PARP inhibition; RTK inhibition; WTBRAF; melanoma; radiotherapy; Medicine (all); General Medicine
Abstract :
[en] Melanoma is known to be a radioresistant cancer. Melanoma radioresistance can be due to several factors such as pigmentation, antioxidant defenses and high Deoxyribonucleic acid (DNA) repair efficacy. However, irradiation induces intracellular translocation of RTKs, including cMet, which regulates response to DNA damage activating proteins and promotes DNA repair. Accordingly, we hypothesized that co-targeting DNA repair (PARP-1) and relevant activated RTKs, c-Met in particular, may radiosensitize wild-type B-Raf Proto-Oncogene, Serine/Threonine Kinase (WTBRAF) melanomas where RTKs are often upregulated. Firstly, we found that PARP-1 is highly expressed in melanoma cell lines. PARP-1 inhibition by Olaparib or its KO mediates melanoma cell sensitivity to radiotherapy (RT). Similarly, specific inhibition of c-Met by Crizotinib or its KO radiosensitizes the melanoma cell lines. Mechanistically, we show that RT causes c-Met nuclear translocation to interact with PARP-1 promoting its activity. This can be reversed by c-Met inhibition. Accordingly, RT associated with the inhibition of both c-Met and PARP-1 resulted in a synergistic effect not only on tumor growth inhibition but also on tumor regrowth control in all animals following the stop of the treatment. We thus show that combining PARP and c-Met inhibition with RT appears a promising therapeutic approach in WTBRAF melanoma.
Disciplines :
Oncology
Author, co-author :
Sabbah, Malak; Laboratory of Clinical and Experimental Oncology (LOCE), Institut Jules Bordet, Université Libre de Bruxelles (ULB), Hôpital Universitaire de Bruxelles (H.U.B), Bruxelles, Belgium
Najem, Ahmad; Laboratory of Clinical and Experimental Oncology (LOCE), Institut Jules Bordet, Université Libre de Bruxelles (ULB), Hôpital Universitaire de Bruxelles (H.U.B), Bruxelles, Belgium
Vanderkerkhove, Christophe; Medical Physics Department, Institut Jules Bordet, Université Libre de Bruxelles (ULB), Hôpital Universitaire de Bruxelles (H.U.B), Brussels, Belgium
Kert, Fabien; Medical Physics Department, Institut Jules Bordet, Université Libre de Bruxelles (ULB), Hôpital Universitaire de Bruxelles (H.U.B), Brussels, Belgium
Jourani, Younes; Medical Physics Department, Institut Jules Bordet, Université Libre de Bruxelles (ULB), Hôpital Universitaire de Bruxelles (H.U.B), Brussels, Belgium
Journe, Fabrice ; Université de Mons - UMONS > Faculté de Médecine et de Pharmac > Service d'Anatomie humaine et Oncologie expérimentale ; Laboratory of Clinical and Experimental Oncology (LOCE), Institut Jules Bordet, Université Libre de Bruxelles (ULB), Hôpital Universitaire de Bruxelles (H.U.B), Bruxelles, Belgium
Awada, Ahmad; Oncology Medicine Department, Jules Bordet Institute, Université Libre de Bruxelles (ULB), Hôpital Universitaire de Bruxelles (H.U.B), Brussels, Belgium
Van Gestel, Dirk; Radiation Oncology Department, Institut Jules Bordet, Université Libre de Bruxelles (ULB), Hôpital Universitaire de Bruxelles (H.U.B), Brussels, Belgium
Ghanem, Ghanem E; Laboratory of Clinical and Experimental Oncology (LOCE), Institut Jules Bordet, Université Libre de Bruxelles (ULB), Hôpital Universitaire de Bruxelles (H.U.B), Bruxelles, Belgium
Krayem, Mohammad; Laboratory of Clinical and Experimental Oncology (LOCE), Institut Jules Bordet, Université Libre de Bruxelles (ULB), Hôpital Universitaire de Bruxelles (H.U.B), Bruxelles, Belgium ; Radiation Oncology Department, Institut Jules Bordet, Université Libre de Bruxelles (ULB), Hôpital Universitaire de Bruxelles (H.U.B), Brussels, Belgium
Language :
English
Title :
The benefit of co-targeting PARP-1 and c-Met on the efficacy of radiotherapy in wild type BRAF melanoma.
M112 - Anatomie humaine et Oncologie expérimentale
Research institute :
R550 - Institut des Sciences et Technologies de la Santé
Funding text :
This study was supported by “L’Association Jules Bordet” and a Televie Grant No. 7651819F from the National Fund for Scientific Research (Belgium). Malak Sabbah is the recipient of a Televie Grant No. 7651819F.
Ribas A Lawrence D Atkinson V Agarwal S Miller WH Carlino MS et al. Combined BRAF and MEK inhibition with PD-1 blockade immunotherapy in BRAF-mutant melanoma. Nat Med. (2019) 25:936–40. doi: 10.1038/s41591-019-0476-5, PMID: 31171879
McKean M Oba J Ma J Roth KG Wang W-L Macedo MP et al. Tyrosine kinase inhibitor and immune checkpoint inhibitor responses in KIT-mutant metastatic melanoma. J Invest Dermatol. (2019) 139:728–31. doi: 10.1016/j.jid.2018.10.009, PMID: 30798855
Hayward NK Wilmott JS Waddell N Johansson PA Field MA Nones K et al. Whole-genome landscapes of major melanoma subtypes. Nature. (2017) 545:175–80. doi: 10.1038/nature22071, PMID: 28467829
Sun C Wang L Huang S Heynen GJJE Prahallad A Robert C et al. Reversible and adaptive resistance to BRAF(V600E) inhibition in melanoma. Nature. (2014) 508:118–22. doi: 10.1038/nature13121, PMID: 24670642
Li FZ Dhillon AS Anderson RL McArthur G Ferrao PT. Phenotype switching in melanoma: implications for progression and therapy. Front. Oncologia. (2015) 5:1–7. doi: 10.3389/fonc.2015.00031, PMID: 25763355
Najem A Wouters J Krayem M Rambow F Sabbah M Sales F et al. Tyrosine-dependent phenotype switching occurs early in many primary melanoma cultures limiting their translational value. Front Oncol. (2021) 11:780654. doi: 10.3389/fonc.2021.780654, PMID: 34869032
Sabbah M Najem A Krayem M Awada A Journe F Ghanem GE. RTK inhibitors in melanoma: from bench to bedside. Cancer. (2021) 13:1685. doi: 10.3390/cancers13071685, PMID: 33918490
Ponti G Manfredini M Greco S Pellacani G Depenni R Tomasi A et al. BRAF, NRAS and C-KIT advanced melanoma: Clinico-pathological features. Targeted-Therapy Strategies Survival Anticancer Res. (2017) 37:7043–8. doi: 10.21873/anticanres.12175
Zabierowski SE Herlyn M. Melanoma stem cells: the dark Seed of melanoma. J Clin Oncol. (2008) 26:2890–4. doi: 10.1200/JCO.2007.15.5465, PMID: 18539969
Krayem M Sabbah M Najem A Wouters A Lardon F Simon S et al. The benefit of reactivating P53 under MAPK inhibition on the efficacy of radiotherapy in melanoma. Cancers. (2019) 11:1093. doi: 10.3390/cancers11081093, PMID: 31374895
Espenel S Vallard A Rancoule C Garcia M-A Guy J-B Chargari C et al. Melanoma: last call for radiotherapy. Crit Rev Oncol Hematol. (2017) 110:13–9. doi: 10.1016/j.critrevonc.2016.12.003, PMID: 28109401
Agrawal S Kane JM Guadagnolo BA Kraybill WG Ballo MT. The benefits of adjuvant radiation therapy after therapeutic lymphadenectomy for clinically advanced, high-risk. Lymph Node-Metastatic Melanoma Cancer. (2009) 115:5836–44. doi: 10.1002/cncr.24627, PMID: 19701906
Jw P., Ct C., Hr S., Gw C., Cj H., Da B., L L., L M., Ss H. Gamma knife surgery in the Management of Radioresistant Brain Metastases in high-risk patients with melanoma, renal cell carcinoma, and sarcoma Available online: https://pubmed.ncbi.nlm.nih.gov/19123898/ (Accessed on 2 December, 2020).
Lo SS Clarke JW Grecula JC McGregor JM Mayr NA Cavaliere R et al. Stereotactic radiosurgery alone for patients with 1-4 radioresistant brain metastases. Med Oncol. (2011) Suppl 1:S439-44. doi: 10.1007/s12032-010-9670-5
Es C., S L., M D., Gb F., Am M., A G., B S., K C., Gv L., Am H. Survival of patients with melanoma brain metastasis treated with stereotactic radiosurgery and active systemic drug therapies Available online: https://pubmed.ncbi.nlm.nih.gov/28236768/ (Accessed on 2 December, 2020).
R F., Ek O., R S., A G., Bt C., D K., Sp C Stereotactic radiosurgery for melanoma brain metastases: a comprehensive clinical case series Available online: https://pubmed.ncbi.nlm.nih.gov/28093345/ (Accessed on 2 December 2020).
Fogarty GB Hong A. Radiation therapy for advanced and metastatic melanoma. J Surg Oncol. (2014) 109:370–5. doi: 10.1002/jso.23509
Wang H Mu X He H Zhang X-D. Cancer Radiosensitizers. Trends Pharmacol Sci. (2018) 39:24–48. doi: 10.1016/j.tips.2017.11.003
Lesueur P Chevalier F Austry J-B Waissi W Burckel H Noël G et al. Poly-(ADP-ribose)-polymerase inhibitors as Radiosensitizers: a systematic review of pre-clinical and clinical human studies. Oncotarget. (2017) 8:69105–24. doi: 10.18632/oncotarget.19079, PMID: 28978184
Liu C Vyas A Kassab MA Singh AK Yu X. The role of poly ADP-Ribosylation in the first wave of DNA damage response. Nucleic Acids Res. (2017) 45:8129–41. doi: 10.1093/nar/gkx565, PMID: 28854736
Hassa PO Hottiger MO. The diverse biological roles of mammalian PARPS, a small but powerful family of poly-ADP-ribose polymerases. Front Biosci. (2008) 13:3046–82. doi: 10.2741/2909, PMID: 17981777
Schreiber V Dantzer F Ame J-C de Murcia G. Poly(ADP-ribose): novel functions for an old molecule. Nat Rev Mol Cell Biol. (2006) 7:517–28. doi: 10.1038/nrm1963, PMID: 16829982
Rodríguez MI González-Flores A Dantzer F Collard J de Herreros AG Oliver FJ. Poly(ADP-ribose)-dependent regulation of Snail1 protein stability. Oncogene. (2011) 30:4365–72. doi: 10.1038/onc.2011.153, PMID: 21577210
Bhattacharya P Shetake NG Pandey BN Kumar A. Receptor tyrosine kinase signaling in Cancer radiotherapy and its targeting for tumor Radiosensitization. Int J Radiat Biol. (2018) 94:628–44. doi: 10.1080/09553002.2018.1478160
Du Y Yamaguchi H Wei Y Hsu JL Wang H-L Hsu Y-H et al. Blocking C-met-mediated PARP1 phosphorylation enhances anti-tumor effects of PARP inhibitors. Nat Med. (2016) 22:194–201. doi: 10.1038/nm.4032, PMID: 26779812
EGFR and C-MET Cooperate to enhance resistance to PARP inhibitors in hepatocellular carcinoma | Cancer research Available online: https://cancerres.aacrjournals.org/content/79/4/819 (Accessed on 25 December, 2020).
Mahajan K Mahajan NP. Cross talk of tyrosine kinases with the DNA damage signaling pathways. Nucleic Acids Res. (2015) 43:10588–601. doi: 10.1093/nar/gkv1166, PMID: 26546517
Hecht M Meier F Zimmer L Polat B Loquai C Weishaupt C et al. Clinical outcome of concomitant vs interrupted BRAF inhibitor therapy during radiotherapy in melanoma patients. Br J Cancer. (2018) 118:785–92. doi: 10.1038/bjc.2017.489, PMID: 29438368
Krayem M Sabbah M Najem A Wouters A Lardon F Simon S et al. The benefit of reactivating P53 under MAPK inhibition on the efficacy of radiotherapy in melanoma. Cancers (Basel). (2019) 11:11. doi: 10.3390/cancers11081093, PMID: 31374895
Bhardwaj V Cascone T Cortez MA Amini A Evans J Komaki RU et al. Modulation of C-met signaling and cellular sensitivity to radiation: potential implications for therapy. Cancer. (2013) 119:1768–75. doi: 10.1002/cncr.27965, PMID: 23423860
Welsh JW Mahadevan D Ellsworth R Cooke L Bearss D Stea B. The C-met receptor tyrosine kinase inhibitor MP470 Radiosensitizes glioblastoma cells. Radiat Oncol. (2009) 4:69. doi: 10.1186/1748-717X-4-69, PMID: 20028557
Bhardwaj V Zhan Y Cortez MA Ang KK Molkentine D Munshi A et al. C-met inhibitor MK-8003 Radiosensitizes c-met-expressing non-small-cell lung Cancer cells with radiation-induced c-met-expression. J Thorac Oncol. (2012) 7:1211–7. doi: 10.1097/JTO.0b013e318257cc89, PMID: 22617250
Yu H Li X Sun S Gao X Zhou D. C-met inhibitor SU11274 enhances the response of the prostate Cancer cell line DU145 to ionizing radiation. Biochem Biophys Res Commun. (2012) 427:659–65. doi: 10.1016/j.bbrc.2012.09.117, PMID: 23026049
Chen G-Z Dai W-S Zhu H-C Song H-M Yang X Wang Y-D et al. Foretinib enhances the Radiosensitivity in esophageal squamous cell carcinoma by inhibiting phosphorylation of C-met. J Cancer. (2017) 8:983–92. doi: 10.7150/jca.18135, PMID: 28529610
Tumati V Kumar S Yu L Chen B Choy H Saha D. Effect of PF-02341066 and radiation on non-small cell lung Cancer cells. Oncol Rep. (2013) 29:1094–100. doi: 10.3892/or.2012.2198, PMID: 23254764
Sabbah M Krayem M Najem A Sales F Miller W Del Rincon S et al. Dasatinib stimulates its own mechanism of resistance by activating a CRTC3/MITF/Bcl-2 pathway in melanoma with mutant or amplified c-kit. Mol Cancer Res. (2021) 19:1221–33. doi: 10.1158/1541-7786.MCR-20-1040, PMID: 33741716
Krayem M Journe F Wiedig M Morandini R Sales F Awada A et al. Prominent role of cyclic adenosine monophosphate Signalling pathway in the sensitivity of (WT)BRAF/(WT)NRAS melanoma cells to Vemurafenib. Eur J Cancer. (2014) 50:1310–20. doi: 10.1016/j.ejca.2014.01.021, PMID: 24559688
Wouters J Kalender-Atak Z Minnoye L Spanier KI De Waegeneer M Bravo González-Blas C et al. Robust gene expression programs underlie recurrent cell states and phenotype switching in melanoma. Nat Cell Biol. (2020) 22:986–98. doi: 10.1038/s41556-020-0547-3, PMID: 32753671
Franken NAP Rodermond HM Stap J Haveman J van Bree C. Clonogenic assay of cells in vitro. Nat Protoc. (2006) 1:2315–9. doi: 10.1038/nprot.2006.339
Morales JC Li L Fattah FJ Dong Y Bey EA Patel M et al. Review of poly (ADP-ribose) polymerase (PARP) mechanisms of action and rationale for targeting in Cancer and other diseases. Crit Rev Eukaryot Gene Expr. (2014) 24:15–28. doi: 10.1615/CritRevEukaryotGeneExpr.2013006875
The Cancer Genome Atlas Network. Genomic classification of cutaneous melanoma. Cells. (2015) 161:1681–96. doi: 10.1016/j.cell.2015.05.044, PMID: 26091043
Massa RC Kirkwood JM. Targeting the MAPK pathway in advanced BRAF wild-type melanoma. Ann Oncol. (2019) 30:503–5. doi: 10.1093/annonc/mdz054, PMID: 30821319
Meleti M Leemans CR de Bree R Vescovi P Sesenna E van der Waal I. Head and neck mucosal melanoma: experience with 42 patients, with emphasis on the role of postoperative radiotherapy. Head Neck. (2008) 30:1543–51. doi: 10.1002/hed.20901, PMID: 18704960
Krengli M Masini L Kaanders JHAM Maingon P Oei SB Zouhair A et al. Radiotherapy in the treatment of mucosal melanoma of the upper Aerodigestive tract: analysis of 74 cases. A rare Cancer network study. Int J Radiat Oncol Biol Phys. (2006) 65:751–9. doi: 10.1016/j.ijrobp.2006.01.016, PMID: 16647223
Benlyazid A Thariat J Temam S Malard O Florescu C Choussy O et al. Postoperative radiotherapy in head and neck mucosal melanoma: a GETTEC study. Arch Otolaryngol Head Neck Surg. (2010) 136:1219–25. doi: 10.1001/archoto.2010.217
Demizu Y Fujii O Terashima K Mima M Hashimoto N Niwa Y et al. Particle therapy for mucosal melanoma of the head and neck. A single-institution retrospective comparison of proton and carbon ion therapy. Strahlenther Onkol. (2014) 190:186–91. doi: 10.1007/s00066-013-0489-9, PMID: 24362502
Ramalingam SS Blais N Mazieres J Reck M Jones CM Juhasz E et al. Randomized, placebo-controlled, phase II study of Veliparib in combination with carboplatin and paclitaxel for advanced/metastatic non-small cell lung Cancer. Clin Cancer Res. (2017) 23:1937–44. doi: 10.1158/1078-0432.CCR-15-3069, PMID: 27803064
Gelmon KA Tischkowitz M Mackay H Swenerton K Robidoux A Tonkin K et al. Olaparib in patients with recurrent high-grade serous or poorly differentiated ovarian carcinoma or triple-negative breast Cancer: a phase 2, multicentre, open-label. Non-Randomised Study Lancet Oncol. (2011) 12:852–61. doi: 10.1016/S1470-2045(11)70214-5
Mateo J Carreira S Sandhu S Miranda S Mossop H Perez-Lopez R et al. DNA-repair defects and Olaparib in metastatic prostate Cancer. N Engl J Med. (2015) 373:1697–708. doi: 10.1056/NEJMoa1506859, PMID: 26510020
Pilié PG Gay CM Byers LA O’Connor MJ Yap TA. PARP inhibitors: extending benefit beyond BRCA-mutant cancers. Clin Cancer Res. (2019) 25:3759–71. doi: 10.1158/1078-0432.CCR-18-0968
Weigert V Jost T Hecht M Knippertz I Heinzerling L Fietkau R et al. PARP inhibitors combined with ionizing radiation induce different effects in melanoma cells and healthy fibroblasts. BMC Cancer. (2020) 20:775. doi: 10.1186/s12885-020-07190-9, PMID: 32811446
Guryanova OA Bao S. How scatter factor receptor C-MET contributes to tumor Radioresistance: ready, set, scatter! J Natl Cancer Inst. (2011) 103:617–9. doi: 10.1093/jnci/djr103, PMID: 21464396
De Bacco F Luraghi P Medico E Reato G Girolami F Perera T et al. Induction of MET by ionizing radiation and its role in Radioresistance and invasive growth of Cancer. J Natl Cancer Inst. (2011) 103:645–61. doi: 10.1093/jnci/djr093, PMID: 21464397
Dong Q Du Y Li H Liu C Wei Y Chen M-K et al. EGFR and C-MET cooperate to enhance resistance to PARP inhibitors in hepatocellular carcinoma. Cancer Res. (2019) 79:819–29. doi: 10.1158/0008-5472.CAN-18-1273, PMID: 30573522