Lasprilla, A. J.; Martinez, G. A.; Lunelli, B. H.; Jardini, A. L.; Filho, R. M. Poly-lactic acid synthesis for application in biomedical devices - a review. Biotechnol Adv. 2012, 30 ( 1), 321- 328, 10.1016/j.biotechadv.2011.06.019
DeStefano, V.; Khan, S.; Tabada, A. Applications of PLA in modern medicine. Engineered Regeneration 2020, 1, 76- 87, 10.1016/j.engreg.2020.08.002
Fukushima, K.; Inoue, Y.; Haga, Y.; Ota, T.; Honda, K.; Sato, C.; Tanaka, M. Monoether-Tagged Biodegradable Polycarbonate Preventing Platelet Adhesion and Demonstrating Vascular Cell Adhesion: A Promising Material for Resorbable Vascular Grafts and Stents. Biomacromolecules 2017, 18 ( 11), 3834- 3843, 10.1021/acs.biomac.7b01210
Weems, A. C.; Arno, M. C.; Yu, W.; Huckstepp, R. T. R.; Dove, A. P. 4D polycarbonates via stereolithography as scaffolds for soft tissue repair. Nat. Commun. 2021, 12 ( 1), 3771, 10.1038/s41467-021-23956-6
Cvek, M.; Paul, U. C.; Zia, J.; Mancini, G.; Sedlarik, V.; Athanassiou, A. Biodegradable Films of PLA/PPC and Curcumin as Packaging Materials and Smart Indicators of Food Spoilage. ACS Appl. Mater. Interfaces 2022, 14 ( 12), 14654- 14667, 10.1021/acsami.2c02181
Luo, F.; Fortenberry, A.; Ren, J.; Qiang, Z. Recent Progress in Enhancing Poly(Lactic Acid) Stereocomplex Formation for Material Property Improvement. Front. Chem. 2020, 8, 688, 10.3389/fchem.2020.00688
Tsuji, H. Poly(lactide) Stereocomplexes: Formation, Structure, Properties, Degradation, and Applications. Macromol. Biosci. 2005, 5 ( 7), 569- 597, 10.1002/mabi.200500062
Shao, J.; Sun, J.; Bian, X.; Cui, Y.; Li, G.; Chen, X. Investigation of poly(lactide) stereocomplexes: 3-armed poly(L-lactide) blended with linear and 3-armed enantiomers. J. Phys. Chem. B 2012, 116 ( 33), 9983- 9991, 10.1021/jp303402j
Buwalda, S. J.; Calucci, L.; Forte, C.; Dijkstra, P. J.; Feijen, J. Stereocomplexed 8-armed poly(ethylene glycol)-poly(lactide) star block copolymer hydrogels: Gelation mechanism, mechanical properties and degradation behavior. Polymer 2012, 53 ( 14), 2809- 2817, 10.1016/j.polymer.2012.05.006
Abebe, D. G.; Fujiwara, T. Controlled Thermoresponsive Hydrogels by Stereocomplexed PLA-PEG-PLA Prepared via Hybrid Micelles of Pre-Mixed Copolymers with Different PEG Lengths. Biomacromolecules 2012, 13 ( 6), 1828- 1836, 10.1021/bm300325v
Jun, Y. J.; Park, K. M.; Joung, Y. K.; Park, K. D.; Lee, S. J. In situ gel forming stereocomplex composed of four-arm PEG-PDLA and PEG-PLLA block copolymers. Macromol. Res. 2008, 16 ( 8), 704- 710, 10.1007/BF03218584
Liffland, S.; Kumler, M.; Hillmyer, M. A. High Performance Star Block Aliphatic Polyester Thermoplastic Elastomers Using PDLA-b-PLLA Stereoblock Hard Domains. ACS Macro Lett. 2023, 12 ( 10), 1331- 1338, 10.1021/acsmacrolett.3c00437
Wanamaker, C. L.; Bluemle, M. J.; Pitet, L. M.; O’Leary, L. E.; Tolman, W. B.; Hillmyer, M. A. Consequences of Polylactide Stereochemistry on the Properties of Polylactide-Polymenthide-Polylactide Thermoplastic Elastomers. Biomacromolecules 2009, 10 ( 10), 2904- 2911, 10.1021/bm900721p
Nagarajan, V.; Mohanty, A. K.; Misra, M. Perspective on Polylactic Acid (PLA) based Sustainable Materials for Durable Applications: Focus on Toughness and Heat Resistance. ACS Sustain. Chem. Eng. 2016, 4 ( 6), 2899- 2916, 10.1021/acssuschemeng.6b00321
Tábi, T.; Ageyeva, T.; Kovács, J. G. Improving the ductility and heat deflection temperature of injection molded Poly(lactic acid) products: A comprehensive review. Polym. Test. 2021, 101, 107282 10.1016/j.polymertesting.2021.107282
Dai, J.; Liang, M.; Zhang, Z.; Bernaerts, K. V.; Zhang, T. Synthesis and crystallization behavior of poly (lactide-co-glycolide). Polymer 2021, 235, 124302 10.1016/j.polymer.2021.124302
Stirling, E.; Champouret, Y.; Visseaux, M. Catalytic metal-based systems for controlled statistical copolymerisation of lactide with a lactone. Polym. Chem. 2018, 9, 2517- 2531, 10.1039/C8PY00310F
Venkataraman, S.; Ng, V. W. L.; Coady, D. J.; Horn, H. W.; Jones, G. O.; Fung, T. S.; Sardon, H.; Waymouth, R. M.; Hedrick, J. L.; Yang, Y. Y. A Simple and Facile Approach to Aliphatic N-Substituted Functional Eight-Membered Cyclic Carbonates and Their Organocatalytic Polymerization. J. Am. Chem. Soc. 2015, 137 ( 43), 13851- 13860, 10.1021/jacs.5b06355
Chang, Y. A.; Rudenko, A. E.; Waymouth, R. M. Zwitterionic Ring-Opening Polymerization of N-Substituted Eight-Membered Cyclic Carbonates to Generate Cyclic Poly(carbonate)s. ACS Macro Lett. 2016, 5 ( 10), 1162- 1166, 10.1021/acsmacrolett.6b00591
Venkataraman, S.; Tan, J. P. K.; Ng, V. W. L.; Tan, E. W. P.; Hedrick, J. L.; Yang, Y. Y. Amphiphilic and Hydrophilic Block Copolymers from Aliphatic N-Substituted 8-Membered Cyclic Carbonates: A Versatile Macromolecular Platform for Biomedical Applications. Biomacromolecules 2017, 18 ( 1), 178- 188, 10.1021/acs.biomac.6b01463
Yuen, A. Y.; Bossion, A.; Veloso, A.; Mecerreyes, D.; Hedrick, J. L.; Dove, A. P.; Sardon, H. Efficient polymerization and post-modification of N-substituted eight-membered cyclic carbonates containing allyl groups. Polym. Chem. 2018, 9 ( 18), 2458- 2467, 10.1039/C8PY00231B
McGuire, T. M.; López-Vidal, E. M.; Gregory, G. L.; Buchard, A. Synthesis of 5- to 8-membered cyclic carbonates from diols and CO2: A one-step, atmospheric pressure and ambient temperature procedure. J. CO2 Util. 2018, 27, 283- 288, 10.1016/j.jcou.2018.08.009
Bexis, P.; De Winter, J.; Arno, M. C.; Coulembier, O.; Dove, A. P. Organocatalytic Synthesis of Alkyne-Functional Aliphatic Polycarbonates via Ring-Opening Polymerization of an Eight-Membered-N-Cyclic Carbonate. Macromol. Rapid Commun. 2021, 42 ( 3), e2000378 10.1002/marc.202000378
Yuen, A.; Bossion, A.; Gomez-Bengoa, E.; Ruiperez, F.; Isik, M.; Hedrick, J. L.; Mecerreyes, D.; Yang, Y. Y.; Sardon, H. Room temperature synthesis of non-isocyanate polyurethanes (NIPUs) using highly reactive N-substituted 8-membered cyclic carbonates. Polym. Chem. 2016, 7 ( 11), 2105- 2111, 10.1039/C6PY00264A
Yu, W.; Inam, M.; Jones, J. R.; Dove, A. P.; O’Reilly, R. K. Understanding the CDSA of poly(lactide) containing triblock copolymers. Polym. Chem. 2017, 8 ( 36), 5504- 5512, 10.1039/C7PY01056G
Makiguchi, K.; Kikuchi, S.; Yanai, K.; Ogasawara, Y.; Sato, S.-I.; Satoh, T.; Kakuchi, T. Diphenyl phosphate/4-dimethylaminopyridine as an efficient binary organocatalyst system for controlled/living ring-opening polymerization of L-lactide leading to diblock and end-functionalized poly(L-lactide)s. J. Polym. Sci. Part A Polym. Chem. 2014, 52 ( 7), 1047- 1054, 10.1002/pola.27089
Chen, X.; McCarthy, S. P.; Gross, R. A. Synthesis, Modification, and Characterization of l-Lactide/2,2-[2-Pentene-1,5-diyl]trimethylene Carbonate Copolymers. Macromolecules 1998, 31 ( 3), 662- 668, 10.1021/ma971288o
Sarasua, J.-R.; Prud’homme, R. E.; Wisniewski, M.; Le Borgne, A.; Spassky, N. Crystallization and melting behavior of polylactides. Macromolecules 1998, 31 ( 12), 3895- 3905, 10.1021/ma971545p
Fernandez, J.; Etxeberria, A.; Sarasua, J. R. Synthesis, structure and properties of poly(L-lactide-co-epsilon-caprolactone) statistical copolymers. J. Mech Behav Biomed Mater. 2012, 9, 100- 112, 10.1016/j.jmbbm.2012.01.003
Fernández, J.; Meaurio, E.; Chaos, A.; Etxeberria, A.; Alonso-Varona, A.; Sarasua, J. R. Synthesis and characterization of poly (l-lactide/ϵ-caprolactone) statistical copolymers with well resolved chain microstructures. Polymer 2013, 54 ( 11), 2621- 2631, 10.1016/j.polymer.2013.03.009
Dalmoro, A.; Barba, A. A.; Lamberti, M.; Mazzeo, M.; Venditto, V.; Lamberti, G. Random l-lactide/ϵ-caprolactone copolymers as drug delivery materials. J. Mater. Sci. 2014, 49 ( 17), 5986- 5996, 10.1007/s10853-014-8317-x
D’Auria, I.; Lamberti, M.; Rescigno, R.; Venditto, V.; Mazzeo, M. Copolymerization of L-Lactide and epsilon-Caprolactone promoted by zinc complexes with phosphorus based ligands. Heliyon 2021, 7 ( 7), e07630 10.1016/j.heliyon.2021.e07630
Fukushima, K.; Kimura, Y. REVIEW - Stereocomplexed polylactides (Neo-PLA) as high-performance bio-based polymers: their formation, properties, and application. Polym. Int. 2006, 55 ( 6), 626- 642, 10.1002/pi.2010
Leemhuis, M.; van Nostrum, C. F.; Kruijtzer, J. A. W.; Zhong, Z. Y.; ten Breteler, M. R.; Dijkstra, P. J.; Feijen, J.; Hennink, W. E. Functionalized Poly(α-hydroxy acid)s via Ring-Opening Polymerization: Toward Hydrophilic Polyesters with Pendant Hydroxyl Groups. Macromolecules 2006, 39 ( 10), 3500- 3508, 10.1021/ma052128c
Wei, X.-F.; Bao, R.-Y.; Cao, Z.-Q.; Yang, W.; Xie, B.-H.; Yang, M.-B. Stereocomplex Crystallite Network in Asymmetric PLLA/PDLA Blends: Formation, Structure, and Confining Effect on the Crystallization Rate of Homocrystallites. Macromolecules 2014, 47 ( 4), 1439- 1448, 10.1021/ma402653a
Ikada, Y.; Jamshidi, K.; Tsuji, H.; Hyon, S. H. Stereocomplex formation between enantiomeric poly(lactides). Macromolecules 1987, 20 ( 4), 904- 906, 10.1021/ma00170a034
Bai, J.; Wang, J.; Wang, W.; Fang, H.; Xu, Z.; Chen, X.; Wang, Z. Stereocomplex Crystallite-Assisted Shear-Induced Crystallization Kinetics at a High Temperature for Asymmetric Biodegradable PLLA/PDLA Blends. ACS Sustain. Chem. Eng. 2016, 4 ( 1), 273- 283, 10.1021/acssuschemeng.5b01110
Ulery, B. D.; Nair, L. S.; Laurencin, C. T. Biomedical Applications of Biodegradable Polymers. J. Polym. Sci. B. Polym. Phys. 2011, 49 ( 12), 832- 864, 10.1002/polb.22259
Xu, J.; Feng, E.; Song, J. Renaissance of aliphatic polycarbonates: New techniques and biomedical applications. J. Appl. Polym. Sci. 2014, 131 ( 5), 39822, 10.1002/app.39822
Thomas, A. W.; Dove, A. P. Postpolymerization Modifications of Alkene-Functional Polycarbonates for the Development of Advanced Materials Biomaterials. Macromol. Biosci. 2016, 16 ( 12), 1762- 1775, 10.1002/mabi.201600310
Tempelaar, S.; Mespouille, L.; Coulembier, O.; Dubois, P.; Dove, A. P. Synthesis and post-polymerisation modifications of aliphatic poly(carbonate)s prepared by ring-opening polymerisation. Chem. Soc. Rev. 2013, 42 ( 3), 1312- 1336, 10.1039/C2CS35268K
Thomas, A. W.; Kuroishi, P. K.; Pérez-Madrigal, M. M.; Whittaker, A. K.; Dove, A. P. Synthesis of aliphatic polycarbonates with a tuneable thermal response. Polym. Chem. 2017, 8 ( 34), 5082- 5090, 10.1039/C7PY00358G
Koo, S. P. S.; Stamenović, M. M.; Prasath, R. A.; Inglis, A. J.; Prez, F. E. D.; Barner-Kowollik, C.; Camp, W. V.; Junkers, T. Limitations of radical thiol-ene reactions for polymer-polymer conjugation. J. Polym. Sci. Part A Polym. Chem. 2010, 48 ( 8), 1699- 1713, 10.1002/pola.23933
Michell, R. M.; Ladelta, V.; Da Silva, E.; Müller, A. J.; Hadjichristidis, N. Poly(lactic acid) stereocomplexes based molecular architectures: Synthesis and crystallization. Prog. Polym. Sci. 2023, 146, 101742 10.1016/j.progpolymsci.2023.101742
Tsuji, H.; Sato, S.; Masaki, N.; Arakawa, Y.; Kuzuya, A.; Ohya, Y. Synthesis, stereocomplex crystallization and homo-crystallization of enantiomeric poly(lactic acid-co-alanine)s with ester and amide linkages. Polym. Chem. 2018, 9 ( 5), 565- 575, 10.1039/C7PY02024D
Tsuji, H.; Tsuruno, T. Water Vapor Permeability of Poly(L-lactide)/Poly(D-lactide) Stereocomplexes. Macromol. Mater. Eng. 2010, 295 ( 8), 709- 715, 10.1002/mame.201000071
Tsuji, H.; Yamamoto, S.; Okumura, A. Homo- and hetero-stereocomplexes of substituted poly(lactide)s as promising biodegradable crystallization-accelerating agents of poly(L-lactide). J. Appl. Polym. Sci. 2011, 122 ( 1), 321- 333, 10.1002/app.34163
Narita, J.; Katagiri, M.; Tsuji, H. Highly enhanced accelerating effect of melt-recrystallized stereocomplex crystallites on poly(L-lactic acid) crystallization: effects of molecular weight of poly(D-lactic acid). Polym. Int. 2013, 62 ( 6), 936- 948, 10.1002/pi.4381