Chalk; classification; clay; diagenesis; microtexture; opal-CT; scanning electron microscope; sedimentation; Carbonate content; Chalk reservoirs; Insoluble particles; Micro-texture; Reservoir quality; Spatio temporal; Geology; Stratigraphy; General Engineering; Energy Engineering and Power Technology
Abstract :
[en] Microtexture describes the type of particles and their arrangement in matrix samples at scanning electron microscopy scale. Although a microtexture classification exists for micritic limestone, it cannot be directly applied to chalk. This study therefore proposes a classification of chalk microtextures and discusses the origin of microtexture variability. Chalk was sampled at thirteen spatio-temporal locations along the coastline of northern France (Cenomanian–Santonian). Four criteria are defined to describe, characterize and determine chalk matrix microtexture: (i) mineralogical content; (ii) biogenic fraction; (iii) micritic fraction; and (iv) cement fraction. From these criteria, two major groups are defined: Pure Chalk Microtexture Group, with seven classes, and Impure Chalk Microtexture Group, divided into two subgroups: Argillaceous Microtexture with four classes and Siliceous Microtexture with two classes. Microtexture variability is related both to initial sedimentation and to diagenesis. Sedimentological conditions (for example, climate and distance from shore) affect chalk composition (carbonate content and type of insoluble particles), thus influencing microtexture. Changes in Pure Chalk Microtexture are the result of increasing diagenetic intensity. This classification can also be used to characterize the microtexture of subsurface chalk reservoirs. Reservoir quality depends on the petrophysical and mechanical properties of reservoir rocks, which can be better understood by exploring their sedimentary and diagenetic history, revealed by the study of chalk microtexture variability.
Disciplines :
Earth sciences & physical geography
Author, co-author :
Saïag, Jessica ; Laboratoire Biogéosciences UMR 6282 UBFC/CNRS, Univ. Bourgogne Franche-Comté, Dijon, France ; Laboratoire des Fluides Complexes et leurs Reservoirs-IPRA, UMR5150, CNRS/TOTAL/Univ Pau & Pays Adour/E2S UPPA, Pau, France
Collin, Pierre-Yves; Laboratoire Biogéosciences UMR 6282 UBFC/CNRS, Univ. Bourgogne Franche-Comté, Dijon, France
Sizun, Jean-Pierre; Laboratoire Chrono-environnement UMR 6249 UBFC/CNRS, Univ. Bourgogne Franche-Comté, Besançon, France
Herbst, Frédéric; Laboratoire Interdisciplinaire Carnot de Bourgogne (ICB) UMR 6303 UBFC/CNRS, Univ. Bourgogne Franche-Comté, Dijon, France
R400 - Institut de Recherche en Science et Ingénierie des Matériaux
Funding text :
The PhD of Jessica Saïag was funded by Ministère de l'Enseignement Supérieur et de la Recherche (École Doctorale Environnement-Santé). This study was supported by funding from Total S.A., the BRGM (French Geological Survey), and the Observatoire des Sciences de l'Univers THETA Bourgogne–Franche-Comté. Our thanks go to Yves Leroy, Bertrand Gauthier (TOTAL), Phillipe Robion (University of Cergy-Pontoise), Rudy Swennen (KU Leuven), Sara Vandycke (University of Mons), Emmanuelle Vennin and Jean-François Deconinck (University of Burgundy Franche-Comté), for their support throughout this study. We are also grateful to Didier Convert-Gaubier, Ludovic Bruneau and Théophile Cocquerez for technical support. We thank Peir Pufahl (Editor in Chief), John Reijmer (Associate Editor), Kresten Anderskouv, Ida Fabricius and the other anonymous reviewers, for their helpful comments, which have served to improve our manuscript.
Adatte, T. and Rumley, G. (1984) Microfaciès, minéralogie, stratigraphie et évolution des milieux de dépôts de la plate-forme Berriaso-Valanginienne des régions de Sainte-Croix (VD), Cressier et du Landeron (NE). Bull. Soc. Nauchâteloise Sci. Nat., 107, 221–239.
Adelseck, C.G., Geehan, G.W. and Roth, P.H. (1973) Experimental evidence for the selective dissolution and overgrowth of calcareous nannofossils during diagenesis. Geol. Soc. Am. Bull., 84, 2755–2762.
Aharonov, E. and Katsman, R. (2009) Interaction between pressure solution and clays in stylolite development: insights from modelling. Am. J. Sci., 309, 607–632.
Alam, M.M., Borre, M.K., Fabricius, I.L., Hedegaard, K., Røgen, B., Hossain, Z. and Krogsbøll, A.S. (2010) Biot's coefficient as an indicator of strength and porosity reduction: calcareous sediments from Kerguelen Plateau. J. Petrol. Sci. Eng., 70, 282–297.
Alam, M.M., Fabricius, I.L. and Prasad, M. (2011) Permeability prediction in chalks. AAPG Bull., 95, 1991–2014.
Alam, M.M., Hjuler, M.L., Christensen, H.F. and Fabricius, I.L. (2014) Petrophysical and rock-mechanics effects of CO2 injection for enhanced oil recovery: experimental study on chalk from South Arne field, North Sea. J. Petrol. Sci. Eng., 122, 468–487.
Amédro, F. and Robaszynski, F. (1999) Les craies cénomaniennes du Boulonnais. Comparaison avec l'Aube (France) et le Kent (Royaume Uni). Géol. Fr., 2, 33–53.
Amédro, F. and Robaszynski, F. (2001) Les craies Turoniennes du Boulonnais (France) au regard de la stratigraphie événementielle. Comparaison avec le Kent (UK) et la Normandie (F). Bull. Trimestriel Soc. Géol. Normandie Amis Muséum Havre, 87, 31–49.
Anderskouv, K. and Surlyk, F. (2012) The influence of depositional processes on the porosity of chalk. J. Geol. Soc. London, 169, 311–325.
Anderskouv, K., Damholt, T. and Surlyk, F. (2007) Late Maastrichtian chalk mounds, Stevns Klint, Denmark – combined physical and biogenic structures. Sed. Geol., 200, 57–72.
Arribas, M.E., Bustillo, A. and Tsige, M. (2004) Lacustrine chalky carbonates: origin, physical properties and diagenesis (Palaeogene of the Madrid Basin, Spain). Sed. Geol., 166, 335–351.
Aubry, M.-P. (1972) Recherches pétrographiques, stratigraphiques et paléosédimentologiques sur les craies de Haute Normandie. PhD Thesis, University Paris IV, France, 206 pp.
Aubry, M.-P. and Pomerol, B. (1975) La pétrogenèse des craies du Bassin de Paris est-elle une conséquence de l'expansion océanique? CR Acad. Sci. Paris, 280, 2081–2084.
Bell, F.G., Culshaw, M.G. and Cripps, J.C. (1999) A review of selected engineering geological characteristics of English chalk. Eng. Geol., 54, 237–269.
Black, M. (1953) The constitution of chalk. Proc. Geol. Soc., 1499, 81–86.
Bojanowski, M.J., Dubicka, Z., Minoletti, F., Olszewska-Nejbert, D. and Surowski, M. (2017) Stable C and O isotopic study of the Campanian chalk from the Mielnik section (eastern Poland): signals from bulk rock, belemnites, benthic foraminifera, nannofossils and microcrystalline cements. Palaeogeogr. Palaeoclimatol. Palaeoecol., 465, 193–211.
Boles, J.R. and Wise, W.S. (1978) Nature and origin of deep-sea clinoptilolite. Rev. Mineral., 4, 235–243.
Bonnemaison, M. (1988) Indices de diagenèse liés aux nannofossiles calcaires dans le Crétacé des Pyrénées: comparaison avec des sites océaniques dans le Golfe de Gascogne. PhD Thesis – Document du BRGM 170, Université Paris VI, France, 264 pp.
Borre, M. and Fabricius, I.L. (1998) Chemical and mechanical processes during burial diagenesis of chalk: an interpretation based on specific surface data of deep-sea sediments. Sedimentology, 45, 755–769.
Boussaha, M., Thibault, N., Anderskouv, K., Moreau, J. and Stemmerik, L. (2017) Controls on upper Campanian-Maastrichtian chalk deposition in the eastern Danish Basin. Sedimentology, 64, 1998–2030.
Brasher, J.E. and Vagle, K.R. (1996) Influence of lithofacies and diagenesis on Norwegian North Sea chalk reservoirs. AAPG Bull., 80, 746–769.
Brigaud, B., Vincent, B., Durlet, C., Deconinck, J.-F., Jobard, E., Pickard, N., Yven, B. and Landrein, P. (2014) Characterization and origin of permeability–porosity heterogeneity in shallow-marine carbonates: from core scale to 3D reservoir dimension (Middle Jurassic, Paris Basin, France). Mar. Petrol. Geol., 57, 631–651.
Bromley, R.G. and Gale, A.S. (1982) The lithostratigraphy of the English Chalk Rock. Cretaceous Res., 3, 273–306.
Brown, G., Catt, J.A. and Weir, A.H. (1969) Zeolites of the clinoptilolite-heulandite type in sediments of south-east England. Mineral. Mag., 37, 480–488.
Cantrell, D.L. and Hagerty, R.M. (1999) Microporosity in Arab Formation carbonates, Saudi Arabia. GeoArabia, 4, 129–154.
Carpentier, C., Ferry, S., Lécuyer, C., Strasser, A., Géraud, Y. and Trouiller, A. (2015) Origin of micropores in Late Jurassic (Oxfordian) micrites of the Eastern Paris Basin, France. J. Sed. Res., 85, 660–682.
Castaing, R. (1960) Advances in Electronics and Electron Physics. Academic Press, New York, 317 pp.
Czerniakowski, L.A., Lohmann, K.C. and Wilson, J.L. (1984) Closed-system marine burial diagenesis: isotopic data from the Austin chalk and its components. Sedimentology, 31, 863–877.
Damholt, T. and Surlyk, F. (2004) Laminated-bioturbated cycles in Maastrichtian chalk of the North Sea: oxygenation fluctuations within the Milankovitch frequency band. Sedimentology, 51, 1323–1342.
Deconinck, J.F. (1992) Sédimentologie des Argiles Dans le Jurassique-Crétacé d'Europe Occidentale et du Maroc. Mémoire d'habilitation à diriger des recherches, Université de Lille, France, 249 pp.
Deconinck, J.F. and Chamley, H. (1995) Diversity of smectite origins in Late Cretaceous sediments: example of chalks from Northern France. Clay Mineral., 30, 365–379.
Deconinck, J.-F., Holtzapffel, T., Robaszynski, F. and Amédro, F. (1989) Données minéralogiques, géochimiques et biologiques comparées dans les craies cénomaniennes à santoniennes du Boulonnais. Geobios, 11, 179–188.
Deconinck, J.-F., Amédro, F., Fiolet-Piette, A., Juignet, P., Renard, M. and Robaszynski, F. (1991) Contrôle paléogéographique de la sédimentation argileuse dans le Cénomanien du Boulonnais et du Pays de Caux. Ann. Soc. Géol. Nord, 1, 57–66.
Deville de Periere, M. (2011) Origine sédimento-diagénétique de réservoirs carbonatés microporeux: Exemple de la Formation Mishrif (Cénomanien) du Moyen-Orient. PhD Thesis, Université de Bourgogne, Dijon, France, 405 pp.
Deville de Periere, M., Durlet, C., Vennin, E., Lambert, L., Bourillot, R., Caline, B. and Poli, E. (2011) Morphometry of micrite particles in cretaceous microporous limestones of the Middle East: influence on reservoir properties. Mar. Petrol. Geol., 28, 1727–1750.
D'Heur, M. (1984) Porosity and hydrocarbon distribution in the North Sea chalk reservoirs. Mar. Petrol. Geol., 1, 211–238.
Dickson, J.A.D. and Kenter, J.A.M. (2014) Diagenetic evolution of selected parasequences across a carbonate platform: Late Paleozoic, Tengiz Reservoir, Kazakhstan. J. Sed. Res., 84, 664–693.
Dravis, J.J. (1980) Sedimentology and diagenesis of the Upper Cretaceous Austin Chalk Formation, South Texas and Northern Mexico. PhD Thesis, Rice University, Houston, TX, 513 pp.
Dravis, J.J. (1989) Deep-burial microporosity in Upper Jurassic Haynesville oolitic grainstones, East Texas. Sed. Geol., 63, 325–341.
Duperret, A., Taibi, S., Mortimore, R.N. and Daigneault, M. (2005) Effect of groundwater and sea weathering cycles on the strength of chalk rock from unstable coastal cliffs of NW France. Eng. Geol., 78, 321–343.
Ehrenberg, S.N. and Nadeau, P.H. (2005) Sandstone vs. carbonate petroleum reservoirs: a global perspective on porosity-depth and porosity-permeability relationships. AAPG Bull., 89, 435–445.
Ehrenberg, S.N. and Walderhaug, O. (2015) Preferential calcite cementation of macropores in microporous limestones. J. Sed. Res., 85, 780–793.
Ehrenberg, S.N., Eberli, G.P., Keramati, M. and Moallemi, S.A. (2006) Porosity-permeability relationships in interlayered limestone-dolostone reservoirs. AAPG Bull., 90, 91–114.
Ehrlich, R., Kennedy, S.K., Crabtree, S.J. and Cannon, R.L. (1984) Petrographic image analysis, I. Analysis of reservoir pore complexes. J. Sed. Petrol., 54, 1365–1378.
Ehrlich, R., Crabtree, S.J. and Horkowitz, J.P. (1991) Petrography and reservoir physics I: objective classification of reservoir porosity. AAPG Bull., 75, 1547–1562.
Eltom, H., Abdullatif, O., Makkawi, M. and Abdulraziq, A. (2013) Microporosity in the Upper Jurassic Arab-D carbonate reservoir, central Saudi Arabia: an outcrop analogue study. J. Pet. Geol, 36, 281–297.
Ernst, W.G. and Calvert, S.E. (1969) An experimental study of the recrystallization of porcelanite and its bearing on the origin of some bedded cherts. Am. J. Sci., 267, 114–133.
Fabricius, I.L. (2001) Compaction of microfossil and clay-rich chalk sediments. Phys. Chem. Earth, 26, 59–62.
Fabricius, I.L. (2003) How burial diagenesis of chalk sediments controls sonic velocity and porosity. AAPG Bull., 87, 1755–1778.
Fabricius, I.L. and Borre, M.K. (2007) Stylolites, porosity, depositional texture, and silicates in chalk facies sediments. Ontong Java Plateau – Gorm and Tyra fields, North Sea. Sedimentology, 54, 183–205.
Fabricius, I.L., Olsen, C. and Prasad, M. (2005) Log interpretation of marly chalk, the Lower Cretaceous Valdemar Field, Danish North Sea: application of iso-frame and pseudo water film concepts. Lead. Edge, 24, 496–505.
Fabricius, I.L., Røgen, B. and Gommesen, L. (2007a) How depositional texture and diagenesis control petrophysical and elastic properties of samples from five North Sea chalk fields. Petrol. Geosci., 13, 81–95.
Fabricius, I.L., Høier, C., Japsen, P. and Korsbech, U. (2007b) Modelling elastic properties of impure chalk from South Arne Field, North Sea. Geophys. Prospect., 55, 487–506.
Fabricius, I.L., Gommesen, L., Krogsbøll, A. and Olsen, D. (2008) Chalk porosity and sonic velocity versus burial depth: influence of fluid pressure, hydrocarbons, and mineralogy. AAPG Bull., 92, 201–223.
Faÿ-Gomord, O., Soete, J., Katika, K., Galaup, S., Caline, B., Descamps, F., Lasseur, E., Fabricius, I., Saïag, J., Swennen, R. and Vandycke, S. (2016a) New insight into the microtexture of chalks from NMR analysis. Mar. Petrol. Geol., 75, 252–271.
Faÿ-Gomord, O., Descamps, F., Tshibangu, J.-P., Vandycke, S. and Swennen, R. (2016b) Unraveling chalk microtextural properties from indentation tests. Eng. Geol., 209, 30–43.
Faÿ-Gomord, O., Soete, J., Davy, C.A., Janssens, N., Troadec, D., Cazaux, F., Caline, B. and Swennen, R. (2017) Tight chalk: characterization of the 3D pore network by FIB-SEM, towards the understanding of fluid transport. J. Petrol. Sci. Eng., 156, 67–74.
Faÿ-Gomord, O., Verbiest, M., Lasseur, E., Caline, B., Allanic, C., Descamps, F., Vandycke, S. and Swennen, R. (2018) Geological and mechanical study of argillaceous North Sea chalk: implications for the characterisation of fractured reservoirs. Mar. Petrol. Geol., 92, 962–978.
Fischer, A.G. and Garrison, R.E. (1967) Carbonate lithification on the sea floor. J. Geol., 75, 488–496.
Fournier, F. and Borgomano, J. (2009) Critical porosity and elastic properties of microporous mixed carbonate-siliciclastic rocks. Geophysics, 74, E93–E109.
Fournier, F., Leonide, P., Biscarrat, K., Gallois, A., Borgomano, J. and Foubert, A. (2011) Elastic properties of microporous cemented grainstones. Geophysics, 76, E211–E226.
Friedman, G.M. (1965) Terminology of crystallization textures and fabrics in sedimentary rocks. J. Sed. Res., 35, 643–655.
Fröhlich, F. (1974) Nature, importance relative et place dans la diagenèse des phases de silice présentes dans les silicifications de craies du Bassin océanique de Madagascar (Océan Indien) et du Bassin de Paris. Bull. Soc. Géol. Fr., XVI, 498–508.
Fröhlich, F. (2006) Silex et cherts: questions de genèse. Bull. Inf. Géol. Bassin Paris, 43, 5–22.
Gaviglio, P., Chaye d'Albissin, M., Bergerat, F. and Vandycke, S. (1993) Modifications de texture dans la craie au contact de failles normales: un exemple de graben dans le bassin de Mons (Belgique). Bull. Soc. Géol. Fr., 164, 565–575.
Gaviglio, P., Adler, P., Thovert, J.-F., Vandycke, S., Bergerat, F., Bekri, S. and Lestideau, R. (1997) Grain-scale microstructures and physical properties of faulted chalk. Bull. Soc. Géol. Fr., 168, 727–739.
Gaviglio, P., Bekri, S., Vandycke, S., Adler, P.M., Schroeder, C., Bergerat, F., Darquennes, A. and Coulon, M. (2009) Faulting and deformation in chalk. J. Struct. Geol., 31, 194–207.
Gély, J.-P. and Blanc, P. (2004) Evolution diagénétique dans la craie pélagique dolomitisée du Crétacé Supérieur du Bassin de Paris (région de Provins, France). Eclogae Geol. Helv., 97, 393–409.
Gennaro, M., Wonham, J.P., Sælen, G., Walgenwitz, F., Caline, B. and Faÿ-Gomord, O. (2013) Characterization of dense zones within the Danian chalks of the Ekofisk Field, Norwegian North Sea. Petrol. Geosci., 19, 39–64.
Gischler, E. and Zingeler, D. (2002) The origin of carbonate mud in isolated carbonate platforms of Belize, Central America. Int. J. Earth Sci., 91, 1054–1070.
Gorniak, K. (2017) The occurrence of clay in pore space of impure chalk: an approach from high resolution petrographic studies of the Outer Carpathian marls (Poland). Mar. Petrol. Geol., 88, 785–797.
Gräfe, K.-U. (1999) Foraminiferal evidence for Cenomanian sequence stratigraphy and palaeoceanography of the Boulonnais (Paris Basin, northern France). Palaeogeogr. Palaeoclimatol. Palaeoecol., 153, 41–70.
Guillocheau, F., Robin, C., Allemand, P., Bourquin, S., Brault, N., Dromart, G., Friedenberg, R., Garcia, J.-M., Gaulier, J.-M., Gaumet, F., Grosdoy, B., Hanot, F., Le Strat, P., Mettraux, M., Nalpas, T., Prijac, C., Rigollet, C., Serrano, O. and Grandjean, G. (2000) Meso-Cenozoic geodynamic evolution of the Paris Basin: 3D stratigraphic constraints. Geodin. Acta, 13, 189–246.
Hairabian, A., Fournier, F., Borgomano, J. and Nardon, S. (2014) Depositional facies, pore types and elastic properties of deep-water gravity flow carbonates. J. Pet. Geol, 37, 231–249.
Hancock, J.M. (1975) The petrology of the chalk. Proc. Geol. Assoc., 86, 499–535.
Hancock, J.M. and Kennedy, W.J. (1967) Photographs of hard and soft chalks taken with a scanning electron microscope. Proc. Geol. Soc. London, 1643, 249–252.
Hardman, R.F.P. (1982) Chalk reservoirs of the North Sea. Bull. Geol. Soc. Denmark, 30, 119–137.
Hart, M.B. (1980) The recognition of Mid-Cretaceous sea level changes by means of foraminifera. Cretaceous Res., 1, 289–297.
Heath, G.R. and Moberly, R. (1971) Cherts from the Western Pacific, Leg 7 Deep Sea Drilling Project. Proc. ODP Initial Reports, A, 991–1007.
Herrington, P.M., Pederstad, K. and Dickson, J.A.D. (1991) Sedimentology and diagenesis of resedimented and rhythmically bedded chalks from the Eldfisk Field, North Sea Central Graben. AAPG Bull., 75, 1661–1674.
Hjuler, M.L. and Fabricius, I.L. (2009) Engineering properties of chalk related to diagenetic variations of Upper Cretaceous onshore and offshore chalk in the North Sea area. J. Petrol. Sci. Eng., 68, 151–170.
Hobert, L.A. and Wetzel, A. (1989) On the relationship between silica and carbonate diagenesis in deep-sea sediments. Geol. Rundsch., 78, 765–778.
Holai, H. and Lohmann, K.C. (1994) The role of early lithification in development of chalky porosity in calcitic micrites: Upper Cretaceous chalks, Egypt. Sed. Geol., 88, 193–200.
Honjo, S. (1969) Study of fined grained carbonate matrix: sedimentation and diagenesis of “micrite”. Paleontol. Soc. Jpn, 14, 67–82.
Hovorka, S.D. (1998) Facies and diagenesis of the Austin Chalk and controls on fracture intensity: a case study from North-Central Texas. Geological Circular 98-2, University of Texas at Austin, Bureau of Economic Geology, 47 pp.
Humbert, L. (1976) Eléments de Pétrologie Dynamique des Systèmes Calcaires: Atlas, photographique edn. Technip, Paris.
Ings, S.J., MacRae, R.A., Shimeld, J.W. and Pe-Piper, G. (2005) Diagenesis and porosity reduction in the late Cretaceous Wyandot Formation, offshore Nova Scotia: a comparison with Norwegian North Sea chalks. Bull. Can. Petrol. Geol., 53, 237–249.
Jakobsen, F., Lindgreen, H. and Springer, N. (2000) Precipitation and flocculation of spherical nano-silica in North Sea chalk. Clay Mineral., 35, 175–184.
Jarvis, I. (1992) Sedimentology, geochemistry and origin of phosphatic chalks: the Upper Cretaceous deposits of NW Europe. Sedimentology, 39, 55–97.
Jenkyns, H.C., Gale, A.S. and Corfield, R.M. (1994) Carbon- and oxygen-isotope stratigraphy of the English Chalk and Italian Scaglia and its palaeoclimatic significance. Geol. Mag., 131, 1–34.
Jørgensen, N.O. (1983) Dolomitization in chalk from the North Sea Central Graben. J. Sed. Petrol., 53, 557–564.
Jørgensen, N.O. (1986) Geochemistry, diagenesis and nannofacies of chalk in the North Sea Central Graben. Sed. Geol., 48, 267–294.
Juignet, P. (1974) La transgression crétacée sur la bordure orientale du Massif Armoricain. Aptien, Albien, Cénomanien de Normandie et du Maine. Le stratotype du Cénomanien. PhD Thesis, Université de Caen, France, 810 pp.
Juignet, P. and Breton, G. (1991) Séquences eustatiques et cylcicité au Crétacé moyen dans le Bassin Parisien. Géol. Alpine, 18, 5–35.
Juignet, P. and Breton, G. (1992) Mid-Cretaceous sequence stratigraphy and sedimentary cyclicity in the western Paris Basin. Palaeogeogr. Palaeoclimatol. Palaeoecol., 91, 197–218.
Juignet, P. and Breton, G. (1994) Stratigraphie, rythmes sédimentaires et eustatismes dans les craies turoniennes de la région de Fécamp (Seine-Maritime, France): expression et signification des rythmes de la craie. Bull. Trimestriel Soc. Géol. Normandie Amis Muséum Havre, 81, 55–81.
Juignet, P. and Kennedy, W.J. (1974) Structures sédimentaires et mode d'accumulation de la craie du Turonien supérieur et du Sénonien du Pays de Caux. Bull. Bur. Rech. Géol. Min., 1, 19–47.
Juignet, P. and Louail, J. (1987) La transgression du Crétacé moyen-supérieur sur la bordure du massif armoricain. Transgressions et régressions au Crétacé (France et régions voisines). In: Mémoires Géologiques de l'Université de Dijon, 11, 31–45. Dijon, France.
Juignet, P. and Pomerol, B. (1975) La clinoptilolite dans le Crétacé supérieur du Bassin de Paris. Bull. Inf. Géol. Bassin Paris, 12, 25–34.
Kaczmarek, S.E., Fullmer, S.M. and Hasiuk, F.J. (2015) A universal classification scheme for the microcrystals that host limestone microporosity. J. Sed. Res., 85, 1197–1212.
Kastner, M. and Stonecipher, S.A. (1978) Zeolites in pelagic sediments of the Atlantic, Pacific, and Indian Oceans. In: Natural Zeolites: Occurrence, Properties, Use (Eds L.B. Sand and F.A. Mumpton), pp. 199–220. Pergammon Press, Elmsford, NY.
Kennedy, W.J. and Gale, A.S. (2015) Late Turonian ammonites from Haute-Normandie, France. Acta Geol. Pol., 65, 507–524.
Kennedy, W.J. and Garrison, R.E. (1975) Morphology and genesis of nodular chalks and hardgrounds in the Upper Cretaceous of southern England. Sedimentology, 22, 311–386.
Kennedy, W.J. and Juignet, P. (1974) Carbonate banks and slump beds in the Upper Cretaceous (Upper Turonian-Santonian) of Haute Normandie, France. Sedimentology, 21, 1–42.
Lafrance, N., Auvray, C., Souley, M. and Labiouse, V. (2016) Impact of weathering on macro-mechanical properties of chalk: local pillar-scale study of two underground quarries in the Paris Basin. Eng. Geol., 213, 107–119.
Lambert, L. (2004) Géochimie et diagenèse de calcaire microporeux de plate-forme du Moyen-Orient. Application aux réservoirs de subsurface Mishrif (Cénomanien), Irak. PhD Thesis, Université de Bourgogne, Dijon, France, 320 pp.
Lambert, L., Durlet, C., Loreau, J.-P. and Marnier, G. (2006) Burial dissolution of micrite in Middle East carbonate reservoirs (Jurassic–Cretaceous): keys for recognition and timing. Mar. Petrol. Geol., 23, 79–92.
Lasemi, Z. and Sandberg, P.A. (1984) Transformation of aragonite-dominated lime muds to microcrystalline limestones. Geology, 12, 420–423.
Lasseur, E. (2007) La Craie du Bassin de Paris (Cénomanien-Campanien, Crétacé Supérieur). Sédimentologie de faciès, stratigraphie séquentielle et géométrie 3D. PhD Thesis, Université Renne 1, France, 435 pp.
Lasseur, E., Guillocheau, F., Robin, C., Hanot, F., Vaslet, D., Coueffe, R. and Neraudeau, D. (2009) A relative water-depth model for the Normandy Chalk (Cenomanian–Middle Coniacian, Paris Basin, France) based on facies patterns of metre-scale cycles. Sed. Geol., 213, 1–26.
Le Roux, A. (1973) Texture et comportement des craies. Bull. Liaison Lab. Ponts Chaussées, Spécial V, 49–53.
Lindgreen, H. and Jakobsen, F. (2012) Marine sedimentation of nano-quartz forming flint in North Sea Danian chalk. Mar. Petrol. Geol., 38, 73–82.
Lindgreen, H., Jakobsen, F. and Springer, N. (2010) Nano-size quartz accumulation in reservoir chalk, Ekofisk Formation, South Arne Field, North Sea. Clay Mineral., 45, 171–182.
Loreau, J.-P. (1972) Petrography of fine calcareous with Scanning Electron-Microscope – introduction to classification of micrites. CR Acad. Sci. Paris, 274, 810.
Loreau, J.-P. (1978) Initial calcitic mineralogy and diagenesis of marine jurassic ooids and associated sediments. In: Tenth International Congress of Sedimentology, pp. 394–395. Friedman, Jerusalem.
Loreau, J.-P. (1979) Nature calcitique initiale et diagenèse des oolithes jurassiques du Bassin de Paris. Assoc. Sédimentol. Fr. Publ. Spéc., 1, 417–429.
Loreau, J.-P. (1982) Sédiments aragonitiques et leur genèse. Mém. Mus. Natl d'Histoire Nat., 47, 312.
Louail, J. (1979) Origine et signification des zéolites dans les dépôts cénomaniens de la bordure Sud-Est du Massif Armoricain. Clay Clay Mineral., 14, 67–85.
Loucks, R.G., Lucia, F.J. and Waite, L.E. (2013) Origin and description of the micropore network within the Lower Cretaceous Stuart City Trend tight-gas limestone reservoir in Pawnee Field in South Texas. Gulf Coast Assoc. Geol. Soc. J., 2, 29–41.
Lucia, F.J. (1995) Rock-fabric/petrophysical classification of carbonate pore space for reservoir characterization. AAPG Bull., 79, 1275–1300.
Lucia, F.J. (2007) Carbonate Reservoir Characterization: An Integrated Approach, 2nd edn. Springer Science & Business Media, Berlin, 342 pp.
Lucia, F.J. (2017) Observations on the origin of micrite crystals. Mar. Petrol. Geol., 86, 823–833.
Madsen, H.B. (2010) Silica diagenesis and its effect on porosity of upper Maastrichtian chalk–an example from the Eldfisk Field, the North Sea. Bull. Geol. Soc. Denmark, 20, 47–50.
Madsen, H.B. and Stemmerik, L. (2010) Diagenesis of flint and porcellanite in the Maastrichtian chalk at Stevns Klint, Denmark. J. Sed. Res., 80, 578–588.
Madsen, H.B., Stemmerik, L. and Surlyk, F. (2010) Diagenesis of silica-rich mound-bedded chalk, the Coniacian Arnager Limestone, Denmark. Sed. Geol., 223, 51–60.
Maliva, R.G. and Dickson, J.A.D. (1992) Microfacies and diagenetic controls of porosity in Cretaceous/Tertiary chalks, Eldfisk Field, Norwegian North Sea. AAPG Bull., 76, 1825–1838.
Maliva, R.G., Missimer, T.M., Clayton, E.A. and Dickson, J.A.D. (2009) Diagenesis and porosity preservation in Eocene microporous limestones, South Florida, USA. Sed. Geol., 217, 85–94.
Mallon, A.J. and Swarbrick, R.E. (2008) Diagenetic characteristics of low permeability, non-reservoir chalks from the Central North Sea. Mar. Petrol. Geol., 25, 1097–1108.
Masson, M. (1973) Petrophysique de la Craie. Bull. Liaison Lab. Ponts Chaussées, Spécial V, 23–47.
Melim, L.A., Anselmetti, F.S. and Eberli, G.P. (2001) The importance of pore type on permeability of Neogene carbonates, Great Bahama bank. In: Subsurface Geology of a Prograding Carbonate Platform Margin, Great Bahama Bank: Results of the Bahamas Drilling Project (Ed. R.N. Ginsburg), SEPM Spec. Publ., 70, 217–238.
Mortimore, R.N. (2011) A chalk revolution: what have we done to the Chalk of England? Proc. Geol. Assoc., 122, 232–297.
Mortimore, R.N. and Fielding, P.M. (1989) The relationship between texture, density and strength of chalk. Prooceedings of the International Chalk Symposium, pp. 47–68. Thomas Telford, London.
Moshier, S.O. (1989a) Development of microporosity in a micritic limestone reservoir, Lower Cretaceous, Middle East. Sed. Geol., 63, 217–240.
Moshier, S.O. (1989b) Microporosity in micritic limestones: a review. Sed. Geol., 63, 191–213.
Nadah, J., Bignonnet, F., Davy, C.A., Skoczylas, F., Troadec, D. and Bakowski, S. (2013) Microstructure and poro-mechanical performance of Haubourdin chalk. Int. J. Rock Mech. Min. Sci., 58, 149–165.
Nathan, Y. and Flexer, A. (1977) Clinoptilolite, paragenesis and stratigraphy. Sedimentology, 24, 845–855.
Negra, M.H. and Loreau, J.-P. (1988) Nanostructures comparées et diagenèse polyphasée des micrites dans des “mud-mounds” à rudistes: exemple du Sénonien supéieur du Jebel et Kebar, Tunisie centrale. Géol. Mediterr., 15, 143–157.
Neveux, L., Grgic, D., Carpentier, C., Pironon, J., Truche, L. and Girard, J.P. (2014a) Experimental simulation of chemomechanical processes during deep burial diagenesis of carbonate rocks. J. Geophys. Res. Solid Earth, 119, 984–1007.
Neveux, L., Grgic, D., Carpentier, C., Pironon, J. and Girard, J.P. (2014b) Influence of hydrocarbon injection on the compaction by pressure-solution of a carbonate rock: an experimental study under triaxial stresses. Mar. Petrol. Geol., 55, 282–294.
Ogg, J.G., Ogg, G.M. and Gradstein, F.M. (2016) A Concise Geologic Time Scale 2016. Elsevier B.V, Amsterdam: Elsevier, 240 pp.
Pacey, N.R. (1984) Bentonites in the Chalk of central eastern England and their relation to the opening of the northeast Atlantic. Earth Planet. Sci. Lett., 67, 48–60.
Pomerol, B. (1984) Géochimie des craies du Bassin de Paris : uilisation des éléments-traces et des isotopes stables du carbone et de l'oxygène en sédimentologie en et paléo-océanographie. PhD Thesis, Université Pierre & Marie Curie, Paris, France, 531 pp.
Pomerol, B. and Aubry, M.-P. (1977) Relation between Western European chalks and opening of the North Atlantic. J. Sed. Res., 47, 1027–1035.
Quine, M. (1988) Sedimentology of the Chalk of coastal Haute Normandie, France. PhD Thesis, Geology Department, Royal Holloway and Bedford New College, London, 521 pp.
Quine, M. and Bosence, D. (1991) Stratal geometries, facies and sea-floor erosion in Upper Cretaceous chalk, Normandy, France. Sedimentology, 38, 1113–1152.
Regnet, J.B., Robion, P., David, C., Fortin, J., Brigaud, B. and Yven, B. (2015) Acoustic and reservoir properties of microporous carbonate rocks: implication of micrite particle size and morphology: properties of micritic carbonate rocks. J. Geophys. Res. Solid Earth, 120, 790–811.
Reijmer, J.J.G. and Andresen, N. (2007) Mineralogy and grain size variations along two carbonate margin-to-basin transects (Pedro bank, Northern Nicaragua Rise). Sed. Geol., 198, 1300–1313.
Richard, J. (2014) Large-scale mass transfers related to pressure solution creep-faulting interactions in mudstones: driving processes and impact of lithification degree. Tectonophysics, 612–613, 40–55.
Richard, J. and Sizun, J.-P. (2011) Pressure solution-fracturing interactions in weakly cohesive carbonate sediments and rocks: example of the synsedimentary deformation of the Campanian chalk from the Mons Basin (Belgium). J. Struct. Geol., 33, 154–168.
Richard, J., Coulon, M. and Gaviglio, P. (2002) Mass transfer controlled by fracturing in micritic carbonate rocks. Tectonophysics, 350, 17–33.
Richard, J., Sizun, J.-P. and Machhour, L. (2005) Environmental and diagenetic records from a new reference section for the Boreal realm: the Campanian chalk of the Mons basin (Belgium). Sed. Geol., 178, 99–111.
Richard, J., Sizun, J.-P. and Machhour, L. (2007) Development and compartmentalization of chalky carbonate reservoirs: the Urgonian Jura-Bas Dauphiné platform model (Génissiat, southeastern France). Sed. Geol., 198, 195–207.
Robaszynski, F. and Amédro, F. (1986) The Cretaceous of the Boulonnais (France) and a comparison with the Cretaceous of Kent (United Kingdom). Proc. Geol. Assoc., 97, 171–208.
Robaszynski, F. and Amédro, F. (1993) Les falaises crétacées du Boulonnais. La coupe de référence du Cap Blanc-Nez dans un contexte sédimentaire global. Ann. Soc. Géol. Nord, 2, 31–44.
Robaszynski, F., Gale, A., Juignet, P., Amédro, F. and Hardenbol, J. (1998) Sequence stratigraphy in the Upper Cretaceous series of the Anglo-Paris Basin: exemplified by the Cenomanian stage. In: Mesozoic and Cenozoic Sequence Sequence Stratigraphy of European Basins (Eds de Graciansky P.-C., J. Hardenbol, T. Jacquin and P.R. Vail), SEPM Spec. Publ., 60, 363–386.
Roduit, N. (2007) JMicroVision: un logiciel d’analyse d’images pétrographiques polyvalent. PhD Thesis, University of Geneva, Swiss, 116 pp.
Røgen, B. and Fabricius, I.L. (2002) Influence of clay and silica on permeability and capillary entry pressure of chalk reservoirs in the North Sea. Petrol. Geosci., 8, 287–293.
Røgen, B., Gommesen, L. and Fabricius, I.L. (2001) Grain-size distributions of chalk from image analysis of electron micrographs. Comput. Geosci., 27, 1071–1080.
Røgen, B., Fabricius, I.L., Japsen, P., Høier, C., Mavko, G. and Pedersen, J.M. (2005) Ultrasonic velocities of North Sea chalk samples: influence of porosity, fluid content and texture. Geophys. Prospect., 53, 481–496.
Ronchi, P., Ortenzi, A., Borromeo, O., Claps, M. and Zempolich, W.G. (2010) Depositional setting and diagenetic processes and their impact on the reservoir quality in the late Visean-Bashkirian Kashagan carbonate platform (Pre-Caspian Basin, Kazakhstan). AAPG Bull., 94, 1313–1348.
Saïag, J. (2016) Caractérisation des hétérogénéités sédimentaires et pétrophysiques d'un réservoir carbonaté microporeux. Le cas de la Craie (Crétacé supérieur, Bassin de Paris). PhD Thesis, Université de Bourgogne, Dijon, France, 402pp. Available at: https://hal.archives-ouvertes.fr/tel-01817011v1
Scholle, P.A. (1974) Diagenesis of Upper Cretaceous chalks from England, Northern Ireland, and the North Sea. Int. Assoc. Sedimentol. Spec. Publ., 1, 177–210.
Scholle, P.A. (1977) Chalk diagenesis and its relation to petroleum exploration: oil from chalks, a modern miracle? AAPG Bull., 61, 982–1009.
Scholle, P.A., Albrechtsen, T. and Tirsgaard, H. (1998) Formation and diagenesis of bedding cycles in uppermost Cretaceous chalks of the Dan Field, Danish North Sea. Sedimentology, 45, 223–243.
Shitrit, O., Hatzor, Y.H., Feinstein, S., Palchik, V. and Vinegar, H.J. (2016) Effect of kerogen on rock physics of immature organic-rich chalks. Mar. Pet. Geol., 73, 392–404.
Steinberg, M., Holtzapffel, T. and Rautureau, M. (1987) Characterization of overgrowth structures formed around individual clay particles during early diagenesis. Clay Clay Mineral., 35, 189–195.
Steinen, R.P. (1978) On the diagenesis of lime mud: scanning electron microscope observations of subsurface material from Barbados. J. Sed. Petrol., 48, 1139–1148.
Strand, S., Hjuler, M.L., Torsvik, R., Pedersen, J.I., Madland, M.V. and Austad, T. (2007) Wettability of chalk: impact of silica, clay content and mechanical properties. Petrol. Geosci., 13, 69–80.
Surlyk, F., Jensen, S.K. and Engkilde, M. (2008) Deep channels in the Cenomanian-Danian Chalk Group of the German North Sea sector: evidence of strong constructional and erosional bottom currents and effect on reservoir quality distribution. AAPG Bull., 92, 1565–1586.
Tavakoli, V. and Jamalian, A. (2018) Microporosity evolution in Iranian reservoirs, Dalan and Dariyan formations, the central Persian Gulf. J. Nat. Gas Sci. Eng., 52, 155–165.
Thiry, M. and Jacquin, T. (1993) Clay mineral distribution related to rift activity, sea-level changes and paleoceanography in the Cretaceous of the Atlantic Ocean. Clay Mineral., 28, 61–84.
Tucker, M.E. and Wright, V.P. (1990) Carbonate Sedimentology. Blackwell Scientific Publications, London, 482 pp.
Vincent, B., Fleury, M., Santerre, Y. and Brigaud, B. (2011) NMR relaxation of neritic carbonates: an integrated petrophysical and petrographical approach. J. Appl. Geophys., 74, 38–58.
Volery, C., Davaud, E., Foubert, A. and Caline, B. (2010) Lacustrine microporous micrites of the Madrid Basin (Late Miocene, Spain) as analogues for shallow-marine carbonates of the Mishrif reservoir Formation (Cenomanian to Early Turonian, Middle East). Facies, 56, 385–397.
Volery, C., Suvorova, E., Buffat, P., Davaud, E. and Caline, B. (2011) TEM study of Mg distribution in micrite crystals from the Mishrif reservoir Formation (Middle East, Cenomanian to Early Turonian). Facies, 57, 605–612.
Wendler, J., Gräfe, K.-U. and Willems, H. (2002) Reconstruction of mid-Cenomanian orbitally forced palaeoenvironmental changes based on calcareous dinoflagellate cysts. Palaeogeogr. Palaeoclimatol. Palaeoecol., 179, 19–41.
Wennberg, O.P., Casini, G., Jahanpanah, A., Lapponi, F., Ineson, J., Wall, B.G. and Gillespie, P. (2013) Deformation bands in chalk, examples from the Shetland Group of the Oseberg Field, North Sea, Norway. J. Struct. Geol., 56, 103–117.
Williams, L.A. and Crerar, D.A. (1985) Silica diagenesis, II. General mechanisms. J. Sed. Res., 55, 312–321.
Wright, V.P., Zarza, A.M.A., Sanz, M.E. and Calvo, J.P. (1997) Diagenesis of late Miocene micritic lacustrine carbonates, Madrid basin, Spain. Sed. Geol., 114, 81–95.
Ziljstra, M. (1995) The sedimentology of chalk. 54 Springer, Berlin.
Zuddas, P. and Mucci, A. (1994) Kinetics of calcite precipitation from seawater: I. A classical chemical kinetics description for strong electrolyte solutions. Geochim. Cosmochim. Acta, 58, 4353–4362.