Model predictive control (MPC); Moving horizon estimation (MHE); PID control; Simulated moving bed (SMB) chromatography; Chromatographic process; Langmuir's isotherm; Model predictive control; Moving horizon estimation; Plant model mismatches; Retention time; Simulated Moving Bed; Simulated moving bed chromatography; Chemical Engineering (all); Computer Science Applications
Abstract :
[en] Simulated moving bed chromatographic (SMB) chromatographic processes are widely used for separations in pharmaceutical and biotechnological industries. In the present work, the control of such processes is proposed based on a semi-centralized control scheme that utilizes a combination of model predictive control (MPC) and classical PID control. The necessary information from the process, i.e. the internal concentration profiles, for the MPC is obtained by a moving horizon estimator (MHE) in real-time from the available limited measurements (the cycle-averaged concentrations of the extract and raffinate product streams and the dimensionless retention times of the concentration waves in the regeneration zones). As a test case study, the separation of a hypothetical system governed by the Langmuir isotherms in the nonlinear concentration range of the isotherms is considered. First, the stand-alone MHE is validated in open loop mode with no plant-model mismatch under deterministic and stochastic conditions. In the latter case, the true measurements are subject to random normally distributed noise. To evaluate the performance of the proposed control strategy, a reference tracking (change of the requirements for both the purities and the retention times) scenario is simulated. The investigated scenarios are: (i) no plant-model mismatch, (ii) MHE with ideal noiseless measurements and finally (iii) MHE under the influence of measurement noise. Results show that the controller is able to follow the change of the references from reduced purity to complete separation and vice versa closely.
Disciplines :
Chemical engineering Electrical & electronics engineering
Author, co-author :
Chernev, Valentin Plamenov ; Université de Mons - UMONS > Faculté Polytechnique > Service Systèmes, Estimation, Commande et Optimisation ; Institut fuer Automatisierungstechnik, Otto von Guericke University, Magdeburg, Germany
Kienle, Achim; Institut fuer Automatisierungstechnik, Otto von Guericke University, Magdeburg, Germany ; Max Planck Institute for Dynamics of Complex Technical Systems, Magdeburg, Germany
Vande wouwer, Alain ; Université de Mons - UMONS > Faculté Polytechnique > Service Systèmes, Estimation, Commande et Optimisation
Language :
English
Title :
Moving horizon estimation and control of a binary simulated moving bed chromatographic processes with Langmuir isotherms
F107 - Systèmes, Estimation, Commande et Optimisation
Research institute :
Research Institute for Biosciences
Funding text :
Valentin Plamenov Chernev is also affiliated with the International Max Planck Research School for Advanced Methods in Process and Systems Engineering - IMPRS ProEng Magdeburg whose financial support is greatly acknowledged.
Alamir, M., Corriou, J.P., Nonlinear receding-horizon state estimation for dispersive adsorption columns with nonlinear isotherm. J. Process Control 13:6 (2003), 517–523.
Andersson, J.A.E., Gillis, J., Horn, G., Rawlings, J.B., Diehl, M., CasADi - A software framework for nonlinear optimization and optimal control. Math. Program. Comput., 2018.
Anon, MATLAB Mathematics, R2022b (Version 9.13). 2022, The MathWorks Inc., Natick, MA, USA.
Anon, MATLAB Optimization Toolbox, Users's Guide, R2022b (Version 9.4). 2022, The MathWorks Inc., Natick, MA, USA.
Broughton, D.B., Neuzil, R.W., Pharis, J.M., Brearby, C.S., The parex process for recovering paraxylene. Chem. Eng. Prog. 66 (1970), 70–75.
Chernev, V.P., Santos, L.O., Vande Wouwer, A., Kienle, A., 2022. Model Predictive Control of Simulated Moving Bed Chromatographic Processes Using Conservation Element/Solution Element Method. In: Proceedings of the 26th International Conference on System Theory, Control and Computing (ICSTCC), Sinaia, Romania, 19–21 October 2022. pp. 355–361.
Corriou, J.P., Alamir, M., A hybrid nonlinear state observer for concentration profiles reconstruction in nonlinear simulated moving bed. J. Process Control 16:4 (2006), 345–353.
Engell, S., Kienle, A., Process control. Schmidt-Traub, H., Schulte, M., Seidel-Morgenstern, A., (eds.) Preparative Chromatography, 3rd ed., 2020, Wiley-VCH Verlag, Weinheim, Germany.
Erdem, G., Abel, S., Morari, M., Mazzotti, M., Morbidelli, M., Lee, J.H., Automatic control of simulated moving beds. Part I: Linear isotherms. Ind. Eng. Chem. Res. 43:2 (2004), 405–421.
Erdem, G., Abel, S., Morari, M., Mazzotti, M., Morbidelli, M., Lee, J.H., Automatic control of simulated moving beds. Part II: Nonlinear isotherms. Ind. Eng. Chem. Res. 43:14 (2004), 3895–3907.
Eslami, T., Jungbauer, A., Control strategy for biopharmaceutical production by model predictive control. Biotechnol. Prog., 40, 2024, e3426.
Eslami, T., Steinberger, M., Csizmazia, C., Jungbauer, A., Lingg, N., Online optimization of dynamic binding capacity and productivity by model predictive control. J. Chrom. A, 1680, 2022, 463420.
Grossmann, C., Amanullah, M., Erdem, G., Mazzotti, M., Morbidelli, M., Morari, M., ‘Cycle to cycle’ optimizing control of simulated moving beds. AIChE J. 54:1 (2008), 194–208.
Grossmann, C., Langel, C., Mazzotti, M., Morbidelli, M., Morari, M., Multi-rate optimizing control of simulated moving beds. J. Proc. Control 20:4 (2010), 490–505.
Katsuo, S., Mazzotti, M., Intermittent simulated moving bed chromatography: 1. Design criteria and cyclic steady-state. J. Chrom. A 1217:8 (2010), 1354–1361.
Kawajiri, Y., Biegler, L.T., Optimization strategies for simulated moving bed and powerfeed processes. AIChE J. 52:4 (2006), 1343–1350.
Khajuria, H., Pistikopoulos, E.N., Dynamic modeling and explicit/multi-parametric MPC control of pressure swing adsorption systems. J. Process Control 21:1 (2011), 151–163.
Küpper, A., Diehl, M., Schlöder, J.P., Bock, H.G., Engell, S., Efficient moving horizon state and parameter estimation for SMB processes. J. Process Control 9:5 (2009), 785–802.
Küpper, A., Diehl, M., Schlöder, J.P., Bock, H.G., Engell, Real-time moving horizon state and parameter estimation for SMB processes. de Brito Alves, R.M., Oller do Nscimento, C.A., Chalbaud Biscaia, E. Jr., (eds.) 10th International Symposium on Process System Engineering - PSE2009, Salvador-Bahia, Brazil, 16–20 August 2009, 2009, Elsevier B.V.
Küpper, A., Engell, S., 2006. Parameter and state estimation in chromatographic SMB processes with individual columns and nonlinear adsorption isotherms. In: Proceedings of the IFAC International Symposium of Advanced Control of Chemical Processes, Gramado. pp. 611–616.
Lee, J.-W., Kienle, A., Seidel-Morgenstern, A., On-line optimization of four-zone simulated moving bed chromatography using an equilibrium-dispersion model: I. Simulation study. Chem. Eng. Sci., 225, 2020, 115810.
Lee, J.-W., Kienle, A., Seidel-Morgenstern, A., On-line optimization of four-zone simulated moving bed chromatography using an equilibrium-dispersion model: II. Experimental validation. Chem. Eng. Sci., 226, 2020, 115808.
Ludemann-Hombourger, O., Nicoud, R., Bailly, M., The VARICOL process: a new multicolumn continuous chromatographic process. Sep. Sci. Technol. 35:16 (2000), 1829–1862.
Papathanasiou, M.M., Avraamidou, S., Oberdieck, R., Mantalaris, A., Steinebach, F., Morbidelli, M., Mueller-Spaeth, T., Pistikopoulos, E.N., Advanced control strategies for the MulticolumnCountercurrent solvent gradient purification process. AIChE J. 62:7 (2016), 2341–2357.
Schramm, H., Kaspereit, M., Kienle, A., Seidel-Morgenstern, A., Improving simulated moving bed processes by cyclic modulation of the feed concentration. Chem. Eng. Technol. 25:12 (2002), 1151–1154.
Schramm, H., Kaspereit, M., Kienle, A., Seidel-Morgenstern, A., Simulated moving bed process with cyclic modulation of the feed concentration. J. Chrom. A 1006:1–2 (2003), 77–86.
Schramm, H., Kienle, A., Kaspereit, M., Seidel-Morgenstern, A., Improved operation of simulated moving bed processes through cyclic modulation of feed flow and feed concentration. Chem. Eng. Sci. 58:23–24 (2003), 5217–5227.
Skogestad, S., Simple analytic rules for model reduction and PID controller tunning. J. Process Control 13:4 (2003), 291–309.
Suvarov, P., Kienle, A., Nobre, C., De Weireld, G., Vande Wouwer, A., Cycle to cycle adaptive control of simulated moving bed chromatographic separation processes. J. Proc. Control 24:2 (2014), 357–367.
Suvarov, P., Lee, J.-W., Vande Wouwer, A., Seidel-Morgenstern, A., Kienle, A., Online estimation of optimal operating conditions for simulated moving bed chromatographic processes. J. Chrom. A 1602 (2019), 266–272.
Suvarov, P., Vande Wouwer, A., Lee, J.-W., Seidel-Morgenstern, A., Kienle, A., 2016. Control of incomplete separation in simulated moving bed chromatographic processes. In: Proceedings of the 11th IFAC Symposium on Dynamics and Control of Process Systems, including Biosystems, Trondheim, Norway, 6–8 June 2016.
Toumi, A., Engell, A., Optimization-based control of a reactive simulated moving bed process for glucose isomerization. Chem. Eng. Sci. 59:18 (2004), 3777–3792.
Toumi, A., Engell, S., Diehl, M., Bock, H.G., Schlöder, J., Efficient optimization of simulated moving bed processes. Chem. Eng. Process:PI 46:11 (2007), 1067–1084.
Toumi, A., Engell, S., Ludemann-Hombourger, O., Nicoud, R.M., Bailly, M., Optimization of simulated moving bed and Varicol processes. J. Chrom. A 1006:1–2 (2003), 15–31.
Toumi, A., Hanisch, F., Engell, S., Optimal operation of continuous chromatographic processes: matemathical optimization of the VARICOL process. Ind. Eng. Chem. Res. 41:17 (2002), 4328–4337.
Zhang, Z., Mazzotti, M., Morbidelli, M., Powerfeed operation of simulated moving bed units: changing flow-rates during the switching interval. J. Chrom. A 1006:1–2 (2003), 87–99.