[en] [en] BACKGROUND: Non-typeable Haemophilus influenzae has become increasingly important as a causative agent of invasive diseases following vaccination against H. influenzae type b. The emergence of antibiotic resistance underscores the necessity to investigate typeable non-b carriage and non-typeable H. influenzae (NTHi) in children.
METHODS: Nasopharyngeal swab samples were taken over a three-year period (2016-2018) from 336 children (6-30 months of age) attending daycare centers (DCCs) in Belgium, and from 218 children with acute otitis media (AOM). Biotype, serotype, and antibiotic resistance of H. influenzae strains were determined phenotypically. Mutations in the ftsI gene were explored in 129 strains that were resistant or had reduced susceptibility to beta-lactam antibiotics. Results were compared with data obtained during overlapping time periods from 94 children experiencing invasive disease.
RESULTS: Overall, NTHi was most frequently present in both carriage (DCC, AOM) and invasive group. This was followed by serotype "f" (2.2%) and "e" (1.4%) in carriage, and "b" (16.0%), "f" (11.7%), and "a" (4.3%) in invasive strains. Biotype II was most prevalent in all studied groups, followed by biotype III in carriage and I in invasive strains. Strains from both groups showed highest resistance to ampicillin (26.7% in carriage vs. 18.1% in invasive group). A higher frequency of ftsI mutations were found in the AOM group than the DCC group (21.6 vs. 14.9% - p = 0.056). Even more so, the proportion of biotype III strains that carried a ftsI mutation was higher in AOM compared to DCC (50.0 vs. 26.3% - p < 0.01) and invasive group.
CONCLUSION: In both groups, NTHi was most frequently circulating, while specific encapsulated serotypes for carriage and invasive group were found. Biotypes I, II and III were more frequently present in the carriage and invasive group. The carriage group had a higher resistance-frequency to the analyzed antibiotics than the invasive group. Interestingly, a higher degree of ftsI mutations was found in children with AOM compared to DCC and invasive group. This data helps understanding the H. influenzae carriage in Belgian children, as such information is scarce.
Disciplines :
Immunology & infectious disease
Author, co-author :
Ekinci, Esra; Centre for the Evaluation of Vaccination, University of Antwerp, Wilrijk, Belgium
Willen, Laura; Centre for the Evaluation of Vaccination, University of Antwerp, Wilrijk, Belgium
Rodriguez Ruiz, Juan Pablo; Laboratory of Medical Microbiology, University of Antwerp, Wilrijk, Belgium
Maertens, Kirsten; Centre for the Evaluation of Vaccination, University of Antwerp, Wilrijk, Belgium
Van Heirstraeten, Liesbet; Laboratory of Medical Microbiology, University of Antwerp, Wilrijk, Belgium
Serrano, Gabriela; National Reference Centre for Haemophilus influenzae, Laboratoire Hospitalier Universitaire de Bruxelles - Universitair Laboratorium Brussel (LHUB-ULB), Brussels, Belgium
Wautier, Magali; National Reference Centre for Haemophilus influenzae, Laboratoire Hospitalier Universitaire de Bruxelles - Universitair Laboratorium Brussel (LHUB-ULB), Brussels, Belgium
Deplano, Ariane; National Reference Centre for Haemophilus influenzae, Laboratoire Hospitalier Universitaire de Bruxelles - Universitair Laboratorium Brussel (LHUB-ULB), Brussels, Belgium
Goossens, Herman; Laboratory of Medical Microbiology, University of Antwerp, Wilrijk, Belgium
Van Damme, Pierre; Centre for the Evaluation of Vaccination, University of Antwerp, Wilrijk, Belgium
Beutels, Philippe; Centre for Health Economics Research and Modelling Infectious Diseases, University of Antwerp, Wilrijk, Belgium
Malhotra-Kumar, Surbhi; Laboratory of Medical Microbiology, University of Antwerp, Wilrijk, Belgium
Martiny, Delphine ; Université de Mons - UMONS > Faculté de Médecine et de Pharmac > Service du Doyen de la Faculté de Médecine et Pharmacie ; National Reference Centre for Haemophilus influenzae, Laboratoire Hospitalier Universitaire de Bruxelles - Universitair Laboratorium Brussel (LHUB-ULB), Brussels, Belgium
Theeten, Heidi; Centre for the Evaluation of Vaccination, University of Antwerp, Wilrijk, Belgium
The study is supported by a research grant from Research Foundation Flanders (FWO Research Grant 1150017N, Antigoon ID 33341) and an investigator-initiated research grant from Pfizer.We would like to thank all members of the expert advisory board (HG, R. Cohen, A. Finn, K. Van Herck, and D. Tuerlinckx) for their contribution to the study protocol and interpretation of the results; Research Link–ECSOR operating as the CRO; the cooperating nurses, physicians, ONE and Kind & Gezin for assistance in the recruitment and sampling; the children and their parents for their participation.
Agrawal A. Murphy T. F. (2011). Haemophilus influenzae infections in the H. influenzae type b conjugate vaccine era. J. Clin. Microbiol. 49, 3728–3732. doi: 10.1128/JCM.05476-11, PMID: 21900515
Albritton W. L. Penner S. Slaney L. Brunton J. (1978). Biochemical characteristics of Haemophilus influenzae in relationship to source of isolation and antibiotic resistance. J. Clin. Microbiol. 7, 519–523. doi: 10.1128/jcm.7.6.519-523.1978, PMID: 307559
Aniansson G. Aim B. Andersson B. Larsson P. Nylen O. Peterson H. et al. (1992). Nasopharyngeal colonization during the first year of life. J. Infect. Dis. 165, S38–S42. doi: 10.1093/infdis/165-Supplement_1-S38
Atkins N. A. Kunde D. A. Zosky G. Tristram S. G. (2014). Genotypically defined β-lactamase-negative ampicillin-resistant isolates of non-typable Haemophilus influenzae are associated with increased invasion of bronchial epithelial cells in vitro. J. Med. Microbiol. 63, 1400–1403. doi: 10.1099/jmm.0.077966-0
Barbosa A. R. Giufre M. Cerquetti M. Bajanca-Lavado M. P. (2011). Polymorphism in ftsI gene and {beta}-lactam susceptibility in Portuguese Haemophilus influenzae strains: clonal dissemination of beta-lactamase-positive isolates with decreased susceptibility to amoxicillin/clavulanic acid. J. Antimicrob. Chemother. 66, 788–796. doi: 10.1093/jac/dkq533, PMID: 21393206
Deghmane A. E. Hong E. Chehboub S. Terrade A. Falguières M. Sort M. et al. (2019). High diversity of invasive Haemophilus influenzae isolates in France and the emergence of resistance to third generation cephalosporins by alteration of ftsI gene. J. Infect. 79, 7–14. doi: 10.1016/j.jinf.2019.05.007, PMID: 31100360
Ekinci E. van Heirstraeten L. Willen L. Desmet S. Wouters I. Vermeulen H. et al. (2022). Serotype 19A and 6C account for one third of pneumococcal carriage among Belgian day-care children four years after a shift to a lower-valent PCV. J. Pediatric. Infect. Dis. Soc. 12, 36–42. doi: 10.1093/jpids/piac117
García-Cobos S. Campos J. Lázaro E. Román F. Cercenado E. García-Rey C. et al. (2007). Ampicillin-resistant non-beta-lactamase-producing Haemophilus influenzae in Spain: recent emergence of clonal isolates with increased resistance to cefotaxime and cefixime. Antimicrob. Agents Chemother. 51, 2564–2573. doi: 10.1128/AAC.00354-07, PMID: 17470649
Grammens D. M. Moens C. Wyndham-Thomas C., (2017). Epidemiologische surveillance van invasieve infecties met Haemophilus influenzae – 2017. Sciensano: Belgium.
Grammens D. M. Moens C. Wyndham-Thomas C. (2018). Epidemiologische surveillance van invasieve infecties met Haemophilus influenzae – 2018. Sciensano: Belgium.
Han M. S. Jung H. J. Lee H. J. Choi E. H. (2019). Increasing prevalence of group III penicillin-binding protein 3 mutations conferring high-level resistance to Beta-lactams among nontypeable Haemophilus influenzae isolates from children in Korea. Microb. Drug Resist. 25, 567–576. doi: 10.1089/mdr.2018.0342, PMID: 30484742
Hasegawa K. Yamamoto K. Chiba N. Kobayashi R. Nagai K. Jacobs M. R. et al. (2003). Diversity of ampicillin-resistance genes in Haemophilus influenzae in Japan and the United States. Microb. Drug Resist. 9, 39–46. doi: 10.1089/107662903764736337, PMID: 12705682
Hashida K. Shiomori T. Hohchi N. Muratani T. Mori T. Udaka T. et al. (2008). Nasopharyngeal Haemophilus influenzae carriage in Japanese children attending day-care centers. J. Clin. Microbiol. 46, 876–881. doi: 10.1128/JCM.01726-07
Honda H. Sato T. Shinagawa M. Fukushima Y. Nakajima C. Suzuki Y. et al. (2018). Multiclonal expansion and high prevalence of β-lactamase-negative Haemophilus influenzae with high-level ampicillin resistance in Japan and susceptibility to quinolones. Antimicrob. Agents Chemother. 62, e00851–e00818. doi: 10.1128/AAC.00851-18, PMID: 29987153
Hotomi M. Fujihara K. Billal D. S. Suzuki K. Nishimura T. Baba S. et al. (2007). Genetic characteristics and clonal dissemination of beta-lactamase-negative ampicillin-resistant Haemophilus influenzae strains isolated from the upper respiratory tract of patients in Japan. Antimicrob. Agents Chemother. 51, 3969–3976. doi: 10.1128/AAC.00422-07, PMID: 17698631
Jacquinet D. M. Prevost B. Grammens T. (2021). Epidemiologische surveillance van invasieve infecties met Haemophilus influenzae – 2019 to 2021. Sciensano: Belgium.
Jain A. Kumar P. Awasthi S. (2006). High ampicillin resistance in different biotypes and serotypes of Haemophilus influenzae colonizing the nasopharynx of healthy school-going Indian children. J. Med. Microbiol. 55, 133–137. doi: 10.1099/jmm.0.46249-0, PMID: 16434703
Kilian M. (1976). A taxonomic study of the genus Haemophilus, with the proposal of a new species. J. Gen. Microbiol. 93, 9–62. doi: 10.1099/00221287-93-1-9, PMID: 772168
Ladhani S. N. Collins S. Vickers A. Litt D. J. Crawford C. Ramsay M. E. et al. (2012). Invasive Haemophilus influenzae serotype e and f disease, England and Wales. Emerg. Infect. Dis. 18, 725–732. doi: 10.3201/eid1805.111738, PMID: 22515912
Long S. S. Teter M. J. Gilligan P. H. (1983). Biotype of Haemophilus influenzae: correlation with virulence and ampicillin resistance. J. Infect. Dis. 147, 800–806. doi: 10.1093/infdis/147.5.800, PMID: 6601683
Madore D. V. (1996). Impact of immunization on Haemophilus influenzae type b disease. Infect. Agents Dis. 5, 8–20. PMID: 8789595
McElligott M. Meyler K. Bennett D. Mulhall R. Drew R. J. Cunney R. (2020). Epidemiology of Haemophilus influenzae in the Republic of Ireland, 2010-2018. Eur. J. Clin. Microbiol. Infect. Dis. 39, 2335–2344. doi: 10.1007/s10096-020-03971-z, PMID: 32666480
Medeiros A. A. Levesque R. Jacoby G. A. (1986). An animal source for the ROB-1 beta-lactamase of Haemophilus influenzae type b. Antimicrob. Agents Chemother. 29, 212–215. doi: 10.1128/AAC.29.2.212, PMID: 3487284
Mendelman P. M. Chaffin D. O. Musser J. M. de Groot R. Serfass D. A. Selander R. K. (1987). Genetic and phenotypic diversity among ampicillin-resistant, non-beta-lactamase-producing, nontypeable Haemophilus influenzae isolates. Infect. Immun. 55, 2585–2589. doi: 10.1128/iai.55.11.2585-2589.1987, PMID: 3499396
Nürnberg S. Claus H. Krone M. Vogel U. Lâm T. T. (2021). Cefotaxime resistance in invasive Haemophilus influenzae isolates in Germany 2016-19: prevalence, epidemiology and relevance of PBP3 substitutions. J. Antimicrob. Chemother. 76, 920–929. doi: 10.1093/jac/dkaa557, PMID: 33501993
Okabe T. Yamazaki Y. Shiotani M. Suzuki T. Shiohara M. Kasuga E. et al. (2010). An amino acid substitution in PBP-3 in Haemophilus influenzae associate with the invasion to bronchial epithelial cells. Microbiol. Res. 165, 11–20. doi: 10.1016/j.micres.2008.03.003, PMID: 18417334
Ortiz-Romero M. D. M. Espejo-García M. P. Alfayate-Miguelez S. Ruiz-López F. J. Zapata-Hernandez D. Gonzalez-Pacanowska A. J. et al. (2017). Epidemiology of nasopharyngeal carriage by Haemophilus influenzae in healthy children: a study in the Mediterranean coast region. Pediatr. Infect. Dis. J. 36, 919–923. doi: 10.1097/INF.0000000000001625, PMID: 28472007
Palaniappan P. A. Mohamed Sukur S. Liow Y. L. Maniam S. Sherina F. Ahmad N. (2020). Carriage of Haemophilus influenzae among children attending childcare centres in Kuala Lumpur, Malaysia in the post vaccination era: a cross-sectional study. Vaccine 38, 8232–8237. doi: 10.1016/j.vaccine.2020.09.066, PMID: 33139134
Peltola H. (2000). Worldwide Haemophilus influenzae type b disease at the beginning of the 21st century: global analysis of the disease burden 25 years after the use of the polysaccharide vaccine and a decade after the advent of conjugates. Clin. Microbiol. Rev. 13, 302–317. doi: 10.1128/CMR.13.2.302, PMID: 10756001
Peltola H. Käythy H. Sivonen A. Mäkelä P. H. (1977). Haemophilus influenzae type b capsular polysaccharide vaccine in children: a double-blind field study of 100,000 vaccinees 3 months to 5 years of age in Finland. Pediatrics 60, 730–737. doi: 10.1542/peds.60.5.730, PMID: 335348
Pittman M. (1931). Variation and type specificity in the bacterial species Hemophilus influenzae. J. Exp. Med. 53, 471–492. doi: 10.1084/jem.53.4.471, PMID: 19869858
Reilly A. S. McElligott M. Mac Dermott Casement C. Drew R. J. (2022). Haemophilus influenzae type f in the post-Haemophilus influenzae type b vaccination era: a systematic review. J. Med. Microbiol. 71. doi: 10.1099/jmm.0.001606, PMID: 36306238
Righter J. Luchsinger I. (1988). Haemophilus influenzae from four laboratories in one Canadian city. J. Antimicrob. Chemother. 22, 333–339. doi: 10.1093/jac/22.3.333
Schotte L. Wautier M. Martiny D. Piérard D. Depypere M. (2019). Detection of beta-lactamase-negative ampicillin resistance in Haemophilus influenzae in Belgium. Diagn. Microbiol. Infect. Dis. 93, 243–249. doi: 10.1016/j.diagmicrobio.2018.10.009, PMID: 30424950
Singh N. K. Kunde D. A. Tristram S. G. (2016). Effect of epithelial cell type on in vitro invasion of non-typeable Haemophilus influenzae. J. Microbiol. Methods 129, 66–69. doi: 10.1016/j.mimet.2016.07.021, PMID: 27473508
Skaare D. Anthonisen I. Caugant D. A. Jenkins A. Steinbakk M. Strand L. et al. (2014). Multilocus sequence typing and ftsI sequencing: a powerful tool for surveillance of penicillin-binding protein 3-mediated beta-lactam resistance in nontypeable Haemophilus influenzae. BMC Microbiol. 14:131. doi: 10.1186/1471-2180-14-131, PMID: 24884375
Slack M. P. E. (2017). The evidence for non-typeable Haemophilus influenzae as a causative agent of childhood pneumonia. Pneumonia 9:9. doi: 10.1186/s41479-017-0033-2, PMID: 28702311
Slack M. P. E. Cripps A. W. Grimwood K. Mackenzie G. A. Ulanova M. (2021). Invasive Haemophilus influenzae infections after 3 decades of Hib protein conjugate vaccine use. Clin. Microbiol. Rev. 34:e0002821. doi: 10.1128/CMR.00028-21, PMID: 34076491
Soeters H. M. Oliver S. E. Plumb I. D. Blain A. E. Zulz T. Simons B. C. et al. (2021). Epidemiology of invasive Haemophilus influenzae serotype a disease-United States, 2008-2017. Clin. Infect. Dis. 73, e371–e379. doi: 10.1093/cid/ciaa875
Swingler G. Fransman D. Hussey G. (2007). Conjugate vaccines for preventing Haemophilus influenzae type B infections. Cochrane Database Syst. Rev. 2:Cd001729. doi: 10.1002/14651858.CD001729.pub2, PMID: 17443509
Tanaka E. Hara N. Wajima T. Ochiai S. Seyama S. Shirai A. et al. (2019). Emergence of Haemophilus influenzae with low susceptibility to quinolones and persistence in tosufloxacin treatment. J. Glob. Antimicrob. Resist. 18, 104–108. doi: 10.1016/j.jgar.2019.01.017, PMID: 30753907
Tsang R. S. W. Ulanova M. (2017). The changing epidemiology of invasive Haemophilus influenzae disease: emergence and global presence of serotype a strains that may require a new vaccine for control. Vaccine 35, 4270–4275. doi: 10.1016/j.vaccine.2017.06.001, PMID: 28666758
Ubukata K. Shibasaki Y. Yamamoto K. Chiba N. Hasegawa K. Takeuchi Y. et al. (2001). Association of amino acid substitutions in penicillin-binding protein 3 with beta-lactam resistance in beta-lactamase-negative ampicillin-resistant Haemophilus influenzae. Antimicrob. Agents Chemother. 45, 1693–1699. doi: 10.1128/AAC.45.6.1693-1699.2001, PMID: 11353613
Ubukata K. Sunakawa K. Nonoyama M. Iwata S. Konno M. Ubukata K. et al. (2002). Differentiation of beta-lactamase-negative ampicillin-resistant Haemophilus influenzae from other H. influenzae strains by a disc method. J. Infect. Chemother. 8, 50–58. doi: 10.1007/s101560200006, PMID: 11957120
Ulanova M. (2021). Invasive Haemophilus influenzae serotype a disease in the H. influenzae serotype b conjugate vaccine era: where are we going? Clin. Infect. Dis. 73, e380–e382. doi: 10.1093/cid/ciaa868, PMID: 32589706
Van Eldere J. Slack M. P. E. Ladhani S. Cripps A. W. (2014). Non-typeable Haemophilus influenzae, an under-recognised pathogen. Lancet Infect. Dis. 14, 1281–1292. doi: 10.1016/S1473-3099(14)70734-0, PMID: 25012226
Wang H. J. Wang C.-Q. Hua C.-Z. Yu H. Zhang T. Zhang H. et al. (2019). Antibiotic resistance profiles of Haemophilus influenzae isolates from children in 2016: a multicenter study in China. Can. J. Infect. Dis. Med. Microbiol. 2019:6456321. doi: 10.1155/2019/6456321, PMID: 31485283
Watson K. C. Kerr E. J. Baillie M. (1988). Temporal changes in biotypes of Haemophilus influenzae isolated from patients with cystic fibrosis. J. Med. Microbiol. 26, 129–132. doi: 10.1099/00222615-26-2-129, PMID: 3260287
Wouters I. van Heirstraeten L. Desmet S. Blaizot S. Verhaegen J. Goossens H. et al. (2018). Nasopharyngeal s. pneumoniae carriage and density in Belgian infants after 9 years of pneumococcal conjugate vaccine programme. Vaccine 36, 15–22. doi: 10.1016/j.vaccine.2017.11.052, PMID: 29180027
Yalçın M. Tristram S. Bozdoğan B. (2022). Use of trans-complementation method to determine the effects of various ftsI mutations on β-lactamase-negative ampicillin-resistant (BLNAR) Haemophilus influenzae strains. Arch. Microbiol. 205:27. doi: 10.1007/s00203-022-03371-1
Zarei A. E. Almehdar H. A. Redwan E. M. (2016). Hib vaccines: past, present, and future perspectives. J Immunol Res 2016:7203587. doi: 10.1155/2016/7203587