Operando Investigation of WS2 Gas Sensors: Simultaneous Ambient Pressure X-ray Photoelectron Spectroscopy and Electrical Characterization in Unveiling Sensing Mechanisms during Toxic Gas Exposure.
band bending; density functional theory; gas sensing; operando spectroscopy; surface potential; Ammonia; Nitrogen Dioxide; Tungsten Compounds; Gases; Tungsten; Nitrogen Dioxide/analysis; Nitrogen Dioxide/chemistry; Tungsten Compounds/chemistry; Density Functional Theory; Pressure; Gases/analysis; Gases/chemistry; Tungsten/chemistry; Photoelectron Spectroscopy; Ammonia/analysis; Ammonia/chemistry; Ambient pressures; Band bendings; Density-functional-theory; Electrical measurement; Gas-sensors; Operando; Sensing mechanism; Toxic gas; Bioengineering; Instrumentation; Process Chemistry and Technology; Fluid Flow and Transfer Processes
Abstract :
[en] Ambient pressure X-ray photoelectron spectroscopy (APXPS) is combined with simultaneous electrical measurements and supported by density functional theory calculations to investigate the sensing mechanism of tungsten disulfide (WS2)-based gas sensors in an operando dynamic experiment. This approach allows for the direct correlation between changes in the surface potential and the resistivity of the WS2 sensing active layer under realistic operating conditions. Focusing on the toxic gases NO2 and NH3, we concurrently demonstrate the distinct chemical interactions between oxidizing or reducing agents and the WS2 active layer and their effect on the sensor response. The experimental setup mimics standard electrical measurements on chemiresistors, exposing the sample to dry air and introducing the target gas analyte at different concentrations. This methodology applied to NH3 concentrations of 100, 230, and 760 and 14 ppm of NO2 establishes a benchmark for future APXPS studies on sensing devices, providing fast acquisition times and a 1:1 correlation between electrical response and spectroscopy data in operando conditions. Our findings contribute to a deeper understanding of the sensing mechanism in 2D transition metal dichalcogenides, paving the way for optimizing chemiresistor sensors for various industrial applications and wireless platforms with low energy consumption.
Disciplines :
Chemistry
Author, co-author :
Scardamaglia, Mattia ; MAX IV Laboratory, Lund University, 22100 Lund, Sweden
Casanova-Cháfer, Juan ; Departament d'Enginyeria Electronica, Universitat Rovira i Virgili, Països Catalans 26, 43007 Tarragona, Spain ; Chimie des Interactions Plasma Surface, Institut Matériaux, Université de Mons, Place du Parc 23, 7000 Mons, Belgium
Temperton, Robert ; MAX IV Laboratory, Lund University, 22100 Lund, Sweden
Annanouch, Fatima Ezahra ; Departament d'Enginyeria Electronica, Universitat Rovira i Virgili, Països Catalans 26, 43007 Tarragona, Spain
Mohammadpour, Amin ; Koç University Tüpraş Energy Center (KUTEM), Department of Chemistry, Koç University, 34450 Istanbul, Turkey
Malandra, Gabriel; Physics Department, University of Trieste, via A. Valerio 2, 34127 Trieste, Italy
Das, Arkaprava ; Chimie des Interactions Plasma Surface, Institut Matériaux, Université de Mons, Place du Parc 23, 7000 Mons, Belgium
Alagh, Aanchal; Departament d'Enginyeria Electronica, Universitat Rovira i Virgili, Països Catalans 26, 43007 Tarragona, Spain
Arbouch, Imane ; Université de Mons - UMONS > Faculté des Sciences > Service de Chimie des matériaux nouveaux
Montoisy, Loïc; Laboratory for Chemistry of Novel Materials, Université de Mons, Place du Parc 23, 7000 Mons, Belgium
Cornil, David ; Université de Mons - UMONS > Faculté des Sciences > Service de Chimie des matériaux nouveaux
Cornil, Jérôme ; Université de Mons - UMONS > Faculté des Sciences > Service de Chimie des matériaux nouveaux
Llobet, Eduard ; Departament d'Enginyeria Electronica, Universitat Rovira i Virgili, Països Catalans 26, 43007 Tarragona, Spain
Bittencourt, Carla ; Université de Mons - UMONS > Faculté des Sciences > Service de Chimie des Interactions Plasma-Surface
Operando Investigation of WS2 Gas Sensors: Simultaneous Ambient Pressure X-ray Photoelectron Spectroscopy and Electrical Characterization in Unveiling Sensing Mechanisms during Toxic Gas Exposure.
Research Institute for Materials Science and Engineering
Funders :
Svenska Forskningsrådet Formas Vetenskapsrådet Ministerio de Ciencia e Innovación European Regional Development Fund VINNOVA Fonds De La Recherche Scientifique - FNRS Helmholtz Association Institució Catalana de Recerca i Estudis Avançats
Funding text :
We acknowledge MAX IV Laboratory for time on Beamline HIPPIE under Proposal 20210978. Research conducted at MAX IV, a Swedish national user facility, is supported by the Swedish Research Council under contract 2018-07152, the Swedish Governmental Agency for Innovation Systems under contract 2018-04969, and Formas under contract 2019-02496. A.M. is supported by a grant from the Research Stay program, an activity of the HESEB project funded from the Initiative and Networking Fund of the Helmholtz Association. Funded in part by project no. PID2022-142451OB-C21, MICIN/AEI/10.13039/501100011033/and FEDER. E.L. is supported by the Catalan Institution for Research and Advanced Studies via the 2023 Edition of the ICREA Academia Award. The work in Mons has also been supported by the Fund for Scientific Research (FRS) of FNRS within the Consortium des Equipements de Calcul Intensif (CECI) under grant 2.5020.11 and by the Walloon Region (ZENOBE Tier-1 supercomputer) under grant 1117545. C.B and J.C. are, respectively, FNRS senior researcher and FNRS research director.
Staerz, A.; Weimar, U.; Barsan, N. Current State of Knowledge on the Metal Oxide Based Gas Sensing Mechanism. Sens. Actuators, B 2022, 358, 131531, 10.1016/j.snb.2022.131531
Donarelli, M.; Ottaviano, L. 2D Materials for Gas Sensing Applications: A Review on Graphene Oxide, MoS2, WS2 and Phosphorene. Sensors 2018, 18, 3638, 10.3390/s18113638
Dey, A. Semiconductor Metal Oxide Gas Sensors: A Review. Mater. Sci. Eng., B 2018, 229, 206- 217, 10.1016/j.mseb.2017.12.036
Wang, Q. H.; Kalantar-Zadeh, K.; Kis, A.; Coleman, J. N.; Strano, M. S. Electronics and Optoelectronics of Two-Dimensional Transition Metal Dichalcogenides. Nat. Nanotechnol. 2012, 7, 699- 712, 10.1038/nnano.2012.193
Yang, S.; Jiang, C.; Wei, S. Gas Sensing in 2D Materials. Appl. Phys. Rev. 2017, 4, 021304, 10.1063/1.4983310
Hozák, P.; Vorokhta, M. M.; Khalakhan, I.; Jarkovská, K.; Cibulková, J.; Fitl, P.; Vlček, J.; Fara, J.; Tomeček, D.; Novotný, M.; Vorokhta, M. M.; Lančok, J.; Matolínová, I.; Vrňata, M. New Insight into the Gas-Sensing Properties of CuOx Nanowires by Near-Ambient Pressure XPS. J. Phys. Chem. C 2019, 123, 29739- 29749, 10.1021/acs.jpcc.9b09124
Joshi, N.; Hayasaka, T.; Liu, Y.; Liu, H.; Oliveira, O. N.; Lin, L. A Review on Chemiresistive Room Temperature Gas Sensors Based on Metal Oxide Nanostructures, Graphene and 2D Transition Metal Dichalcogenides. Microchim. Acta 2018, 185, 213, 10.1007/s00604-018-2750-5
Yue, Q.; Shao, Z.; Chang, S.; Li, J. Adsorption of Gas Molecules on Monolayer MoS2 and Effect of Applied Electric Field. Nanoscale Res. Lett. 2013, 8, 425, 10.1186/1556-276x-8-425
Ou, J. Z.; Ge, W.; Carey, B.; Daeneke, T.; Rotbart, A.; Shan, W.; Wang, Y.; Fu, Z.; Chrimes, A. F.; Wlodarski, W.; Russo, S. P.; Li, Y. X.; Kalantar-zadeh, K. Physisorption-Based Charge Transfer in Two-Dimensional SnS 2 for Selective and Reversible NO 2 Gas Sensing. ACS Nano 2015, 9, 10313- 10323, 10.1021/acsnano.5b04343
Sharma, S.; Saini, R.; Gupta, G.; Late, D. J. Room-Temperature Highly Sensitive and Selective NH 3 Gas Sensor Using Vertically Aligned WS 2 Nanosheets. Nanotechnology 2023, 34, 045704, 10.1088/1361-6528/ac9c0c
Paul, R.; Das, B.; Ghosh, R. Novel Approaches towards Design of Metal Oxide Based Hetero-Structures for Room Temperature Gas Sensor and Its Sensing Mechanism: A Recent Progress. J. Alloys Compd. 2023, 941, 168943, 10.1016/j.jallcom.2023.168943
Wang, Z.; Bu, M.; Hu, N.; Zhao, L. An Overview on Room-Temperature Chemiresistor Gas Sensors Based on 2D Materials: Research Status and Challenge. Composites, Part B 2023, 248, 110378, 10.1016/j.compositesb.2022.110378
Li, Z.; Li, H.; Wu, Z.; Wang, M.; Luo, J.; Torun, H.; Hu, P.; Yang, C.; Grundmann, M.; Liu, X.; Fu, Y. Advances in Designs and Mechanisms of Semiconducting Metal Oxide Nanostructures for High-Precision Gas Sensors Operated at Room Temperature. Mater. Horiz. 2019, 6, 470- 506, 10.1039/C8MH01365A
Perrozzi, F.; Emamjomeh, S. M.; Paolucci, V.; Taglieri, G.; Ottaviano, L.; Cantalini, C. Thermal Stability of WS2 Flakes and Gas Sensing Properties of WS2/WO3 Composite to H2, NH3 and NO2. Sens. Actuators, B 2017, 243, 812- 822, 10.1016/j.snb.2016.12.069
Liu, D.; Tang, Z.; Zhang, Z. Comparative Study on NO2 and H2S Sensing Mechanisms of Gas Sensors Based on WS2 Nanosheets. Sens. Actuators, B 2020, 303, 127114, 10.1016/j.snb.2019.127114
Alagh, A.; Annanouch, F. E.; Umek, P.; Bittencourt, C.; Sierra-Castillo, A.; Haye, E.; Colomer, J. F.; Llobet, E. CVD Growth of Self-Assembled 2D and 1D WS2 Nanomaterials for the Ultrasensitive Detection of NO2. Sens. Actuators, B 2021, 326, 128813, 10.1016/j.snb.2020.128813
Han, Y.; Liu, Y.; Su, C.; Chen, X.; Li, B.; Jiang, W.; Zeng, M.; Hu, N.; Su, Y.; Zhou, Z.; Zhu, Z. G.; Yang, Z. Hierarchical WS2-WO3Nanohybrids with P-N Heterojunctions for NO2Detection. ACS Appl. Nano Mater. 2021, 4, 1626- 1634, 10.1021/acsanm.0c03094
Luo, H.; Shi, J.; Liu, C.; Chen, X.; Lv, W.; Zhou, Y.; Zeng, M.; Yang, J.; Wei, H.; Zhou, Z.; Su, Y.; Hu, N.; Yang, Z. Design of p-p Heterojunctions Based on CuO Decorated WS 2 Nanosheets for Sensitive NH 3 Gas Sensing at Room Temperature. Nanotechnology 2021, 32, 445502, 10.1088/1361-6528/ac1800
Li, X.; Yang, J.; Zhai, Y.; Li, X.; Quan, W.; Mehrez, J. A. A.; Wu, J.; Liu, X.; He, T.; Zeng, M.; Hu, N.; Li, B.; Wang, T.; Yang, Z. Ultraviolet Irradiation Stimulated NO2 Sensing Using WS2 Nanosheets Decorated with Au Nanoparticles. ACS Appl. Nano Mater. 2024, 7, 6293- 6304, 10.1021/acsanm.3c06222
Ko, K. Y.; Lee, S.; Park, K.; Kim, Y.; Woo, W. J.; Kim, D.; Song, J. G.; Park, J.; Kim, J. H.; Lee, Z.; Kim, H. High-Performance Gas Sensor Using a Large-Area WS2xSe2-2x Alloy for Low-Power Operation Wearable Applications. ACS Appl. Mater. Interfaces 2018, 10, 34163- 34171, 10.1021/acsami.8b10455
Cho, B.; Hahm, M. G.; Choi, M.; Yoon, J.; Kim, A. R.; Lee, Y.-J.; Park, S.-G.; Kwon, J.-D.; Kim, C. S.; Song, M.; Jeong, Y. Charge-Transfer-Based Gas Sensing Using Atomic-Layer MoS2. Sci. Rep. 2015, 5, 8052, 10.1038/srep08052
Feng, Y.; Zhang, K.; Li, H.; Wang, F.; Zhou, B.; Fang, M.; Wang, W.; Wei, J.; Wong, H. S. P. In Situ Visualization and Detection of Surface Potential Variation of Mono and Multilayer MoS 2 under Different Humidities Using Kelvin Probe Force Microscopy. Nanotechnology 2017, 28, 295705, 10.1088/1361-6528/aa7183
Lee, S. Y.; Kim, U. J.; Chung, J.; Nam, H.; Jeong, H. Y.; Han, G. H.; Kim, H.; Oh, H. M.; Lee, H.; Kim, H.; Roh, Y.-G.; Kim, J.; Hwang, S. W.; Park, Y.; Lee, Y. H. Large Work Function Modulation of Monolayer MoS 2 by Ambient Gases. ACS Nano 2016, 10, 6100- 6107, 10.1021/acsnano.6b01742
Late, D. J.; Huang, Y.-K.; Liu, B.; Acharya, J.; Shirodkar, S. N.; Luo, J.; Yan, A.; Charles, D.; Waghmare, U. V.; Dravid, V. P.; Rao, C. N. R. Sensing Behavior of Atomically Thin-Layered MoS 2 Transistors. ACS Nano 2013, 7, 4879- 4891, 10.1021/nn400026u
Jensen, I. J. T.; Ali, A.; Zeller, P.; Amati, M.; Schrade, M.; Vullum, P. E.; Muñiz, M. B.; Bisht, P.; Taniguchi, T.; Watanabe, K.; Mehta, B. R.; Gregoratti, L.; Belle, B. D. Direct Observation of Charge Transfer between NOx and Monolayer MoS2 by Operando Scanning Photoelectron Microscopy. ACS Appl. Nano Mater. 2021, 4, 3319- 3324, 10.1021/acsanm.1c00137
Hübner, M.; Koziej, D.; Bauer, M.; Barsan, N.; Kvashnina, K.; Rossell, M. D.; Weimar, U.; Grunwaldt, J. The Structure and Behavior of Platinum in SnO 2 -Based Sensors under Working Conditions. Angew. Chem., Int. Ed. 2011, 50, 2841- 2844, 10.1002/anie.201004499
Degler, D.; Pereira de Carvalho, H. W.; Kvashnina, K.; Grunwaldt, J.-D.; Weimar, U.; Barsan, N. Structure and Chemistry of Surface-Doped Pt:SnO 2 Gas Sensing Materials. RSC Adv. 2016, 6, 28149- 28155, 10.1039/C5RA26302F
Braglia, L.; Fracchia, M.; Ghigna, P.; Minguzzi, A.; Meroni, D.; Edla, R.; Vandichel, M.; Ahlberg, E.; Cerrato, G.; Torelli, P. Understanding Solid-Gas Reaction Mechanisms by Operando Soft X-Ray Absorption Spectroscopy at Ambient Pressure. J. Phys. Chem. C 2020, 124, 14202- 14212, 10.1021/acs.jpcc.0c02546
Zhou, C.; Yang, W.; Zhu, H. Mechanism of Charge Transfer and Its Impacts on Fermi-Level Pinning for Gas Molecules Adsorbed on Monolayer WS2. J. Chem. Phys. 2015, 142, 214704, 10.1063/1.4922049
Sun, L.; Zhang, X.; Liu, F.; Shen, Y.; Fan, X.; Zheng, S.; Thong, J. T. L.; Liu, Z.; Yang, S. A.; Yang, H. Y. Vacuum Level Dependent Photoluminescence in Chemical Vapor Deposition-Grown Monolayer MoS 2. Sci. Rep. 2017, 7, 16714- 16719, 10.1038/s41598-017-15577-1
Salmeron, M.; Schlogl, R. Ambient Pressure Photoelectron Spectroscopy: A New Tool for Surface Science and Nanotechnology. Surf. Sci. Rep. 2008, 63, 169- 199, 10.1016/j.surfrep.2008.01.001
Schnadt, J.; Knudsen, J.; Johansson, N. Present and New Frontiers in Materials Research by Ambient Pressure X-Ray Photoelectron Spectroscopy. J. Phys.: Condens. Matter 2020, 32, 413003, 10.1088/1361-648X/ab9565
Kucharski, S.; Ferrer, P.; Venturini, F.; Held, G.; Walton, A. S.; Byrne, C.; Covington, J. A.; Ayyala, S. K.; Beale, A. M.; Blackman, C. Direct in Situ Spectroscopic Evidence of the Crucial Role Played by Surface Oxygen Vacancies in the O 2 -Sensing Mechanism of SnO 2. Chem. Sci. 2022, 13, 6089- 6097, 10.1039/D2SC01738E
Junker, B.; Favaro, M.; Starr, D. E.; Hävecker, M.; Weimar, U.; Barsan, N. NAP-XPS as a New Tool for in-Situ Studies of SMOX Gas Sensors. J. Phys. D Appl. Phys. 2022, 55, 064002, 10.1088/1361-6463/ac3283
Vorokhta, M.; Khalakhan, I.; Vondráček, M.; Tomeček, D.; Vorokhta, M.; Marešová, E.; Nováková, J.; Vlček, J.; Fitl, P.; Novotný, M.; Hozák, P.; Lančok, J.; Vrňata, M.; Matolínová, I.; Matolín, V. Investigation of Gas Sensing Mechanism of SnO2 Based Chemiresistor Using near Ambient Pressure XPS. Surf. Sci. 2018, 677, 284- 290, 10.1016/j.susc.2018.08.003
Karagoz, B.; Tsyshevsky, R.; Trotochaud, L.; Yu, Y.; Karslıoğlu, O.; Blum, M.; Eichhorn, B.; Bluhm, H.; Kuklja, M. M.; Head, A. R. NO 2 Interactions with MoO 3 and CuO at Atmospherically Relevant Pressures. J. Phys. Chem. C 2021, 125, 16489- 16497, 10.1021/acs.jpcc.1c02517
Liu, L.; Wang, Y.; Guan, K.; Liu, Y.; Li, Y.; Sun, F.; Wang, X.; Zhang, C.; Feng, S.; Zhang, T. Influence of Oxygen Vacancies on the Performance of SnO2 Gas Sensing by Near-Ambient Pressure XPS Studies. Sens. Actuators, B 2023, 393, 134252, 10.1016/j.snb.2023.134252
Yuan, G.; Zhang, H.; Cheng, Y.; Zhong, Y.; Zhuo, Q.; Sun, X. Hollow Polyhedral ZnCo 2 O 4 Superstructure as an Ethanol Gas Sensor and Sensing Mechanism Study Using near Ambient Pressure XPS. J. Mater. Chem. C 2021, 9, 14278- 14285, 10.1039/D1TC03450B
Minezaki, T.; Krüger, P.; Annanouch, F. E.; Casanova-Cháfer, J.; Alagh, A.; Villar-Garcia, I. J.; Pérez-Dieste, V.; Llobet, E.; Bittencourt, C. Hydrogen Sensing Mechanism of WS2 Gas Sensors Analyzed with DFT and NAP-XPS. Sensors 2023, 23, 4623, 10.3390/s23104623
Blackman, C. Do We Need “Ionosorbed” Oxygen Species? (Or, “A Surface Conductivity Model of Gas Sensitivity in Metal Oxides Based on Variable Surface Oxygen Vacancy Concentration”). ACS Sens. 2021, 6, 3509- 3516, 10.1021/acssensors.1c01727
Alagh, A.; Annanouch, F. E.; YoussefBittencourt, K. A. C.; Güell, F.; Martínez-Alanis, P. R.; Reguant, M.; Llobet, E.; Llobet, E. PdO and PtO Loaded WS2 Boosts NO2 Gas Sensing Characteristics at Room Temperature. Sens. Actuators, B 2022, 364, 131905, 10.1016/j.snb.2022.131905
Annanouch, F. E.; Haddi, Z.; Vallejos, S.; Umek, P.; Guttmann, P.; Bittencourt, C.; Llobet, E. Aerosol-Assisted CVD-Grown WO 3 Nanoneedles Decorated with Copper Oxide Nanoparticles for the Selective and Humidity-Resilient Detection of H 2 S. ACS Appl. Mater. Interfaces 2015, 7, 6842- 6851, 10.1021/acsami.5b00411
Berkdemir, A.; Gutiérrez, H. R.; Botello-Méndez, A. R.; Perea-López, N.; Elías, A. L.; Chia, C.-I.; Wang, B.; Crespi, V. H.; López-Urías, F.; Charlier, J.-C.; Terrones, H.; Terrones, M. Identification of Individual and Few Layers of WS2 Using Raman Spectroscopy. Sci. Rep. 2013, 3, 1755, 10.1038/srep01755
Alagh, A.; Annanouch, F. E.; Umek, P.; Bittencourt, C.; Colomer, J. F.; Llobet, E. An Ultrasensitive Room-Temperature H2S Gas Sensor Based on 3D Assembly of Cu2O Decorated WS2 Nanomaterial. IEEE Sens. J. 2021, 21, 21212- 21220, 10.1109/JSEN.2021.3103925
Zhu, S.; Scardamaglia, M.; Kundsen, J.; Sankari, R.; Tarawneh, H.; Temperton, R.; Pickworth, L.; Cavalca, F.; Wang, C.; Tissot, H.; Weissenrieder, J. HIPPIE: A New Platform for Ambient-Pressure X-Ray Photoelectron Spectroscopy at the MAX IV Laboratory. J. Synchrotron Radiat. 2021, 28, 624- 636, 10.1107/s160057752100103x
Kresse, G.; Furthmüller, J. Efficient Iterative Schemes for Ab Initio Total-Energy Calculations Using a Plane-Wave Basis Set. Phys. Rev. B: Condens. Matter Mater. Phys. 1996, 54, 11169- 11186, 10.1103/PhysRevB.54.11169
Kresse, G.; Joubert, D. From Ultrasoft Pseudopotentials to the Projector Augmented-Wave Method. Phys. Rev. B: Condens. Matter Mater. Phys. 1999, 59, 1758- 1775, 10.1103/PhysRevB.59.1758
Perdew, J. P.; Burke, K.; Ernzerhof, M. Generalized Gradient Approximation Made Simple. Phys. Rev. Lett. 1996, 77, 3865- 3868, 10.1103/PhysRevLett.77.3865
Heyd, J.; Scuseria, G. E.; Ernzerhof, M. Hybrid Functionals Based on a Screened Coulomb Potential. J. Chem. Phys. 2003, 118, 8207- 8215, 10.1063/1.1564060
Grimme, S. Semiempirical GGA-type Density Functional Constructed with a Long-range Dispersion Correction. J. Comput. Chem. 2006, 27, 1787- 1799, 10.1002/jcc.20495
Neugebauer, J.; Scheffler, M. Adsorbate-Substrate and Adsorbate-Adsorbate Interactions of Na and K Adlayers on Al(111). Phys. Rev. B: Condens. Matter Mater. Phys. 1992, 46, 16067- 16080, 10.1103/PhysRevB.46.16067
Limas, N. G.; Manz, T. A. Introducing DDEC6 Atomic Population Analysis: Part 2. Computed Results for a Wide Range of Periodic and Nonperiodic Materials. RSC Adv. 2016, 6, 45727- 45747, 10.1039/C6RA05507A
Manz, T. A.; Limas, N. G. Introducing DDEC6 atomic population analysis: part 1. Charge partitioning theory and methodology. Charge Partitioning Theory and Methodology. RSC Adv. 2016, 6, 47771- 47801, 10.1039/C6RA04656H
Paolucci, V.; Emamjomeh, S. M.; Nardone, M.; Ottaviano, L.; Cantalini, C. Two-Step Exfoliation of WS2 for NO2, H2 and Humidity Sensing Applications. Nanomaterials 2019, 9, 1363, 10.3390/nano9101363
Li, H.; Huang, M.; Cao, G. Markedly Different Adsorption Behaviors of Gas Molecules on Defective Monolayer MoS 2: A First-Principles Study. Phys. Chem. Chem. Phys. 2016, 18, 15110- 15117, 10.1039/C6CP01362G
Head, A. R.; Bluhm, H. Ambient Pressure X-Ray Photoelectron Spectroscopy. In Encyclopedia of Interfacial Chemistry; Elsevier, 2018; pp 13- 27.
Zhang, Z.; Yates, J. T. Effect of Adsorbed Donor and Acceptor Molecules on Electron Stimulated Desorption: O 2/TiO 2 (110). J. Phys. Chem. Lett. 2010, 1, 2185- 2188, 10.1021/jz1007559
Zhang, Z.; Yates, J. T. Band Bending in Semiconductors: Chemical and Physical Consequences at Surfaces and Interfaces. Chem. Rev. 2012, 112, 5520- 5551, 10.1021/cr3000626