 114508 (2005). DOI: 10.1063/1.1929850
Cho, S., Yuen, J., Kim, J. Y., Lee, K. & Heeger, A. J. Ambipolar organic field-effect transistors fabricated using a composite of semiconducting polymer and soluble fullerene. Appl. Phys. Lett. 89, 153505 (2006). DOI: 10.1063/1.2361269
Marumoto, K., Sakamoto, T., Watanabe, S.-i, Ito, H. & Kuroda, S.-i Electron spin resonance observation of gate-induced ambipolar charge carriers in organic devices. Jpn. J. Appl. Phys. 46, L1191–L1193 (2007). DOI: 10.1143/JJAP.46.L1191
Watanabe, S., Tanaka, H., Ito, H., Marumoto, K. & Kuroda, S. ESR studies of ambipolar charge carriers in metal–insulator–semiconductor diodes of regioregular poly(3-hexylthiophene)/PCBM composites. Synth. Met. 159, 893–896 (2009). DOI: 10.1016/j.synthmet.2009.01.050
Schott, S. et al. Polaron spin dynamics in high-mobility polymeric semiconductors. Nat. Phys. 15, 814 (2019). DOI: 10.1038/s41567-019-0538-0
Slichter, C. P. Principles of Magnetic Resonance (Harper & Row Publishers, 1963).
Li, Y., Singh, S. P. & Sonar, P. A high mobility P-Type DPP-Thieno[3,2-b]thiophene copolymer for organic thin-film transistors. Adv. Mater. 22, 4862–4866 (2010). DOI: 10.1002/adma.201002313
Wan, X., Li, C., Zhang, M. & Chen, Y. Acceptor–donor–acceptor type molecules for high performance organic photovoltaics—chemistry and mechanism. Chem. Soc. Rev. 49, 2828–2842 (2020). DOI: 10.1039/D0CS00084A
Chen, Z. et al. High-performance ambipolar Diketopyrrolopyrrole-Thieno[3,2-b]thiophene copolymer field-effect transistors with balanced hole and electron mobilities. Adv. Mater. 24, 647–652 (2012). DOI: 10.1002/adma.201102786
Onwubiko, A. et al. Fused electron deficient semiconducting polymers for air stable electron transport. Nat. Commun. 9, 416 (2018). DOI: 10.1038/s41467-018-02852-6
Xiao, M. et al. Charge transport physics of a unique class of rigid-rod conjugated polymers with fused-ring conjugated units linked by double carbon-carbon bonds. Sci. Adv. 7, eabe5280 (2021). DOI: 10.1126/sciadv.abe5280
Su, W. P., Schrieffer, J. R. & Heeger, A. J. Solitons in polyacetylene. Phys. Rev. Lett. 42, 1698–1701 (1979). DOI: 10.1103/PhysRevLett.42.1698
Qiu, J., Bai, X. & Wang, L. Crossing classified and corrected fewest switches surface hopping. J. Phys. Chem. Lett. 9, 4319–4325 (2018). DOI: 10.1021/acs.jpclett.8b01902
Bai, X., Qiu, J. & Wang, L. An efficient solution to the decoherence enhanced trivial crossing problem in surface hopping. J. Chem. Phys. 148, 104106 (2018). DOI: 10.1063/1.5020693
Tully, J. C. Molecular dynamics with electronic transitions. J. Chem. Phys. 93, 1061–1071 (1990). DOI: 10.1063/1.459170
Giannini, S. et al. Quantum localization and delocalization of charge carriers in organic semiconducting crystals. Nat. Commun. 10, 3843 (2019). DOI: 10.1038/s41467-019-11775-9
Sneyd, A. J., Beljonne, D. & Rao, A. A new frontier in exciton transport: transient delocalization. J. Phys. Chem. Lett. 13, 6820–6830 (2022). DOI: 10.1021/acs.jpclett.2c01133
Prodhan, S., Giannini, S., Wang, L. & Beljonne, D. Long-range interactions boost singlet exciton diffusion in nanofibers of π-extended polymer chains. J. Phys. Chem. Lett. 12, 8188–8193 (2021). DOI: 10.1021/acs.jpclett.1c02275
Giannini, S. et al. Exciton transport in molecular organic semiconductors boosted by transient quantum delocalization. Nat. Commun. 13, 2755 (2022). DOI: 10.1038/s41467-022-30308-5
Giannini, S. & Blumberger, J. Charge transport in organic semiconductors: the perspective from nonadiabatic molecular dynamics. Acc. Chem. Res. 55, 819–830 (2022). DOI: 10.1021/acs.accounts.1c00675
Bronstein, H. et al. Thieno[3,2- b]thiophene-Diketopyrrolopyrrole-containing polymers for high-performance organic field-effect transistors and organic photovoltaic devices. J. Am. Chem. Soc. 133, 3272–3275 (2011).
Chen, Z. et al. High mobility ambipolar charge transport in polyselenophene conjugated polymers. Adv. Mater. 22, 2371–2375 (2010). DOI: 10.1002/adma.200903711
Gwinner, M. C., Khodabakhsh, S., Giessen, H. & Sirringhaus, H. Simultaneous optimization of light gain and charge transport in ambipolar light-emitting polymer field-effect transistors. Chem. Mater. 21, 4425–4433 (2009). DOI: 10.1021/cm900982a
Wang, L., Qiu, J., Bai, X. & Xu, J. Surface hopping methods for nonadiabatic dynamics in extended systems. WIREs Comput. Mol. Sci. 10, e1435 (2020). DOI: 10.1002/wcms.1435
Wang, L. & Beljonne, D. Flexible surface hopping approach to model the crossover from hopping to band-like transport in organic crystals. J. Phys. Chem. Lett. 4, 1888–1894 (2013). DOI: 10.1021/jz400871j
Granucci, G. & Persico, M. Critical appraisal of the fewest switches algorithm for surface hopping. J. Chem. Phys. 126, 134114 (2007). DOI: 10.1063/1.2715585
Carof, A., Giannini, S. & Blumberger, J. How to calculate charge mobility in molecular materials from surface hopping non-adiabatic molecular dynamics—beyond the hopping/band paradigm. Phys. Chem. Chem. Phys. 21, 26368–26386 (2019). DOI: 10.1039/C9CP04770K
Carof, A., Giannini, S. & Blumberger, J. Detailed balance, internal consistency, and energy conservation in fragment orbital-based surface hopping. J. Chem. Phys. 147, 214113 (2017). DOI: 10.1063/1.5003820