[en] In this work, antifouling copper-containing PEO coatings were produced on zinc-aluminized steels and their antifouling properties in circulating seawater were tested at the Hydrobiological Station Umberto D'Ancona located in Chioggia (Venice, Italy). The effect of the presence of the copper particles on the localized corrosion properties of the PEO coatings was also investigated in depth. In detail, the PEO-coated samples were produced and characterized in terms of microstructure and phase composition through SEM and XRD analysis. The antifouling properties of the samples were evaluated through stereo-microscope and SEM observations after up to 28 days of immersion and the corrosion properties were analyzed with EIS and SVET tests. The results, besides the successful incorporation of the copper particles into the coatings, evidenced the remarkable antifouling effect of the copper particles which also produced a clear selection in the type of algae that can colonize the samples. Considering the corrosion properties, the copper particles were found to be detrimental, due to the galvanic coupling with the substrate. Considering both results, the copper-containing PEO coating can be suggested only in combination with a topcoat which further increases the corrosion performance.
Research center :
CRIM - Ingénierie des matériaux
Disciplines :
Materials science & engineering
Author, co-author :
Pezzato, Luca; Department of Industrial Engineering, University of Padova, Padova, Italy
Akbarzadeh, Sajjad ; Université de Mons - UMONS > Faculté Polytechnique > Service de Science des Matériaux
Settimi, Alessio Giorgio; Department of Industrial Engineering, University of Padova, Padova, Italy
Moschin, Emanuela; Department of Biology, University of Padua, Padova, Italy
Moro, Isabella; Department of Biology, University of Padua, Padova, Italy
Olivier, Marjorie ; Université de Mons - UMONS > Faculté Polytechnique > Service de Science des Matériaux
Brunelli, Katya; Department of Industrial Engineering, University of Padova, Padova, Italy
Dabalà, Manuele; Department of Industrial Engineering, University of Padova, Padova, Italy
Language :
English
Title :
Corrosion and antifouling properties of copper-containing PEO coatings produced on steels
Pezzato, L., Gennari, C., Franceschi, M., Brunelli, K., Influence of silicon morphology on direct current plasma electrolytic oxidation process in AlSi10Mg alloy produced with laser powder bed fusion. Sci. Rep. 12 (2022), 1–17, 10.1038/s41598-022-18176-x.
Kaseem, M., Dikici, B., Optimization of surface properties of plasma electrolytic oxidation coating by organic additives: a review. Coatings 11 (2021), 1–23, 10.3390/coatings11040374.
Chen, Y., Lu, X., Lamaka, S.V., Ju, P., Blawert, C., Zhang, T., Wang, F., Zheludkevich, M.L., Active protection of Mg alloy by composite PEO coating loaded with corrosion inhibitors. Appl. Surf. Sci., 504, 2020, 144462, 10.1016/j.apsusc.2019.144462.
Molaei, M., Babaei, K., Fattah-alhosseini, A., Improving the wear resistance of plasma electrolytic oxidation (PEO) coatings applied on Mg and its alloys under the addition of nano- and micro-sized additives into the electrolytes: a review. J. Magnes. Alloy 9 (2021), 1164–1186, 10.1016/j.jma.2020.11.016.
Lu, X., Mohedano, M., Blawert, C., Matykina, E., Arrabal, R., Kainer, K.U., Zheludkevich, M.L., Plasma electrolytic oxidation coatings with particle additions – a review. Surf. Coatings Technol. 307 (2016), 1165–1182, 10.1016/j.surfcoat.2016.08.055.
Babaei, K., Fattah-alhosseini, A., Molaei, M., The effects of carbon-based additives on corrosion and wear properties of plasma electrolytic oxidation (PEO) coatings applied on aluminum and its alloys: a review. Surfaces and Interfaces, 21, 2020, 100677, 10.1016/j.surfin.2020.100677.
Fattah-alhosseini, A., Molaei, M., Babaei, K., The effects of nano- and micro-particles on properties of plasma electrolytic oxidation (PEO) coatings applied on titanium substrates: a review. Surfaces and Interfaces, 21, 2020, 100659, 10.1016/j.surfin.2020.100659.
Akbarzadeh, S., Paint, Y., Olivier, M.-G., A comparative study of different sol-gel coatings for sealing the plasma electrolytic oxidation (PEO) layer on AA2024 alloy. Electrochim. Acta, 443, 2023, 141930, 10.1016/j.electacta.2023.141930.
Gnedenkov, A.S., Sinebryukhov, S.L., Filonina, V.S., Gnedenkov, S.V., Hydroxyapatite-containing PEO-coating design for biodegradable Mg-0.8Ca alloy: formation and corrosion behaviour. J. Magnes. Alloy., 2022, 10.1016/j.jma.2022.12.002.
Dong, H., Surface Engineering of Light Alloys Aluminium, Magnesium and Titanium Alloys. 2010.
Nikoomanzari, E., Karbasi, M., Melo, W.C.M.A., Moris, H., Babaei, K., Giannakis, S., Fattah-alhosseini, A., Impressive strides in antibacterial performance amelioration of Ti-based implants via plasma electrolytic oxidation (PEO): a review of the recent advancements. Chem. Eng. J., 441, 2022, 136003, 10.1016/j.cej.2022.136003.
Fattah-alhosseini, A., Babaei, K., Molaei, M., Plasma electrolytic oxidation (PEO) treatment of zinc and its alloys: a review. Surfaces and Interfaces., 18, 2020, 100441, 10.1016/j.surfin.2020.100441.
Babaei, K., Fattah-alhosseini, A., Chaharmahali, R., A review on plasma electrolytic oxidation (PEO) of niobium: mechanism, properties and applications. Surfaces and Interfaces., 21, 2020, 100719, 10.1016/j.surfin.2020.100719.
Fattah-alhosseini, A., Chaharmahali, R., Keshavarz, M.K., Babaei, K., Surface characterization of bioceramic coatings on Zr and its alloys using plasma electrolytic oxidation (PEO): a review. Surfaces and Interfaces, 25, 2021, 101283, 10.1016/j.surfin.2021.101283.
Wang, Y.L., Wang, M., Zhou, M., Li, B.J., Amoako, G., Jiang, Z.H., Microstructure characterisation of alumina coating on steel by PEO. Surf. Eng. 29 (2013), 271–275, 10.1179/1743294412Y.0000000084.
Wang, Y., Jiang, Z., Yao, Z., Tang, H., Microstructure and corrosion resistance of ceramic coating on carbon steel prepared by plasma electrolytic oxidation. Surf. Coatings Technol. 204 (2010), 1685–1688, 10.1016/j.surfcoat.2009.10.023.
Attarzadeh, N., Molaei, M., Babaei, K., Fattah-alhosseini, A., New promising ceramic coatings for corrosion and wear protection of steels: a review. Surfaces and Interfaces., 23, 2021, 100997, 10.1016/j.surfin.2021.100997.
S. A., H. S., A. S., R.K. L., R. N, Effect of electrolyte composition on morphology and corrosion resistance of plasma electrolytic oxidation coatings on aluminized steel. Surf. Coatings Technol. 372 (2019), 239–251, 10.1016/j.surfcoat.2019.05.047.
Pezzato, L., Settimi, A.G., Cerchier, P., Gennari, C., Dabalà, M., Brunelli, K., Microstructural and corrosion properties of PEO coated zinc-aluminized (ZA) steel. Coatings 10 (2020), 1–12, 10.3390/COATINGS10050448.
Songur, F., Arslan, E., Dikici, B., Taguchi optimization of PEO process parameters for corrosion protection of AA7075 alloy. Surf. Coatings Technol., 434, 2022, 128202, 10.1016/j.surfcoat.2022.128202.
Hussein, R.O., Zhang, P., Nie, X., Xia, Y., Northwood, D.O., The effect of current mode and discharge type on the corrosion resistance of plasma electrolytic oxidation (PEO) coated magnesium alloy AJ62. Surf. Coatings Technol. 206 (2011), 1990–1997, 10.1016/j.surfcoat.2011.08.060.
Hakimizad, A., Raeissi, K., Santamaria, M., Asghari, M., Effects of pulse current mode on plasma electrolytic oxidation of 7075 Al in Na2WO4 containing solution: from unipolar to soft-sparking regime. Electrochim. Acta 284 (2018), 618–629, 10.1016/j.electacta.2018.07.200.
Rogov, A.B., Nemcova, A., Hashimoto, T., Matthews, A., Yerokhin, A., Analysis of electrical response, gas evolution and coating morphology during transition to soft sparking PEO of Al. Surf. Coatings Technol., 442, 2022, 128142, 10.1016/j.surfcoat.2022.128142.
Tsai, D.S., Chou, C.C., Review of the soft sparking issues in plasma electrolytic oxidation. Metals (Basel) 8 (2018), 1–22, 10.3390/met8020105.
Clyne, T.W., Troughton, S.C., A review of recent work on discharge characteristics during plasma electrolytic oxidation of various metals. Int. Mater. Rev. 64 (2019), 127–162, 10.1080/09506608.2018.1466492.
Fattah-alhosseini, A., Chaharmahali, R., Babaei, K., Effect of particles addition to solution of plasma electrolytic oxidation (PEO) on the properties of PEO coatings formed on magnesium and its alloys: a review. J. Magnes. Alloy 8 (2020), 799–818, 10.1016/j.jma.2020.05.001.
Lu, X., Blawert, C., Kainer, K.U., Zhang, T., Wang, F., Zheludkevich, M.L., Influence of particle additions on corrosion and wear resistance of plasma electrolytic oxidation coatings on Mg alloy. Surf. Coatings Technol. 352 (2018), 1–14, 10.1016/j.surfcoat.2018.08.003.
Stojadinović, S., Radić, N., Vasilić, R., High photocatalytic activity of TiO2/Al2TiO5 coatings obtained by plasma electrolytic oxidation of titanium. Mater. Lett., 338, 2023, 10.1016/j.matlet.2023.134069.
Pezzato, L., Cerchier, P., Brunelli, K., Bartolozzi, A., Bertani, R., Dabalà, M., Plasma electrolytic oxidation coatings with fungicidal properties*. Surf. Eng. 35 (2019), 325–333, 10.1080/02670844.2018.1441659.
Cerchier, P., Pezzato, L., Moschin, E., Coelho, L.B., Olivier, M.G.M., Moro, I., Magrini, M., Antifouling properties of different plasma electrolytic oxidation coatings on 7075 aluminium alloy. Int. Biodeterior. Biodegrad. 133 (2018), 70–78, 10.1016/j.ibiod.2018.06.005.
Pezzato, L., Settimi, A.G., Fanchin, D., Moschin, E., Moro, I., Dabalà, M., Effect of Cu addition on the corrosion and antifouling properties of PEO coated zinc-aluminized steel. Materials (Basel), 15, 2022, 7895, 10.3390/ma15227895.
Dafforn, K.A., Lewis, J.A., Johnston, E.L., Antifouling strategies: history and regulation, ecological impacts and mitigation. Mar. Pollut. Bull. 62 (2011), 453–465, 10.1016/j.marpolbul.2011.01.012.
Pérez, M., García, M., Blustein, G., Evaluation of low copper content antifouling paints containing natural phenolic compounds as bioactive additives. Mar. Environ. Res. 109 (2015), 177–184, 10.1016/j.marenvres.2015.07.006.
Braithwaite, L., Albrechtas, K., Zagidulin, D., Behazin, M., Shoesmith, D., Noël, J.J., Galvanic coupling of copper and carbon steel in the presence of bentonite clay and chloride. J. Electrochem. Soc., 169, 2022, 051502, 10.1149/1945-7111/ac5ff2.
H. Peragallo, M. Peragallo, Diatomees Marine de France et des Districts Maritimes Voisins, Micrographe Editeur Grez sur Loing (S. et M.), n.d.
F. Husted, Die Kiesealgen Von Deutschland, Österreichs Und der Schweiz Mit Berusichtigung der Übrigen Länder Europas Sowie der Angrenzender Mehresgebiete., in: Rabenhorst's Kriptogamen-Flora Von Deutschland, Österreichs Und Der Schweiz, Akad, M.B.H, Verlag., Leipzig, n.d.
A. Van der Werff, H. Hulls, Diatomeeën flora Van Nederland., Science Publishers, Koeningstein, n.d.
Hussein, R.O., Nie, X., Northwood, D.O., An investigation of ceramic coating growth mechanisms in plasma electrolytic oxidation (PEO) processing. Electrochim. Acta 112 (2013), 111–119, 10.1016/j.electacta.2013.08.137.
O'Hara, M., Troughton, S.C., Francis, R., Clyne, T.W., The incorporation of particles suspended in the electrolyte into plasma electrolytic oxidation coatings on Ti and Al substrates. Surf. Coatings Technol., 385, 2020, 125354, 10.1016/j.surfcoat.2020.125354.
Troughton, S.C., Nominé, A., Dean, J., Clyne, T.W., Effect of individual discharge cascades on the microstructure of plasma electrolytic oxidation coatings. Appl. Surf. Sci. 389 (2016), 260–269, 10.1016/j.apsusc.2016.07.106.
Pillai, A.M., Ghosh, R., Dey, A., Prajwal, K., Rajendra, A., Sharma, A.K., Sampath, S., Crystalline and amorphous PEO based ceramic coatings on AA6061: Nanoindentation and corrosion studies. Ceram. Int. 47 (2021), 14707–14716, 10.1016/j.ceramint.2021.01.147.
Dilimon, V.S., Shibli, S.M.A., A review on the application-focused assessment of plasma electrolytic oxidation (PEO) coatings using electrochemical impedance spectroscopy. Adv. Eng. Mater. 25 (2023), 1–18, 10.1002/adem.202201796.
McMurray, H.N., Localized corrosion behavior in aluminum-zinc alloy coatings investigated using the scanning reference electrode technique. Corrosion 57 (2001), 313–322, 10.5006/1.3290355.
Pritzel dos Santos, A., Manhabosco, S.M., Rodrigues, J.S., Dick, L.F.P., Comparative study of the corrosion behavior of galvanized, galvannealed and Zn55Al coated interstitial free steels. Surf. Coatings Technol. 279 (2015), 150–160, 10.1016/j.surfcoat.2015.08.046.
Round, F.E., Crawford, R.M., Mann, D.G., The Diatoms. Biology and Morphology of the Genera. 1990, Cambridge University Press, Cambridge UK.
Round, F.E., The Ecology of Algae. 1981, Cambridge University Press, Cambridge UK.
Cerchier, P., Pezzato, L., Gennari, C., Moschin, E., Moro, I., Dabalà, M., PEO coating containing copper: a promising anticorrosive and antifouling coating for seawater application of AA 7075. Surf. Coatings Technol., 393, 2020, 125774, 10.1016/j.surfcoat.2020.125774.