[en] We report on a series of bis-chromophoric compounds o2c, g2c, and r2c, afforded by linking two identical orange, green, or red perylene bisimide (PBI) units, respectively, through a calix[4]arene spacer unit. The PBI units are characterized by their increasing sterical demand from a planar conformation, which is orange (o) colored, via the slightly distorted greenish (g) colored form to the strongly distorted derivative, which is red (r) colored. An equilibrium between the two possible pinched cone conformations of the calix[4]arene unit is observed for all three compounds, with one conformation showing a p-stacked sandwich arrangement of the PBI units and the second revealing a nonstacked conformation. The amount of the p-stacked conformation in the equilibrium enhances upon decreasing the steric encumbering of the respective PBI unit as well as upon lowering the solvent polarity, thus increasing p-p interactions as well as electronic coupling between the PBI units. Accordingly, the presence of the p-stacked calix[4]arene conformation is most pronounced for compound o2c in methylcyclohexane (MCH), CCl4, and toluene, and to a lesser extent for compound g2c in MCH. Almost no p-stacked conformation is found for the most sterically demanding red system r2c. Molecular modeling studies at the force-field level show that the p-stacked conformations of the least sterically hindered dimmer o2c are lower in energy than those of the nonstacked ones in a nonpolar environment, whereas, in polar media, these stabilities are inversed. A quantitative analysis of the excited-state properties has been obtained by UV/vis absorption, steady-state and time-resolved emission, and femtosecond transient absorption spectroscopy. Global and target analysis of the femtosecond transient absorption data is used for probing ground-state populations with excited-state dynamics. The o2c molecules in the p-stacked conformation display a distinctly different decay behavior relative to the molecules in the nonstacked conformation. The former population decays via an excimer state, with the latter population decays through a charge separation process involving the calix[4]arene as a donor.
Disciplines :
Physics
Author, co-author :
Hippius, C.
van Stokkum, I.H.M.
Zangrando, E.
Williams, R.M.
Wykes, Michael
Beljonne, David ; Université de Mons > Faculté de Médecine et de Pharmacie > Chimie générale, organique et biomédicale ; Université de Mons > Faculté des Sciences > Chimie des matériaux nouveaux
Würthner, F.
Language :
English
Title :
Ground- and Excited-State Pinched Cone Equilibria in Calix[4]arenes Bearing Two Perylene Bisimide Dyes
Publication date :
18 September 2008
Journal title :
Journal of Physical Chemistry. C, Nanomaterials and interfaces
ISSN :
1932-7447
Publisher :
American Chemical Society, Washington, United States - District of Columbia
Volume :
112
Issue :
37
Pages :
14626-14638
Peer reviewed :
Peer Reviewed verified by ORBi
Research unit :
S817 - Chimie des matériaux nouveaux
Research institute :
R400 - Institut de Recherche en Science et Ingénierie des Matériaux
(e) Calixarenes in Action; Mandolini, L., Ungaro, R., Eds.; Imperial College Press: London, 2000.
Kenis, P. J. A.; Noordman, O. F. J.; Houbrechts, S.; van Hummel, G. J.; Harkema, S.; van Veggel, F. C. J. M.; Clays, K.; Engbersen, J. F. J.; Persoons, A.; van Hulst, N. F.; Reinhoudt, D. N. J. Am. Chem. Soc. 1998, 120, 7875-7883.
(a) Zhao, B.-T.; Blesa, M.-J.; Mercier, N.; Le Derf, F.; Sallé, M. J. Org. Chem. 2005, 70, 6254-6257.
(b) Yu, H.-h.; Pullen, A. E.; Büschel, M. G.; Swager, T. M. Angew. Chem., Int. Ed. 2004, 43, 3700-3703.
(c) Yu, H.-h.; Xu, B.; Swager, T. M. J. Am. Chem. Soc. 2003, 125, 1142-1143.
(d) Scherlis, D. A.; Marzari, N. J. Am. Chem. Soc. 2005, 127, 3207-3212.
(a) Schazmann, B.; Alhashimy, N.; Diamond, D. J. Am. Chem. Soc. 2006, 128, 8607-8614.
(c) Lee, S. H.; Kim, S. H.; Kim, S. K.; Jung, J. H.; Kim, J. S. J. Org. Chem. 2005, 70, 9288-9295.
(d) Leray, I.; Lefevre, J.-P.; Delouis, J.-F.; Delaire, J.; Valeur, B. Chem.-Eur. J. 2001, 7, 4590-4598.
(e) van der Veen, N.; Flink, S.; Deij, M. A.; Egberink, R. J. M.; van Veggel, F. C. J. M.; Reinhoudt, D. N. J. Am. Chem. Soc. 2000, 122, 6112-6113.
(f) Ji, H.-F.; Dabestani, R.; Brown, G. M.; Sachleben, R. A. Chem. Commun. 2000, 833-834.
(g) Beer, P. D.; Timoshenko, V.; Maestri, M.; Passaniti, P.; Balzani, V. Chem. Commun. 1999, 1755-1756.
(h) Jin, T.; Monde, K. Chem. Commun. 1998, 1357-1358.
(i) Aoki, I.; Sakaki, T.; Shinkai, S. J. Chem. Soc., Chem. Commun. 1992, 730-732.
(j) Jin, T.; Ichikawa, K.; Koyama, T. J. Chem. Soc., Chem. Commun. 1992, 499-501.
(a) Araki, K.; Iwamoto, K.; Shinkai, S.; Matsuda, T. Chem. Lett. 1989, 1747-1750.
(b) Iwamoto, K.; Araki, K.; Shinkai, S. J. Org. Chem. 1991, 56, 4955-4962.
(a) Conner, M.; Janout, V.; Regen, S. L. J. Am. Chem. Soc. 1991, 113, 9670-9671.
(b) Scheerder, J.; Vreekamp, R. H.; Engbersen, J. F. J.; Verboom, W.; van Duynhoven, J. P. M.; Reinhoudt, D. N. J. Org. Chem. 1996, 61, 3476-3481.
(c) Grootenhuis, P. D. J.; Kollman, P. A.; Groenen, L. C.; Reinhoudt, D. N.; van Hummel, G. J.; Ugozzoli, F.; Andreetti, G. D. J. Am. Chem. Soc. 1990, 112, 4165-4176.
(d) Harada, T.; Rudzinski, J. M.; Osawa, E.; Shinkai, S. Tetrahedron Lett. 1993, 49, 5941-5954.
(a) Arduini, A.; Fabbi, M.; Mirone, L.; Pochini, A.; Secchi, A.; Ungaro, R. J. Org. Chem. 1995, 69, 1454-1457.
(b) Ikeda, A.; Tsuzuki, K.; Shinkai, S. J. Chem. Soc., Perkin Trans. 2 1994, 2073-2080.
(c) Timmerman, P.; Nierop, K. G. A.; Brinks, E. A.; Verboom, W.; van Veggel, F. C.; J, M.; van Hoorn, W. P.; Reinhoudt, D. N. Chem. - Eur. J. 1995, 1, 132-143.
(d) Matoušek, J.; Kulhánek, P.; Čajan, M.; Koča, J. J. Phys. Chem. A 2006, 110, 861-867.
(b) Supramolecular Dye Chemistry; Würthner, F., Ed.; Topics in Current Chemistry 258, Springer-Verlag: Berlin, 2005.
(a) Hoeben, F. J. M.; Jonkheijm, P.; Meijer, E. W.; Schenning, A. P. H. J. Chem. Rev. 2005, 105, 1491-1546.
(b) Simpson, C. D.; Wu, J.; Watson, M. D.; Müllen, K. J. Mater. Chem. 2004, 14, 494-504.
(c) Würthner, F.; Thalacker, C.; Diele, S.; Tschierske, C. Chem.-Eur. J. 2001, 7, 2245-2253.
You, C.-C.; Dobrawa, R.; Saha-Möller, C. R.; Würthner, F. Top. Curr. Chem. 2005, 258, 39-82.
(a) Ford, W. E.; Kamat, P. V. J. Phys. Chem. 1987, 91, 6373-6380.
(b) Gvishi, R.; Reisfeld, R.; Burshtein, Z. Chem. Phys. Lett. 1993, 213, 338-344.
(a) De Schryver, F. C.; Vosch, T.; Cotlet, M.; Van der Auweraer, M.; Müllen, K.; Hofkens, J. Acc Chem. Res. 2005, 38, 514-522.
(b) Sautter, A.; Kaletas, B. K.; Schmid, D. G.; Dobrawa, R.; Zimine, M.; Jung, G.; Van Stokkum, I. H. M.; De Cola, L.; Williams, R. M.; Würthner, F. J. Am. Chem. Soc. 2005, 127, 6719-6729.
(a) O'Neil, M. P.; Niemczyk, M. P.; Svec, W. A.; Gosztola, D.; Gaines, G. L., Ill; Wasielewski, M. R. Science 1992, 257, 63-65.
(b) Beckers, E. H. A.; Meskers, S. C. J.; Schenning, A. P. H. J.; Chen, Z.; Würthner, F.; Janssen, R. A. J. J. Phys. Chem. A 2004, 108, 6933-6937.
(a) Malenfant, P. R. L.; Dimitrakopoulos, C. D.; Gelorme, J. D.; Kosar, L. L.; Graham, T. O. Appl. Phys. Lett. 2002, 2517-2519.
(b) Dimitrakopoulos, C. D.; Malenfant, P. R. L. Adv. Mater. 2002, 14, 99-117.
(c) Jones, B. A.; Ahrens, M. J.; Yoon, M.-H.; Facchetti, A.; Marks, T. J.; Wasielewski, M. R. Angew. Chem., Int. Ed. 2004, 116, 6363-6366.
(d) Würthner, F.; Schmidt, R. ChemPhysChem 2006, 7, 793-797.
(a) Tang, C. W. Appl. Phys. Lett. 1986, 48, 183-185.
(b) Schmidt-Mende, L.; Fechtenkötter, A.; Müllen, K.; Moons, E.; Friend, R. H.; MacKenzie, J. D. Science 2001, 293, 1119-1122.
(c) Breeze, A. J.; Salomon, A.; Ginley, D. S.; Gregg, B. A.; Tillmann, H.; Hörhold, H.-H. Appl. Phys. Lett. 2002, 81, 3085-3087.
Seybold, G.; Stange, A. (BASF AG), Ger. Pat. DE 35 45 004, 1987 (Chem. Abstr. 1988, 108, 77134c).
Zhao, Y.; Wasielewski, M. R. Tetrahedron Lett. 1999, 40, 7047-7050.
Langhals, H. Heterocycles 1995, 40, 477-500.
For examples with rigid spacer units containing PBIs, see (a) Giaimo, J. M.; Gusev, A. V.; Wasielewski, M. R J. Am. Chem. Soc. 2002, 124, 8530-8531.
(b) Ahrens, M. J.; Sinks, L. E.; Rybtchinski, B.; Liu, W.; Jones, B. A.; Giaimo, J. M.; Gusev, A. V.; Goshe, A. J.; Tiede, D. M.; Wasielewski, M. R. J. Am. Chem. Soc. 2004, 126, 8284-8294.
(c) Rybtchinski, B.; Sinks, L. E.; Wasielewski, M. R. J. Phys. Chem. A 2004, 108, 7497-7505.
(d) Van der Boom, T.; Hayes, R. T.; Zhao, Y.; Bushard, P. J.; Weiss, E. A.; Wasielewski, M. R. J. Am. Chem. Soc. 2002, 124, 9582-9590.
(e) Giaimo, J. M.; Lockard, J. V.; Sinks, L. E.; Scott, A. M.; Wilson, T. M.; Wasielewski, M. R. J. Phys. Chem. A 2008, 112, 2322-2330.
For other bis-chromophoric systems, see (a) Jokic, D.; Asfari, Z.; Weiss, J. Org. Lett. 2002, 4, 2129-2132.
(b) Yu, H.-H.; Pullen, A. E.; Büschel, M. G.; Swager, T. M. Angew. Chem., Int. Ed. 2004, 43, 3700-3703.
(c) Kadish, K. M.; Frémond, L.; Ou, Z.; Shao, J.; Shi, C.; Anson, F. C.; Burdet, F.; Gros, C. P.; Barbe, J.-M.; Guilard, R. J. Am. Chem. Soc. 2005, 127, 5625-5631.
(d) Scherlis, A. S.; Marzari, N. J. Am. Chem. Soc. 2005, 127, 3207-3212.
(e) Pognon, G.; Boudon, C.; Schenk, K. J.; Bonin, M.; Bach, B.; Weiss, J. J. Am. Chem. Soc. 2006, 128, 3488-3489.
(f) Van der Boom, T.; Evmenenko, G.; Dutta, P.; Wasielewski, M. R. Chem. Mater. 2003, 15, 4068-4074.
(a) Neuteboom, E. E.; Meskers, S. C. J.; Meijer, E. W.; Janssen, R. A. J. Macromol. Chem. Phys. 2004, 205, 217-222.
(b) Wang, W.; Wan, W.; Zhou, H.-H.; Niu, S.; Li, A. D. Q. J. Am. Chem. Soc. 2003, 125, 5248-5249.
(c) Wang, W.; Li, L.-S.; Helms, G.; Zhou, H.-H.; Li, A. D. Q. J. Am. Chem. Soc. 2003, 125, 1120-1121.
(d) Hernando, J.; De Witte, P. A. J.; Van Dijk, E. M. H. P.; Korterik, J.; Nolte, R. J. M.; Rowan, A. E.; Garcia-Parajó, M. F.; Van Hülst, N. F. Angew. Chem., Int. Ed. 2004, 43, 4045-4049.
(e) Staab, H. A.; Riegler, N.; Diederich, F.; Krieger, C.; Schweitzer, D. Chem. Ber. 1984, 117, 246-259.
(f) Langhals, H.; Ismael, R. Eur. J. Org. Chem. 1998, 1915-1917.
(a) Hippius, C.; Schlosser, F.; Vysotsky, M. O.; Böhmer, V.; Würthner, F. J. Am. Chem. Soc. 2006, 128, 3870-3871.
(b) Vysotsky, M. O.; Böhmer, V.; Würthner, F.; You, C.-C.; Rissanen, K. Org. Lett. 2002, 4, 2901-2904.
(c) Hippius, C.; van Stokkum, I. H. M.; Zangrando, E.; Williams, R. M.; Würthner, F. J. Phys. Chem. C 2007, 111, 13988-13996.
(d) Hippius, C.; van Stokkum, I. H. M.; Gsänger, M.; Groeneveld, M. M.; Williams, R. M.; Würthner, F. J. Phys. Chem. C 2008, 112, 2476-2486.
(b) Osswald, P.; Würthner, F. Chem-Eur. J. 2007, 13, 7395-7409.
Measurements were performed in the range from 273 to 334 K for compounds o2c and g2c, and in the range from 273 to 325 K for compound r2c. Because of precipitation of the compounds in MCH, CCl4 was instead chosen as the solvent. As a consequence, the accessible lower temperature range is limited by the melting point of CCl4.
Osswald, P.; Würthner, F. J. Am. Chem. Soc. 2007, 129, 14319-14326.
Kasha, M.; Rawls, H. R.; El-Bayoumi, M. A. Pure Appl. Chem. 1965, 11, 371-392.
(a) Electronic Processes in Organic Crystals and Polymers; Pope, M.; Swenberg, C. E.; Oxford University Press: New York, 1999.
(b) Kazmaier, P. M.; Hoffmann, R. H. J. Am. Chem. Soc. 1994, 116, 9684-9691.
For examples containing PBI dyes, see refs 21, 23f, and (a) Li, X.; Sinks, L. E.; Rybtchinski, B.; Wasielewski, M. R J. Am. Chem. Soc. 2004, 126, 10810-10811.
(c) Li, A. D. Q.; Wang, W.; Wang, L.-Q. Chem.-Eur. J. 2003, 9, 4594-4601.
Würthner, F.; Ahmed, S.; Thalacker, C.; Debaerdemaeker, T. Chem - Eur. J. 2002, 20, 4742-4750.
Chen, Z.; Stepanenko, V.; Dehm, V.; Prins, P.; Siebbeles, L. D. A.; Seibt, J.; Marquetand, P.; Engel, V.; Würthner, F. Chem. - Eur. J. 2007, 13, 436-449.
Note that CCl4 was chosen as a solvent because precipitation of compounds o2c and g2c is observed after approximately 30 min for the solution of both o2c and g2c in MCH, respectively.
Notably, all UV/vis absorption spectra show a small blue shift with increasing temperature, and a slightly reduced peak intensity for the absorption maximum. These spectral changes are observed for both the monomelic and dimeric series as well as for the respective reference compounds without calix[4]arene substitution (see Figures S12 and S13 in the Supporting Information). Hence, the observed effects appear to be independent of the respective PBI unit as well as the calix[4]arene substitution on the chromophore. We attribute the hypsochromic shift to a decrease of the dielectric constant of CCl4 with increasing temperature,35 and the reduced absorption coefficient is attributed to the broadening of the absorption band due to the population of more conformations at higher temperature.
This is supported by the fact that, for compound oref, a hypsochromic shift of the band maximum from 523 nm in CCl4 (with a relative permittivity of ε@293 K = 2.24) to 517 nm (ε@293 K = 2.02) in MCH is observed. Hence, lowering the solvent polarity of Δε ≈ 0.2 leads to a spectral shift of about 6 nm. For the permittivity of CCl 4 at 343 K, a value of ε = 2.14 is given, and, accordingly, an increase of temperature between 293 and 343 K leads to a reduced permittivity of Δε ≈ 0.1, resulting in a hypsochromic shift of the band maximum of 3 nm from 523 nm (T = 293 K) to 520 nm (T = 343 K). Similar behavior is also found for compound gref (with 17 nm shift upon solvent change with Δε RS 0.2, and with 8 nm shift upon temperature change with Δε ≈ 0.1) and compound rref (with 11 nm shift upon solvent change with Δε ≈ 0.2, and with 5 nm shift upon temperature change with Δε ≈ 0.1). For temperature-dependent permittivity values, see CRC Handbook of Chemistry and Physics, 76th ed.; Lide, D. R., Ed.; CRC Press: Boca Raton, FL, 1995.
Note, that because of a very efficient photoinduced electron transfer process (kCT = 3.1 × 1010 s-1 in CH2Cl2) between the electron-poor orange PBI unit and the electron-rich calix[4]arene substituent, the quantum yield of the orange PBI chromophore is strongly quenched for both calix[4]arenesubstituted compounds o2c and oc, respectively, already for the non-aggregate species.24c In contrast, the orange reference compound oref reveals quantum yields of almost unity in all five solvents (see Table 1).
(a) Case, D. A.; Darden, T. A.; Cheatham, T. E., III; Simmerling, C. L.; Wang, J.; Duke, R. E.; Luo, R.; Merz, K. M.; Pearlman, D. A.; Crowley, M.; Walker, R. C.; Zhang, W.; Wang, B.; Hayik, S.; Roitberg, A.; Seabra, G.; Wong, K. F.; Paesani, F.; Wu, X.; Brozell, S.; Tsui, V.; Gohlke, H.; Yang, L.; Tan, C.; Mongan, J.; Hornak, V.; Cui, G.; Beroza, P.; Mathews, D. H.; Schafmeister, C.; Ross, W. S.; Kollman, P. A. AMBER 9; University of California: San Francisco, 2006.
(b) Pearlman, D. A.; Case, D. A.; Caldwell, J. W.; Ross, W. S.; Cheatham, T. E., 10; De Bolt, S.; Ferguson, D.; Seibel, G.; Kollman, P. Comput. Phys. Commun. 1995, 91, 1-41.
(c) Case, D. A.; Cheatham, T.; Darden, T.; Gohlke, H.; Luo, R., Jr.; Onufriev, A.; Simmerling, C.; Wang, B.; Woods, R. J. J. Comput. Chem. 2005, 26, 1668-1688.
Wang, J.; Wolf, R. M.; Caldwell, J. W.; Kollman, P. A.; Case, D. A. J. Comput. Chem. 2004, 25, 1157-1174.
Jakalian, A.; Bush, B. L.; Jack, D. B.; Bayly, C. I. J. Comput. Chem. 2000, 21, 132-146.
Ridley, J.; Zerner, M. C. Theor. Chim. Acta 1973, 32, 111.
Hennebicq, E.; Pourtois, G.; Scholes, G. D.; Herz, L. M.; Russell, D. M.; Silva, C.; Setayesh, S.; Grimsdale, A. C.; Müllen, K.; Brédas, J.-L.; Beljonne, D. J. Am. Chem. Soc. 2005, 127, 4744.
Longer-lived excited states due to PBI-excimer formation have been reported in the literature; see (a) Katoh, R.; Sinha, S.; Murata, S.; Tachiya, M. J. Photochem. Photobiol., A 2001, 145, 23-34.
(b) Gómez, U.; Leonhardt, M.; Port, H.; Wolf, H. C. Chem. Phys. Lett. 1997, 268, 1-6.
(c) Puech, K.; Fröb, H.; Leo, K. J. Lumin. 1997, 72-74, 524-525.
For all lifetimes determined for compounds g2c, gc, and gref, biexponential decays are observed. Accordingly, additional small components of ca. 0.5 ns are found for each compound independent of the solvent polarity and of the calix[4]arene substitution of the chromophore. The latter components are thus considered to be independent of the calix[4]arene substitution of the dye unit and are inherent to the green PBI chromophore itself (for details refer to Table 3).
Ford, W. E.; Hiratsuka, H.; Kamat, P. V. J. Phys. Chem. 1989, 93, 6692-6696.
Solutions of o2c and oc in the lowest polarity solvent MCH could not be measured due to precipitation of the compounds.
(a) Lukas, A. S.; Zhao, Y.; Miller, S. E.; Wasielewski, M. R. J. Phys. Chem. B 2002, 106, 1299-1306.
(b) Shibano, Y.; Umeyama, T.; Matano, Y.; Tkachenko, N. V.; Lemmetyinen, H.; Imahori, H. Org. Lett. 2006, 8, 4425-4428.
(a) van Stokkum, I. H. M.; Larsen, D. S.; van Grondelle, R. Biochim. Biophys. Acta 2004, 1657, 82-104.
(b) van Stokkum, I. H. M.; Lozier, R. H. J. Phys. Chem. B 2002, 106, 3477-3485.
(c) Mullen, K. M.; van Stokkum, I. H. M. J. Stat. Software 2007, 18 (3). URL: http://www.jstatsoft.org/v18/i03/.
(d) Global and target analysis can be performed with, e.g., the R package TIMP; see http://cran.r-project.org/doc/packages/TIMP.pdf.
(a) Schweitzer, G.; Gronheid, R.; Jordens, S.; Lor, M.; De Beider, G.; Weil, T.; Reuther, E.; Müllen, K.; De Schryver, F. C. J. Phys. Chem. A 2003, 107, 3199-3207.
(b) De Beider, G.; Jordens, S.; Lor, M.; Schweitzer, G.; De, R.; Weil, T.; Herrmann, A.; Wiesler, U. K.; Müllen, K.; De Schryver, F. C. J. Photochem. Photobiol. A 2001, 145, 61-70.
An excited-state charge transfer process resulting in a charge transfer state of the jr-stacked form could not be unambiguously confirmed by global and target analysis.
Veldman, D.; Chopin, S. M. A.; Meskers, S. C. J.; Groeneveld, M. M.; Williams, R. M.; Janssen, R. A. J. J. Phys. Chem. A 2008, 112, 5846.