MAPKi; drug resistance; melanoma; mitochondria-targeted agents (MTA); prohibitins; therapeutic strategy; Prohibitins; Phosphatidylinositol 3-Kinases; Proto-Oncogene Proteins B-raf; Ligands; Protein Kinase Inhibitors; Humans; Proto-Oncogene Proteins B-raf/metabolism; Protein Kinase Inhibitors/pharmacology; Drug Resistance, Neoplasm; Melanoma/pathology; Skin Neoplasms/drug therapy; Skin Neoplasms; Biochemistry, Genetics and Molecular Biology (all); General Medicine
Abstract :
[en] Despite important advances in the treatment of metastatic melanoma with the development of MAPK-targeted agents and immune checkpoint inhibitors, the majority of patients either do not respond to therapies or develop acquired resistance. Furthermore, there is no effective targeted therapy currently available for BRAF wild-type melanomas (approximately 50% of cutaneous melanoma). Thus, there is a compelling need for new efficient targeted therapies. Prohibitins (PHBs) are overexpressed in several types of cancers and implicated in the regulation of signaling networks that promote cell invasion and resistance to cell apoptosis. Herein, we show that PHBs are highly expressed in melanoma and are associated with not only poor survival but also with resistance to BRAFi/MEKi. We designed and identified novel specific PHB inhibitors that can inhibit melanoma cell growth in 3D spheroid models and a large panel of representative cell lines with different molecular subtypes, including those with intrinsic and acquired resistance to MAPKi, by significantly moderating both MAPK (CRAF-ERK axis) and PI3K/AKT pathways, and inducing apoptosis through the mitochondrial pathway and up-regulation of p53. In addition, autophagy inhibition enhances the antitumor efficacy of these PHB ligands. More important, these ligands can act in synergy with MAPKi to more efficiently inhibit cell growth and overcome drug resistance in both BRAF wild-type and mutant melanoma. In conclusion, targeting PHBs represents a very promising therapeutic strategy in melanoma, regardless of mutational status.
Disciplines :
Oncology
Author, co-author :
Najem, Ahmad ; Laboratory of Clinical and Experimental Oncology (LOCE), Institut Jules Bordet, Université Libre de Bruxelles, 1000 Brussels, Belgium
Krayem, Mohammad ; Laboratory of Clinical and Experimental Oncology (LOCE), Institut Jules Bordet, Université Libre de Bruxelles, 1000 Brussels, Belgium
Sabbah, Serena ; Laboratory of Clinical and Experimental Oncology (LOCE), Institut Jules Bordet, Université Libre de Bruxelles, 1000 Brussels, Belgium
Pesetti, Matilde; Laboratory of Clinical and Experimental Oncology (LOCE), Institut Jules Bordet, Université Libre de Bruxelles, 1000 Brussels, Belgium
Journe, Fabrice ; Université de Mons - UMONS > Faculté de Médecine et de Pharmac > Service d'Anatomie humaine et Oncologie expérimentale ; Laboratory of Clinical and Experimental Oncology (LOCE), Institut Jules Bordet, Université Libre de Bruxelles, 1000 Brussels, Belgium
Awada, Ahmad ; Laboratory of Clinical and Experimental Oncology (LOCE), Institut Jules Bordet, Université Libre de Bruxelles, 1000 Brussels, Belgium ; Department of Medical Oncology, Institut Jules Bordet, Université Libre de Bruxelles, 1070 Brussels, Belgium
Désaubry, Laurent ; Center of Research in Biomedicine of Strasbourg, Regenerative Nanomedicine (UMR 1260), INSERM, University of Strasbourg, 67000 Strasbourg, France
Ghanem, Ghanem E; Laboratory of Clinical and Experimental Oncology (LOCE), Institut Jules Bordet, Université Libre de Bruxelles, 1000 Brussels, Belgium
Language :
English
Title :
Targeting Prohibitins to Inhibit Melanoma Growth and Overcome Resistance to Targeted Therapies.
Publication date :
14 July 2023
Journal title :
Cells
eISSN :
2073-4409
Publisher :
Multidisciplinary Digital Publishing Institute (MDPI), Switzerland
Najem A. Krayem M. Perdrix A. Kerger J. Awada A. Journe F. Ghanem G. New Drug Combination Strategies in Melanoma: Current Status and Future Directions Anticancer Res. 2017 37 5941 5953 10.21873/anticanres.12041 29061773
Liu D. Jenkins R.W. Sullivan R.J. Mechanisms of Resistance to Immune Checkpoint Blockade Am. J. Clin. Dermatol. 2019 20 41 54 10.1007/s40257-018-0389-y
Yang J. Li B. He Q.-Y. Significance of prohibitin domain family in tumorigenesis and its implication in cancer diagnosis and treatment Cell Death Dis. 2018 9 580 10.1038/s41419-018-0661-3
Cirilo P.D.R. de Sousa Andrade L.N. Corrêa B.R.S. Qiao M. Furuya T.K. Chammas R. Penalva L.O.F. MicroRNA-195 acts as an anti-proliferative miRNA in human melanoma cells by targeting Prohibitin 1 BMC Cancer 2017 17 750 10.1186/s12885-017-3721-7
Webster L.R. Provan P.J. Graham D.J. Byth K. Walker R.L. Davis S. Salisbury E.L. Morey A.L. Ward R.L. Hawkins N.J. et al. Prohibitin expression is associated with high grade breast cancer but is not a driver of amplification at 17q21.33 Pathology 2013 45 629 636 10.1097/PAT.0000000000000004
Yurugi H. Marini F. Weber C. David K. Zhao Q. Binder H. Désaubry L. Rajalingam K. Targeting prohibitins with chemical ligands inhibits KRAS-mediated lung tumours Oncogene 2017 36 4778 4789 10.1038/onc.2017.93 28414306
MacArthur I. Bei Y. Garcia H.D. Ortiz M.V. Toedling J. Klironomos F. Rolff J. Eggert A. Schulte J.H. Kentsis A. et al. Prohibitin promotes dedifferentiation and is a potential therapeutic target in neuroblastoma J. Clin. Investig. 2019 4 e127130 10.1172/jci.insight.127130 30998507
Huang H. Zhang S. Li Y. Liu Z. Mi L. Cai Y. Wang X. Chen L. Ran H. Xiao D. et al. Suppression of mitochondrial ROS by prohibitin drives glioblastoma progression and therapeutic resistance Nat. Commun. 2021 12 3720 10.1038/s41467-021-24108-6
Wu B. Chang N. Xi H. Xiong J. Zhou Y. Wu Y. Wu S. Wang N. Yi H. Song Y. et al. PHB2 promotes tumorigenesis via RACK1 in non-small cell lung cancer Theranostics 2021 11 3150 3166 10.7150/thno.52848
Cao Y. Liang H. Zhang F. Luan Z. Zhao S. Wang X.-A. Liu S. Bao R. Shu Y. Ma Q. et al. Prohibitin overexpression predicts poor prognosis and promotes cell proliferation and invasion through ERK pathway activation in gallbladder cancer J. Exp. Clin. Cancer Res. 2016 35 68 10.1186/s13046-016-0346-7
Luan Z. He Y. Alattar M. Chen Z. He F. Targeting the prohibitin scaffold-CRAF kinase interaction in RAS-ERK-driven pancreatic ductal adenocarcinoma Mol. Cancer 2014 13 38 10.1186/1476-4598-13-38 24568222
Chiu C.-F. Ho M.-Y. Peng J.-M. Hung S.-W. Lee W.-H. Liang C.-M. Liang S.-M. Raf activation by Ras and promotion of cellular metastasis require phosphorylation of prohibitin in the raft domain of the plasma membrane Oncogene 2013 32 777 787 10.1038/onc.2012.86 22410782
Krayem M. Journe F. Wiedig M. Morandini R. Najem A. Salès F. van Kempen L.C. Sibille C. Awada A. Marine J.-C. et al. p53 Reactivation by PRIMA-1Met (APR-246) sensitises V600E/KBRAF melanoma to vemurafenib Eur. J. Cancer 2016 55 98 110 10.1016/j.ejca.2015.12.002 26790143
Tortelli T.C. de Godoy L.M.F. de Souza G.A. Bonatto D. Otake A.H. de Freitas Saito R. Rosa J.C. Greene L.J. Chammas R. Accumulation of prohibitin is a common cellular response to different stressing stimuli and protects melanoma cells from ER stress and chemotherapy-induced cell death Oncotarget 2017 8 43114 43129 10.18632/oncotarget.17810
Ho M.-Y. Liang C.-M. Liang S.-M. MIG-7 and phosphorylated prohibitin coordinately regulate lung cancer invasion/metastasis Oncotarget 2014 6 381 393 10.18632/oncotarget.2804
Ma L.-L. Shen L. Tong G.-H. Tang N. Luo Y. Guo L.-L. Hu C.-T. Huang Y.-X. Huang G. Jing F.-Y. et al. Prohibitin, relocated to the front ends, can control the migration directionality of colorectal cancer cells Oncotarget 2017 8 76340 76356 10.18632/oncotarget.19394
Fang C.-H. Lin Y.-T. Liang C.-M. Liang S.-M. A novel c-Kit/phospho-prohibitin axis enhances ovarian cancer stemness and chemoresistance via Notch3—PBX1 and β-catenin—ABCG2 signaling J. Biomed. Sci. 2020 27 42 10.1186/s12929-020-00638-x 32169072
Liu Z.-H. Dai X.-M. Du B. Hes1: A key role in stemness, metastasis and multidrug resistance Cancer Biol. Ther. 2015 16 353 359 10.1080/15384047.2015.1016662
Wang S.-C. Lin X.-L. Wang H.-Y. Qin Y.-J. Chen L. Li J. Jia J.-S. Shen H.-F. Yang S. Xie R.-Y. et al. Hes1 triggers epithelial-mesenchymal transition (EMT)-like cellular marker alterations and promotes invasion and metastasis of nasopharyngeal carcinoma by activating the PTEN/AKT pathway Oncotarget 2015 6 36713 36730 10.18632/oncotarget.5457
Wang D. Tabti R. Elderwish S. Abou-Hamdan H. Djehal A. Yu P. Yurugi H. Rajalingam K. Nebigil C.G. Désaubry L. Prohibitin ligands: A growing armamentarium to tackle cancers, osteoporosis, inflammatory, cardiac and neurological diseases Cell. Mol. Life Sci. 2020 77 3525 3546 10.1007/s00018-020-03475-1
Basmadjian C. Thuaud F. Ribeiro N. Désaubry L. Flavaglines: Potent anticancer drugs that target prohibitins and the helicase eIF4A Futur. Med. Chem. 2013 5 2185 2197 10.4155/fmc.13.177 24261894
Qureshi R. Yildirim O. Gasser A. Basmadjian C. Zhao Q. Wilmet J.-P. Désaubry L. Nebigil C.G. FL3, a Synthetic Flavagline and Ligand of Prohibitins, Protects Cardiomyocytes via STAT3 from Doxorubicin Toxicity PLoS ONE 2015 10 e0141826 10.1371/journal.pone.0141826 26536361
Takagi H. Moyama C. Taniguchi K. Ando K. Matsuda R. Ando S. Ii H. Kageyama S. Kawauchi A. Chouha N. et al. Fluorizoline Blocks the Interaction between Prohibitin-2 and γ-Glutamylcyclotransferase and Induces P21Waf1/Cip1 Expression in MCF7 Breast Cancer Cells Mol. Pharmacol. 2022 101 78 86 10.1124/molpharm.121.000334 34862308
Perron A. Nishikawa Y. Iwata J. Shimojo H. Takaya J. Kobayashi K. Imayoshi I. Mbenza N.M. Takenoya M. Kageyama R. et al. Small-molecule screening yields a compound that inhibits the cancer-associated transcription factor Hes1 via the PHB2 chaperone J. Biol. Chem. 2018 293 8285 8294 10.1074/jbc.RA118.002316 29523683
Djehal A. Krayem M. Najem A. Hammoud H. Cresteil T. Nebigil C.G. Wang D. Yu P. Bentouhami E. Ghanem G.E. et al. Targeting prohibitin with small molecules to promote melanogenesis and apoptosis in melanoma cells Eur. J. Med. Chem. 2018 155 880 888 10.1016/j.ejmech.2018.06.052
Najem A. Wouters J. Krayem M. Rambow F. Sabbah M. Sales F. Awada A. Aerts S. Journe F. Marine J.-C. et al. Tyrosine-Dependent Phenotype Switching Occurs Early in Many Primary Melanoma Cultures Limiting Their Translational Value Front. Oncol. 2021 11 780654 10.3389/fonc.2021.780654
Najem A. Krayem M. Salès F. Hussein N. Badran B. Robert C. Awada A. Journe F. Ghanem G.E. P53 and MITF/Bcl-2 identified as key pathways in the acquired resistance of NRAS-mutant melanoma to MEK inhibition Eur. J. Cancer 2017 83 154 165 10.1016/j.ejca.2017.06.033 28738256
Liu X. Sun K. Wang H. Dai Y. Inhibition of Autophagy by Chloroquine Enhances the Antitumor Efficacy of Sorafenib in Glioblastoma Cell. Mol. Neurobiol. 2016 36 1197 1208 10.1007/s10571-015-0318-z
Kinsey C.G. Camolotto S.A. Boespflug A. Guillen K.P. Foth M. Truong A. Schuman S.S. Shea J.E. Seipp M.T. Yap J. et al. Protective autophagy elicited by RAF→MEK→ERK inhibition suggests a treatment strategy for RAS-driven cancers Nat. Med. 2019 25 620 627 10.1038/s41591-019-0367-9
Peng Y.-T. Chen P. Ouyang R.-Y. Song L. Multifaceted role of prohibitin in cell survival and apoptosis Apoptosis 2015 20 1135 1149 10.1007/s10495-015-1143-z
Belser M. Walker D.W. Role of Prohibitins in Aging and Therapeutic Potential Against Age-Related Diseases Front. Genet. 2021 12 714228 10.3389/fgene.2021.714228 34868199
Rabinowitz J.D. White E. Autophagy and Metabolism Science 2010 330 1344 1348 10.1126/science.1193497
Wirawan E. Vanden Berghe T. Lippens S. Agostinis P. Vandenabeele P. Autophagy: For better or for worse Cell Res. 2012 22 43 61 10.1038/cr.2011.152 21912435
Wang Q. Chen Z. Diao X. Huang S. Induction of autophagy-dependent apoptosis by the survivin suppressant YM155 in prostate cancer cells Cancer Lett. 2011 302 29 36 10.1016/j.canlet.2010.12.007
He L. Han J. Li B. Huang L. Ma K. Chen Q. Liu X. Bao L. Liu H. Identification of a new cyathane diterpene that induces mitochondrial and autophagy-dependent apoptosis and shows a potent in vivo anti-colorectal cancer activity Eur. J. Med. Chem. 2016 111 183 192 10.1016/j.ejmech.2016.01.056 26871659