Fiber Bragg grating; Heart rate; Intensity modulation; Interference modulation; Optical fiber sensor; Atomic and Molecular Physics, and Optics
Abstract :
[en] As an important part of the medical health monitoring field, heart rate (HR) monitoring has become an important application field of sensing technology in recent years. Due to the flexibility, chemical inertness, and anti-electromagnetic interference, optical fiber sensor (OFS) is widely concerned and studied in the field of HR monitoring. This paper summarizes the development of recent fiber-optic HR monitoring technology, introduces the sensing principles and applications of OFS for HR monitoring, which can be divided into intensity-based, interference-based, and FBG-based. For intensity modulation, bending and polishing methods are discussed. The main types of interference-based OFS are summarized and for FBG, packaging technology and materials are mainly introduced. Finally, the discussion and conclusions are summarized.
Disciplines :
Electrical & electronics engineering
Author, co-author :
He, Runjie; Center for Cognition and Neuroergonomics, State Key Laboratory of Cognitive Neuroscience and Learning, Beijing Normal University, Zhuhai, China
Shen, Lingyu; Center for Cognition and Neuroergonomics, State Key Laboratory of Cognitive Neuroscience and Learning, Beijing Normal University, Zhuhai, China
Wang, Zhuo; Center for Cognition and Neuroergonomics, State Key Laboratory of Cognitive Neuroscience and Learning, Beijing Normal University, Zhuhai, China
Wang, Guoqing; School of Microelectronics, Shenzhen Institute of Information Technology, Shenzhen, China
Qu, Hang; Research Center for Advanced Optics and Photoelectronics, Department of Physics, College of Science, Shantou University, Shantou, China
Hu, Xuehao ; Université de Mons - UMONS > Recherche > Service ERC Unit - Advanced Photonic
Min, Rui; Center for Cognition and Neuroergonomics, State Key Laboratory of Cognitive Neuroscience and Learning, Beijing Normal University, Zhuhai, China
Language :
English
Title :
Optical fiber sensors for heart rate monitoring: A review of mechanisms and applications
Research Institute for Materials Science and Engineering
Funding text :
Guangdong Basic and Applied Basic Research Foundation (2021A1515011997); National Natural Science Foundation of China (62003046, 62111530238); The Fonds de la Recherche Scientifique (F.R.S.-FNRS) under the Postdoctoral Researcher grant (Chargé de Recherches) of Xuehao Hu; Special Funds for the Cultivation of Guangdong College Students' Scientific and Technological Innovation (“Climbing Program” Special Funds) (pdjh2022a0684);Special project in key field of Guangdong Provincial Department of Education (2021ZDZX1050); The Innovation Team Project of Guangdong Provincial Department of Education (2021KCXTD014).
Alametsä, J., Värri, A., Viik, J., Hyttinen, J., Palomäki, A., Ballistocardiogaphic studies with acceleration and electromechanical film sensors. Med. Eng. Phys. 31:9 (2009), 1154–1165, 10.1016/J.MEDENGPHY.2009.07.020.
Al-Handarish, Y., Omisore, O.M., Igbe, T., Han, S., Li, H., Du, W., Zhang, J., Wang, L., A survey of tactile-sensing systems and their applications in biomedical engineering. Adv. Mater. Sci. Eng. 2020 (2020), 1–17.
Amanzadeh, M., Aminossadati, S.M., Kizil, M.S., Rakić, A.D., Recent developments in fibre optic shape sensing. Measurement 128 (2018), 119–137, 10.1016/J.MEASUREMENT.2018.06.034.
Arifin, A., Lebang, A.K., Yunus, M., Dewang, S., Idris, I., Tahir, D., Measurement heart rate based on plastic optical fiber sensor. J. Phys. Conf. Ser., 1170(1), 2019, 10.1088/1742-6596/1170/1/012074.
Asif, I.M., Drezner, J.A., Cardiovascular screening in young athletes: evidence for the electrocardiogram. Curr. Sports Med. Rep. 15:2 (2016), 76–80, 10.1249/JSR.0000000000000247.
N. R. Avula, T. Dighe, A. Sajgure, C. Bale, and P. Wakhare, “Evaluation of role of heart rate variability with holter monitoring in chronic kidney disease,” Int. J. Res. Med. Sci., vol. 8, no. 6, p. undefined-undefined, May 2020, doi: 10.18203/2320-6012.IJRMS20202264.
A. B. Benevides, A. Frizera, A. Cotrina, M. R. N. Ribeiro, M. E. v. Segatto, and M. J. Pontes, “Unobtrusive heart rate monitor based on a fiber specklegram sensor and a single-board computer,” 24th International Conference on Optical Fibre Sensors, vol. 9634, p. 963468, 2015, doi: 10.1117/12.2194618.
Bonefacino, J., Tam, H., Glen, T., Cheng, X., Pun, C., Wang, J., Lee, P., Tse, M., Boles, S., Ultra-fast polymer optical fibre Bragg grating inscription for medical devices. Light Sci. Appl., 7(3), 2018, 17161, 10.1038/LSA.2017.161.
Boutouyrie, P., Bussy, C., Lacolley, P., Girerd, X., Laloux, B., Laurent, S., Association between local pulse pressure, mean blood pressure, and large-artery remodeling. Circulation 100:13 (1999), 1387–1393, 10.1161/01.CIR.100.13.1387.
Broadway, C., Min, R., Leal-Junior, A.G., Marques, C., Caucheteur, C., Toward commercial polymer fiber bragg grating sensors: review and applications. J. Lightwave Technol. 37:11 (2019), 2605–2615, 10.1109/JLT.2018.2885957.
Cardona-Morrell, M., Prgomet, M., Turner, R.M., Nicholson, M., Hillman, K., Effectiveness of continuous or intermittent vital signs monitoring in preventing adverse events on general wards: a systematic review and meta-analysis. Int. J. Clin. Pract. 70:10 (2016), 806–824, 10.1111/IJCP.12846.
Chen, Z., Lau, D., Teo, J.T., Ng, S.H., Yang, X., Kei, P.L., Simultaneous measurement of breathing rate and heart rate using a microbend multimode fiber optic sensor. J. Biomed. Opt., 19(5), 2014, 057001, 10.1117/1.JBO.19.5.057001.
Chen, G., Yuan, X., Zhang, Y., Song, X., A new approach to HR monitoring using photoplethysmographic signals during intensive physical exercise. Phys. Eng. Sci. Med. 44:2 (2021), 535–543, 10.1007/S13246-021-01003-4.
Chen, W., Zhang, Y., Yang, H., Qiu, Y., Li, H., Chen, Z., Yu, C., Non-invasive measurement of vital signs based on seven-core fiber interferometer. IEEE Sens. J. 21:9 (2021), 10703–10710, 10.1109/JSEN.2021.3061443.
Cheng, X., Gunawardena, D.S., Pun, C.-F.-J., Bonefacino, J., Tam, H.-Y., Single nanosecond-pulse production of polymeric fiber Bragg gratings for biomedical applications. Opt. Express, 28(22), 2020, 33573, 10.1364/OE.408744.
Choi, S.J., Kim, Y.C., Song, M., Pan, J.K., A self-referencing intensity-based fiber optic sensor with multipoint sensing characteristics. Sensors (Switzerland) 14:7 (2014), 12803–12815, 10.3390/S140712803.
Chowdhury, S.S., Hyder, R., Hafiz, M.S.B., Haque, M.A., Real-time robust heart rate estimation from wrist-type PPG signals using multiple reference adaptive noise cancellation. IEEE J. Biomed. Health Inform. 22:2 (2018), 450–459.
Corodeanu, S., Chiriac, H., Radulescu, L., Lupu, N., Magneto-impedance sensor for quasi-noncontact monitoring of breathing, pulse rate and activity status. J. Appl. Phys., 115(17), 2014, 17A301.
C. B. Cross, J. A. Skipper, and D. Petkie, “Thermal imaging to detect physiological indicators of stress in humans,” Proc. SPIE 8705, Thermosense: Thermal Infrared Applications XXXV, p. 87050I, May 2013, doi: 10.1117/12.2018107.
di Virgilio, A.D.V., Sagnac Gyroscopes and the GINGER Project. Front. Astron. Space Sci., 7, 2020, 10.3389/FSPAS.2020.00049.
Efendioglu, H.S., A review of fiber-optic modal modulated sensors: specklegram and modal power distribution sensing. IEEE Sens. J. 17:7 (2017), 2055–2064, 10.1109/JSEN.2017.2658683.
Fajkus, M., Nedoma, J., Martinek, R., Brablik, J., Vanus, J., Novak, M., Zabka, S., Vasinek, V., Hanzlikova, P., Vojtisek, L., MR fully compatible and safe FBG breathing sensor: a practical solution for respiratory triggering. IEEE Access 7 (2019), 123013–123025.
Faust, O., Lei, N., Chew, E., Ciaccio, E.J., Acharya, U.R., A smart service platform for cost efficient cardiac health monitoring. Int. J. Environ. Res. Public Health 17:17 (2020), 1–18, 10.3390/IJERPH17176313.
Ferraro, D., D'Alesio, G., Camboni, D., Zinno, C., Costi, L., Haberbusch, M., Aigner, P., Maw, M., Schloglhofer, T., Unger, E., Aliperta, A., Bernini, F., Casieri, V., Terlizzi, D., Giudetti, G., Carpaneto, J., Pedrizzetti, G., Micera, S., Lionetti, V., Moscato, F., Massari, L., Oddo, C.M., Implantable fiber Bragg grating sensor for continuous heart activity monitoring: ex-vivo and in-vivo validation. IEEE Sens. J. 21:13 (2021), 14051–14059.
Friebele, E.J., Askins, C.G., Miller, G.A., Peele, J.R., Wasserman, L.R., Optical fiber sensors for spacecraft: applications and challenges. Photonics for Space Environments IX, 5554, 2004, 120, 10.1117/12.562393.
Ge, J., Cheng, X., Zhao, C., Gui, K., Zhang, W., Cheikh, F., Ye, L., Reflected light intensity-modulated continuous liquid level sensor based on oblique end face coupling optical fibers. IEEE Sens. J. 20:8 (2020), 4229–4236, 10.1109/JSEN.2019.2962610.
Ghosh, S.K., Ponnalagu, R.N., Tripathy, R.K., Acharya, U.R., Tang, C., Deep Layer kernel sparse representation network for the detection of heart valve ailments from the time-frequency representation of PCG recordings. Biomed Res. Int. 2020 (2020), 1–16.
Gordon, J.W., Certain molar movements of the human body produced by the circulation of the blood. Available J. Anat. Physiol. 11:Pt 3 (1877), 533–536 https://www.mendeley.com/catalogue/5b6e8df0-1c33-3b1b-8880-2a0e3244f805/.
Guzmán-Sepúlveda, J.R., Guzmán-Cabrera, R., Castillo-Guzmán, A.A., Optical sensing using fiber-optic multimode interference devices: a review of nonconventional sensing schemes. Sensors 21:5 (2021), 1–21, 10.3390/S21051862.
P. Han et al., “Low-cost plastic optical fiber sensor embedded in mattress for sleep performance monitoring,” Opt. Fiber Technol., vol. 64, 2021, doi: 10.1016/J.YOFTE.2021.102541.
Hao, J., Jayachandran, M., Kng, P.L., Foo, S.F., Aung Aung, P.W., Cai, Z., FBG-based smart bed system for healthcare applications. Front. Optoelectron. 3:1 (2010), 78–83, 10.1007/S12200-009-0066-0.
Hayashi, K., Koshiba, M., Tsuji, Y., Yoneta, S., Kaji, R., Combination of beam propagation method and mode expansion propagation method for bidirectional optical beam propagation analysis. J. Lightwave Technol. 16:11 (1998), 2040–2045, 10.1109/50.730368.
He, R., Teng, C., Kumar, S., Marques, C., Min, R., Polymer optical fiber liquid level sensor: a review. IEEE Sens. J. 22:2 (2022), 1081–1091, 10.1109/JSEN.2021.3132098.
Hu, X., Kinet, D., Chah, K., Pun, C.-F.-J., Tam, H.-Y., Caucheteur, C., Bragg grating inscription in PMMA optical fibers using 400-nm femtosecond pulses. Opt. Lett., 42(14), 2017, pp, 10.1364/ol.42.002794.
Huang, W., Ying, T., Chin, W., Baskaran, L., Marcus, O., Yeo, K., Kiong, N., Application of ensemble machine learning algorithms on lifestyle factors and wearables for cardiovascular risk prediction. Sci. Rep., 12(1), 2022, 10.1038/S41598-021-04649-Y.
J. Jiang, N. Zhang, R. Min, X. Cheng, H. Qu, X. Hu, “Recent achievements on grating fabrications in polymer optical fibers with photosensitive dopants: a review,” Polymers (Basel), vol. 14, no. 2, p. undefined-undefined, 2022, doi: 10.3390/POLYM14020273.
Jiang, P., Zhao, S., Zhu, R., Smart sensing strip using monolithically integrated flexible flow sensor for noninvasively monitoring respiratory flow. Sensors (Switzerland) 15:12 (2015), 31738–31750, 10.3390/S151229881.
Kause, J., Smith, G., Prytherch, D., Parr, M., Flabouris, A., Hillman, K., A comparison of antecedents to cardiac arrests, deaths and emergency intensive care admissions in Australia and New Zealand, and the United Kingdom – The ACADEMIA study. Resuscitation 62:3 (2004), 275–282, 10.1016/J.RESUSCITATION.2004.05.016.
Ke, C., Cai, Y., Zhao, T., Li, Z., Research on smart mattress based on fiber unbalanced Sagnac loop. IOP Conf. Ser. Earth Environ. Sci., 769(4), 2021, 042039.
Ke, C., Cai, Y., Zhao, T., Li, Z., Research on intelligent mattress based on improved SMS structure sensing fiber. 7th IOP Conf. Ser. Earth Environ. Sci., 1802(2), 2021, 022023.
Khan, Y., Ostfeld, A.E., Lochner, C.M., Pierre, A., Arias, A.C., Monitoring of vital signs with flexible and wearable medical devices. Adv. Mater. 28:22 (2016), 4373–4395, 10.1002/ADMA.201504366.
Khosrow-Khavar, F., Tavakolian, K., Blaber, A.P., Zanetti, J.M., Fazel-Rezai, R., Menon, C., Automatic annotation of seismocardiogram with high-frequency precordial accelerations. IEEE J. Biomed. Health Inform. 19:4 (2015), 1428–1434, 10.1109/JBHI.2014.2360156.
Knudsen, S., Bløtekjær, K., An ultrasonic fiber-optic hydrophone incorporating a push-pull transducer in a sagnac interferometer. J. Lightwave Technol., 12(9), 1994, pp, 10.1109/50.320954.
Koyama, Y., Nishiyama, M., Watanabe, K., Smart textile using hetero-core optical fiber for heartbeat and respiration monitoring. IEEE Sens. J. 18:15 (2018), 6175–6180, 10.1109/JSEN.2018.2847333.
Kuang, R., Ye, Y., Chen, Z., He, R., Savović, I., Djordjevich, A., Savović, S., Ortega, B., Marques, C., Li, X., Min, R., Low-cost plastic optical fiber integrated with smartphone for human physiological monitoring. Opt. Fiber Technol., 71, 2022, 102947.
Leal-Junior, A.G., Díaz, C.R., Leitão, C., Pontes, M.J., Marques, C., Frizera, A., Polymer optical fiber-based sensor for simultaneous measurement of breath and heart rate under dynamic movements. Opt. Laser Technol. 109 (2019), 429–436, 10.1016/J.OPTLASTEC.2018.08.036.
Leal-Junior, A.G., Frizera, A., Marques, C., Pontes, M.J., Optical fiber Specklegram sensors for mechanical measurements: a review. IEEE Sens. J. 20:2 (2020), 569–576, 10.1109/JSEN.2019.2944906.
Lee, H.S., Cho, K.W., Kim, H.Y., Ahn, Y.M., Chamber-specific regulation of atrial natriuretic peptide secretion in cardiac hypertrophy: atrial wall dynamics in the ANP secretion. Pflug. Arch. Eur. J. Phy., 472(6), 2020, pp, 10.1007/s00424-020-02377-2.
S. Leonhardt, D. Teichmann, “Fusing non-contact vital sign sensing modalities - first results,” 40th Annual International Conf Proc IEEE Eng Med Biol Soc, pp. 5378–5381, 2018, doi: 10.1109/EMBC.2018.8513639.
Li, Y., Dong, B.o., Chen, E., Wang, X., Zhao, Y., Heart-rate monitoring with an ethyl alpha-cyanoacrylate based fiber fabry-perot sensor. IEEE J. Sel. Top. Quantum Electron. 27:4 (2021), 1–6.
Li, T., Wu, D., Khyam, M.O., Guo, J., Tan, Y., Zhou, Z., Recent advances and tendencies regarding fiber optic sensors for deformation measurement: a review. IEEE Sens. J. 22:4 (2022), 2962–2973, 10.1109/JSEN.2021.3138091.
Li, K., Xia, L., Yi, H., Li, S., Wu, Y., Song, Y., Optical active fiber sensing technique based on the lasing wavelength demodulation for monitoring the human respiration and pulse. Sens Actuators A Phys 296 (2019), 45–51, 10.1016/J.SNA.2019.06.045.
Lin, J., Fu, R., Zhong, X., Yu, P., Tan, G., Li, W., Zhang, H., Li, Y., Zhou, L., Ning, C., Wearable sensors and devices for real-time cardiovascular disease monitoring. Cell Rep. Phys. Sci., 2(8), 2021, 100541.
Lo Presti, D., Massaroni, C., D'Abbraccio, J., Massari, L., Caponero, M., Longo, U.G., Formica, D., Oddo, C.M., Schena, E., Wearable system based on flexible FBG for respiratory and cardiac monitoring. IEEE Sens. J. 19:17 (2019), 7391–7398.
Lo Presti, D., Santucci, F., Massaroni, C., Formica, D., Setola, R., Schena, E., A multi-point heart rate monitoring using a soft wearable system based on fiber optic technology. Sci. Rep., 11(1), 2021, 10.1038/S41598-021-00574-2.
Lv, J., Fang, N., Wang, C., Wang, L., Location method of Sagnac distributed optical fiber sensing system based on CNNs ensemble learning. Opt. Laser Technol., 138, 2021, 106841, 10.1016/J.OPTLASTEC.2020.106841.
W. Lyu, S. Chen, F. Tan, and C. Yu, “Vital Signs Monitoring Based on Interferometric Fiber Optic Sensors,” Photonics, vol. 9, no. 2, 2022, doi: 10.3390/PHOTONICS9020050.
Lyu, W., Xu, W., Yang, F., Chen, S., Tan, F., Yu, C., Non-invasive measurement for cardiac variations using a fiber optic sensor. IEEE Photon. Technol. Lett. 33:18 (2021), 990–993, 10.1109/LPT.2021.3078757.
Min, R., Liu, Z., Pereira, L., Yang, C., Sui, Q.i., Marques, C., Optical fiber sensing for marine environment and marine structural health monitoring: a review. Opt. Laser Technol., 140, 2021, 107082.
Min, R., Hu, X., Pereira, L., Simone Soares, M., Silva, L.C.B., Wang, G., Martins, L., Qu, H., Antunes, P., Marques, C., Li, X., Polymer optical fiber for monitoring human physiological and body function: A comprehensive review on mechanisms, materials, and applications. Opt. Laser Technol., 147, 2022, 107626.
Mohamadou, Y., Kapen, P.T., Foutse, M., Kamga, A.L.K., Docna, O., Mohammad, M., Ahmad, M., Rabbani, K.-e., Design and development of a phonocardiograph for telemedicine applications. Health Technol. (Berl) 12:2 (2022), 453–463.
Mokhtar, M.R., Sun, T., Grattan, K.T.V., Bragg grating packages with nonuniform dimensions for strain and temperature sensing. IEEE Sens. J. 12:1 (2012), 139–144, 10.1109/JSEN.2011.2134845.
J. Nedoma et al., “Magnetic resonance imaging compatible non-invasive fibre-optic sensors based on the bragg gratings and interferometers in the application of monitoring heart and respiration rate of the human body: a comparative study,” Sensors (Switzerland), vol. 18, no. 11, 2018, doi: 10.3390/s18113713.
J. Nedoma, M. Fajkus, R. Martinek, and H. Nazeran, “Vital sign monitoring and cardiac triggering at 1.5 tesla: A practical solution by an MR-ballistocardiography fiber-optic sensor,” Sensors (Switzerland), vol. 19, no. 3, 2019, doi: 10.3390/S19030470.
Nedoma, J., Fajkus, M., Martinek, R., Vasinek, V., Non-invasive fiber-optic biomedical sensor for basic vital sign monitoring. Adv Electr Electron Eng 15:2 (2017), 336–342, 10.15598/AEEE.V15I2.2131.
Niswar, M., Nur, M., Ilham, A.A., Mappangara, I., A low cost wearable medical device for vital signs monitoring in low-resource settings. Int. J. Electr. Comput. Eng. 9:4 (2019), 2321–2327, 10.11591/IJECE.V9I4.PP2321-2327.
Pereira, C.B., Kunczik, J., Bleich, A., Haeger, C., Kiessling, F., Thum, T., Tolba, R., Lindauer, U., Treue, S., Czaplik, M., Perspective review of optical imaging in welfare assessment in animal-based research. J. Biomed. Opt., 24(07), 2019, 1.
C. Perezcampos Mayoral et al., “Fiber Optic Sensors for Vital Signs Monitoring. A Review of Its Practicality in the Health Field,” Biosensors (Basel), vol. 11, no. 2, 2021, doi: 10.3390/BIOS11020058.
Perri, C., Arcadio, F., D'Agostino, G., Cennamo, N., Porto, G., Zeni, L., Chemical and biological applications based on plasmonic optical fiber sensors. IEEE Instrum. Meas. Mag. 24:5 (2021), 50–55, 10.1109/MIM.2021.9491004.
Podbreznik, P., Đonlagić, D., Lešnik, D., Cigale, B., Zazula, D., Cost-efficient speckle interferometry with plastic optical fiber for unobtrusive monitoring of human vital signs. J. Biomed. Opt., 18(10), 2013, 107001, 10.1117/1.JBO.18.10.107001.
Rodríguez-Cuevas, A., Peña, E.R., Rodríguez-Cobo, L., Lomer, M., Higuera, J.M.L., Low-cost fiber specklegram sensor for noncontact continuous patient monitoring. J. Biomed. Opt., 22(3), 2017, 037001, 10.1117/1.JBO.22.3.037001.
P. Samartkit, S. Pullteap, “Fiber optic sensor applications for vital signs monitoring: a review,” iEECON 2019 – 7th International Electrical Engineering Congress, Proceedings, p. 1-4, 2019, doi: 10.1109/IEECON45304.2019.8938942.
Samartkit, P., Pullteap, S., Seat, H.C., Validation of fiber optic-based fabry-perot interferometer for simultaneous heart rate and pulse pressure measurements. IEEE Sens. J. 21:5 (2021), 6195–6201, 10.1109/JSEN.2020.3041782.
Shono, A., Mori, S., Yatomi, A., Kamio, T., Sakai, J., Soga, F., Tanaka, H., Hirata, K.-I., Ultimate third heart sound. Intern. Med. 58:17 (2019), 2535–2538.
Shoushan, M.M., Reyes, B.A., Rodriguez, A.M., Chong, J.W., Non-contact HR monitoring via smartphone and webcam during different respiratory maneuvers and body movements. IEEE J. Biomed. Health Inform. 25:2 (2021), 602–612, 10.1109/JBHI.2020.2998399.
Stefani, A., Stecher, M., Town, G.E., Bang, O., Direct writing of fiber bragg grating in microstructured polymer optical fiber. IEEE Photon. Technol. Lett., 24(13), 2012, pp, 10.1109/LPT.2012.2197194.
Suaste-Gómez, E., Hernàndez-Rivera, D., Sanchez-Sanchez, A.S., Villarreal-Calva, E., Electrically insulated sensing of respiratory rate and heartbeat using optical fibers. Sensors (Switzerland) 14:11 (2014), 21523–21534, 10.3390/S141121523.
Sun, Q., Luo, H., Luo, H., Lai, M., Liu, D., Zhang, L., Multimode microfiber interferometer for dual-parameters sensing assisted by Fresnel reflection. Opt. Express, 23(10), 2015, 12777, 10.1364/OE.23.012777.
Suresh Kumar, V., Krishnamoorthi, C., Development of electrical transduction based wearable tactile sensors for human vital signs monitor: fundamentals, methodologies and applications. Sens. Actuators, A, 321, 2021, 112582.
Tan, F., Chen, S., Lyu, W., Liu, Z., Yu, C., Lu, C., Tam, H., Non-invasive human vital signs monitoring based on twin-core optical fiber sensors. Biomed. Opt. Express, 10(11), 2019, 5940, 10.1364/BOE.10.005940.
Tan, F.Z., Lyu, W.M., Chen, S.Y., Liu, Z.Y., Yu, C.Y., Contactless vital signs monitoring based on few-mode and multi-core fibers. Opto-Electron Adv 3:5 (2020), 1–12, 10.29026/OEA.2020.190034.
Y. Tang, J. Cang, Y. Yao, and C. Chen, “Displacement measurement of a concrete bridge under traffic loads with fibre-reinforced polymer-packaged optical fibre sensors,” Adv. Mech. Eng., vol. 12, no. 3, 2020, doi: 10.1177/1687814020910538.
C. Tavares, C. Leitão, D. Lo Presti, M. Domingues, N. Alberto, H. Silva, and P. Antunes, “Respiratory and heart rate monitoring using an FBG 3D-printed wearable system,” Biomed. Opt. Express., vol. 13, no. 4, p. 2299, 2022, doi: 10.1364/BOE.452115.
Teng, C., Min, R., Zheng, J., Deng, S., Li, M., Hou, L., Yuan, L., Intensity-modulated polymer optical fiber-based refractive index sensor: a review. Sensors, 22(1), 2022, 10.3390/S22010081.
Tian, K., Farrell, G., Wang, X., Yang, W., Xin, Y., Liang, H., Lewis, E., Wang, P., Strain sensor based on gourd-shaped single-mode-multimode-single-mode hybrid optical fibre structure. Opt. Express 25:16 (2017), 18885–18896, 10.1364/OE.25.018885.
Tippit, H., Benchimol, A., The Apex Cardiogram. J. Am. Med. Assoc., 201(7), 1967, 549, 10.1001/JAMA.1967.03130070069023.
Wang, K., Dong, X., Kohler, M., Kienle, P., Bian, Q., Jakobi, M., Koch, A., Advances in optical fiber sensors based on multimode interference (MMI): a review. IEEE Sens. J. 21:1 (2021), 132–142, 10.1109/JSEN.2020.3015086.
Y. C. Wang, L. H. Shyu, and C. P. Chang, “The comparison of environmental effects on Michelson and Fabry-Perot interferometers utilized for the displacement measurement,” Sensors, vol. 10, no. 4, 2010, doi: 10.3390/s100402577.
Z. Wang, G. Wang, Z. Wang, W. Gao, and Y. Cheng, “Incoherence suppression method of optical noises in a resonant fiber optic gyro based on the circularly polarized light propagation mechanism in a resonator,” Opt Lett, vol. 46, no. 13, p. 3191, 2021, doi: 10.1364/OL.431065.
Y. Wang et al., “Noninvasive measurement of the vital signs of cancer patients with a dual-path microbend fiber sensor,” Biomed Opt Express, vol. 13, no. 2, p. 982, 2022, doi: 10.1364/BOE.450258.
Wang, Y., Huang, Y., Bai, H., Wang, G., Hu, X., Kumar, S., Min, R., Biocompatible and biodegradable polymer optical fiber for biomedical application: a review. Biosensors (Basel), 11(12), 2021, 10.3390/BIOS11120472.
Wang, Y.-L., Liu, B., Pang, Y.-N., Liu, J., Shi, J.-L., Wan, S.-P., He, X.-D., Yuan, J., Wu, Q., Low-cost wearable sensor based on a D-shaped plastic optical fiber for respiration monitoring. IEEE Trans. Instrum. Meas. 70 (2021), 1–8.
Wang, S., Ni, X., Li, L., Wang, J., Liu, Q., Yan, Z., Zhang, L., Sun, Q., Noninvasive monitoring of vital signs based on highly sensitive fiber optic mattress. IEEE Sens. J. 20:11 (2020), 6182–6190, 10.1109/JSEN.2020.2974313.
Wang, F., Tanaka, M., Chonan, S., Development of a PVDF piezopolymer sensor for unconstrained in-sleep cardiorespiratory monitoring. J. Intell. Mater. Syst. Struct. 14:3 (2003), 185–190, 10.1177/1045389X03014003006.
Wang, Q., Zhang, Y., Chen, G., Chen, Z., Hee, H.I., Assessment of heart rate and respiratory rate for perioperative infants based on ELC model. IEEE Sens. J. 21:12 (2021), 13685–13694, 10.1109/JSEN.2021.3071882.
“World health statistics 2022: monitoring health for the SDGs, sustainable development goals.” https://www.who.int/publications/i/item/9789240051157 (accessed 30, 2022).
Xu, W., Shen, Y., Yu, C., Dong, B.o., Zhao, W., Wang, Y., Long modal interference in multimode fiber and its application in vital signs monitoring. Opt. Commun., 474, 2020, 126100.
Xu, W., Yu, C., Dong, B., Wang, Y., Zhao, W., Thin piezoelectric sheet assisted PGC demodulation of fiber-optic integrated MZI and its application in under mattress vital signs monitoring. IEEE Sens. J. 22:3 (2022), 2151–2159, 10.1109/JSEN.2021.3128601.
Zawawi, M.A., O'Keffe, S., Lewis, E., Intensity-modulated fiber optic sensor for health monitoring applications: a comparative review. Sens. Rev. 33:1 (2013), 57–67, 10.1108/02602281311294351.
Zaza, A., Ronchi, C., Malfatto, G., Arrhythmias and heart rate: Mechanisms and significance of a relationship. Arrhythm. Electrophysiol. Rev. 7:4 (2018), 232–237, 10.15420/AER.2018.12.3.
X. Zhan, Y. Sun, F. Xiao, Y. Meng, J. Zhang, “Research on the Measurement of Heart Rate Based on LD Laser and Multimode Fiber,” 2020 5th Optoelectronics Global Conference, OGC 2020, pp. 200–203, 2020, doi: 10.1109/OGC50007.2020.9260428.
Zhang, Y., Chen, Z., Hee, H.I., Noninvasive measurement of heart rate and respiratory rate for perioperative infants. J. Lightwave Technol. 37:11 (2019), 2807–2814, 10.1109/JLT.2018.2883413.
Zhang, F., Yang, K., Pei, Z., Wu, Y., Sang, S., Zhang, Q., Jiao, H., A highly accurate flexible sensor system for human blood pressure and heart rate monitoring based on graphene/sponge. RSC Adv. 12:4 (2022), 2391–2398, 10.1039/D1RA08608A.
Zhao, R., Du, L., Zhao, Z., Chen, X., Sun, J., Man, Z., Cao, B., Fang, Z., Accurate estimation of heart and respiration rates based on an optical fiber sensor using adaptive regulations and statistical classifications spectrum analysis. Front Digit Health, 3, 2021, 10.3389/FDGTH.2021.747460.
Zhu, L., Kan, C., Du, Y., Du, D., Heart rate monitoring during physical exercise from photoplethysmography using neural network. IEEE Sens Lett 3:1 (2019), 1–4.
Zhu, T., Wu, D., Liu, M., Duan, D.W., In-line fiber optic interferometric sensors in single-mode fibers. Sensors 12:8 (2012), 10430–10449, 10.3390/S120810430.