[en] Carbon nitrides with layered structures and scalable syntheses have emerged as potential anode choices for the commercialization of sodium-ion batteries. However, the low crystallinity of materials synthesized through traditional thermal condensation leads to insufficient conductivity and poor cycling stability, which significantly hamper their practical applications. Herein, a facile salt-covering method was proposed for the synthesis of highly ordered crystalline C3N4-based all-carbon nanocomposites. The sealing environment created by this strategy leads to the formation of poly(heptazine imide) (PHI), the crystalline phase of C3N4, with extended π-conjugation and a fully condensed nanosheet structure. Meanwhile, theoretical calculations reveal the high crystallinity of C3N4 significantly reduces the energy barrier for electron transition and enables the generation of efficient charge transfer channels at the heterogeneous interface between carbon and C3N4. Accordingly, such nanocomposites present ultrastable cycling performances over 5000 cycles, with a high reversible capacity of 245.1 mAh g-1 at 2 A g-1 delivered. More importantly, they also exhibit an outstanding low-temperature capacity of 196.6 mAh g-1 at -20 °C. This work offers opportunities for the energy storage use of C3N4 and provides some clues for developing long-life and high-capacity anodes operated under extreme conditions.
Disciplines :
Chemistry
Author, co-author :
Wang, Ying; School of Metallurgy, Northeastern University, Shenyang 110819, P. R. China ; State Key Laboratory of Rolling and Automation, Northeastern University, Shenyang 110819, Liaoning, P. R. China ; Foshan Graduate School of Innovation, Northeastern University, Foshan 528311, Guangdong, P. R. China
Li, Hongguan; School of Metallurgy, Northeastern University, Shenyang 110819, P. R. China ; State Key Laboratory of Rolling and Automation, Northeastern University, Shenyang 110819, Liaoning, P. R. China ; Foshan Graduate School of Innovation, Northeastern University, Foshan 528311, Guangdong, P. R. China
Zhai, Boyin; Department of Chemistry, College of Science, Northeastern University, Shenyang 110819, Liaoning, P. R. China
Li, Xinglong; Department of Chemistry, College of Science, Northeastern University, Shenyang 110819, Liaoning, P. R. China
Niu, Ping ; School of Metallurgy, Northeastern University, Shenyang 110819, P. R. China ; State Key Laboratory of Rolling and Automation, Northeastern University, Shenyang 110819, Liaoning, P. R. China ; Foshan Graduate School of Innovation, Northeastern University, Foshan 528311, Guangdong, P. R. China
ODENT, Jérémy ; Université de Mons - UMONS > Faculté des Sciences > Service des Matériaux Polymères et Composites
Wang, Shulan; Department of Chemistry, College of Science, Northeastern University, Shenyang 110819, Liaoning, P. R. China
Li, Li ; School of Metallurgy, Northeastern University, Shenyang 110819, P. R. China ; State Key Laboratory of Rolling and Automation, Northeastern University, Shenyang 110819, Liaoning, P. R. China ; Foshan Graduate School of Innovation, Northeastern University, Foshan 528311, Guangdong, P. R. China
Language :
English
Title :
Highly Crystalline Poly(heptazine imide)-Based Carbonaceous Anodes for Ultralong Lifespan and Low-Temperature Sodium-Ion Batteries.
Basic and Applied Basic Research Foundation of Guangdong Province Fundamental Research Funds for the Central Universities National Natural Science Foundation of China Liaoning Province
Funding text :
This work was supported by the National Natural Science Foundation of China (22378055), Applied Basic Research Program of Liaoning (2022JH2/101300200), Guangdong Basic and Applied Basic Research Foundation (2022A1515140188), Fundamental Research Funds for the Central Universities (N2002005, N2125004, N2225044, and N232410019). We also appreciate the instrumental analysis from Analytical and Testing Center, Northeastern University.
Meng, W.; Dang, Z.; Li, D.; Jiang, L. Long-cycle-life sodium-ion battery fabrication via a unique chemical bonding interface mechanism. Adv. Mater. 2023, 35, 2301376, 10.1002/adma.202301376
Liu, H.; Cai, X.; Zhi, X.; Di, S.; Zhai, B.; Li, H.; Wang, S.; Li, L. An amorphous anode for proton battery. Nano-Micro Lett. 2023, 15, 24, 10.1007/s40820-022-00987-2
Zhou, X.; Zhang, Q.; Zhu, Z.; Cai, Y.; Li, H.; Li, F. Anion-reinforced solvation for a gradient inorganic-rich interphase enables high-rate and stable sodium batteries. Angew. Chem., Int. Ed. 2022, 61, e202205045, 10.1002/anie.202205045
Wang, Y.; Li, H.; Chen, S.; Zhai, B.; Di, S.; Gao, G.; Lee, S.; Chun, S.; Wang, S.; Li, L. An ultralong-life SnS-based anode through phosphate-induced structural regulation for high-performance sodium ion batteries. Science Bulletin 2022, 67, 2085- 2095, 10.1016/j.scib.2022.09.021
Di, S.; Li, H.; Zhai, B.; Zhi, X.; Niu, P.; Wang, S.; Li, L. A crystalline carbon nitride-based separator for high-performance lithium metal batteries. Proc. Natl. Acad. Sci. U. S. A. 2023, 120, e2302375120, 10.1073/pnas.2302375120
Ren, M.; Zhao, S.; Gao, S.; Zhang, T.; Hou, M.; Zhang, W.; Feng, K.; Zhong, J.; Hua, W.; Indris, S.; Zhang, K.; Chen, J.; Li, F. Homeostatic solid solution in layered transition-metal oxide cathodes of sodium-ion batteries. J. Am. Chem. Soc. 2023, 145, 224- 233, 10.1021/jacs.2c09725
Yin, B.; Liang, S.; Yu, D.; Cheng, B.; Egun, I. L.; Lin, J.; Xie, X.; Shao, H.; He, H.; Pan, A. Increasing accessible subsurface to improving rate capability and cycling stability of sodium-ion batteries. Adv. Mater. 2021, 33, 2100808, 10.1002/adma.202100808
Li, H.; Di, S.; Niu, P.; Wang, S.; Wang, J.; Li, L. A durable half-metallic diatomic catalyst for efficient oxygen reduction. Energy Environ. Sci. 2022, 15, 1601- 1610, 10.1039/D1EE03194E
Dou, X.; Hasa, I.; Saurel, D.; Vaalma, C.; Wu, L.; Buchholz, D.; Bresser, D.; Komaba, S.; Passerini, S. Hard carbons for sodium-ion batteries: Structure, analysis, sustainability, and electrochemistry. Mater. Today 2019, 23, 87- 104, 10.1016/j.mattod.2018.12.040
Fang, H.; Gao, S.; Ren, M.; Huang, Y.; Cheng, F.; Chen, J.; Li, F. Dual-function presodiation with sodium diphenyl ketone towards ultra-stable hard carbon anodes for sodium-ion batteries. Angew. Chem., Int. Ed. 2023, 62, e202214717, 10.1002/anie.202214717
Wang, Y.; Liu, L.; Ma, T.; Zhang, Y.; Huang, H. 2D graphitic carbon nitride for energy conversion and storage. Adv. Funct. Mater. 2021, 31, 2102540, 10.1002/adfm.202102540
Besharat, F.; Ahmadpoor, F.; Nezafat, Z.; Nasrollahzadeh, M.; Manwar, N. R.; Fornasiero, P.; Gawande, M. B. Advances in carbon nitride-based materials and their electrocatalytic applications. ACS Catal. 2022, 12, 5605- 5660, 10.1021/acscatal.1c05728
Lu, C.; Chen, X. Nanostructure engineering of graphitic carbon nitride for electrochemical applications. ACS Nano 2021, 15, 18777- 18793, 10.1021/acsnano.1c06454
Zhao, D.; Zhang, Z.; Ren, J.; Xu, Y.; Xu, X.; Zhou, J.; Gao, F.; Tang, H.; Liu, S.; Wang, Z.; Wang, D.; Wu, Y.; Liu, X.; Zhang, Y. Fe2VO4 nanoparticles on rGO as anode material for high-rate and durable lithium and sodium ion batteries. Chem. Eng. J. 2023, 451, 138882, 10.1016/j.cej.2022.138882
Kim, J. W.; Augustyn, V.; Dunn, B. The effect of crystallinity on the rapid pseudocapacitive response of Nb2O5. Adv. Energy Mater. 2012, 2, 141- 148, 10.1002/aenm.201100494
Yuan, Y.; Chen, Z.; Yu, H.; Zhang, X.; Liu, T.; Xia, M.; Zheng, R.; Shui, M.; Shu, J. Heteroatom-doped carbon-based materials for lithium and sodium ion batteries. Energy Storage Mater. 2020, 32, 65- 90, 10.1016/j.ensm.2020.07.027
Chen, W.; Wan, M.; Liu, Q.; Xiong, X.; Yu, F.; Huang, Y. Heteroatom-doped carbon materials: Synthesis, mechanism, and application for sodium-ion batteries. Small Methods 2019, 3, 1800323, 10.1002/smtd.201800323
Wang, Z.; Jin, B.; Peng, J.; Su, W.; Zhang, K.; Hu, X.; Wang, G.; Park, J. H. Engineered polymeric carbon nitride additive for energy storage materials: A review. Adv. Funct. Mater. 2021, 31, 2102300, 10.1002/adfm.202102300
Huo, T.; Deng, Q.; Yu, F.; Wang, G.; Xia, Y.; Li, H.; Hou, W. Ion-induced synthesis of crystalline carbon nitride ultrathin nanosheets from mesoporous melon for efficient photocatalytic hydrogen evolution with synchronous highly selective oxidation of benzyl alcohol. ACS Appl. Mater. Interfaces 2022, 14, 13419- 13430, 10.1021/acsami.2c01522
Zhai, B.; Li, H.; Gao, G.; Wang, Y.; Niu, P.; Wang, S.; Li, L. A crystalline carbon nitride based near-infrared active photocatalyst. Adv. Funct. Mater. 2022, 32, 2207375, 10.1002/adfm.202207375
Zhang, Q.; Chu, Y.-C.; Liu, Z.; Hong, M.; Fang, W.; Wu, X.-P.; Gong, X.-Q.; Chen, Z. Construction of triazine-heptazine-based carbon nitride heterojunctions boosts the selective photocatalytic C-C bond cleavage of lignin models. Appl. Catal., B 2023, 331, 122688, 10.1016/j.apcatb.2023.122688
Zhang, G.; Xu, Y.; Liu, G.; Li, Y.; He, C.; Ren, X.; Zhang, P.; Mi, H. Pyrimidine donor induced built-in electric field between melon chains in crystalline carbon nitride to facilitate excitons dissociation. Chin. Chem. Lett. 2023, 34, 107383, 10.1016/j.cclet.2022.03.106
Wang, W.; Shu, Z.; Liao, Z.; Zhou, J.; Meng, D.; Li, T.; Zhao, Z.; Xu, L. Sustainable one-step synthesis of nanostructured potassium poly(heptazine imide) for highly boosted photocatalytic hydrogen evolution. Chem. Eng. J. 2021, 424, 130332, 10.1016/j.cej.2021.130332
Yu, S.; Zhao, P.; Yang, X.; Li, Q.; Mohamed, B. A.; Saad, J. M.; Zhang, Y.; Zhou, H. Low-temperature hydrothermal carbonization of pectin enabled by high pressure. J. Anal. Appl. Pyrol. 2022, 166, 105627, 10.1016/j.jaap.2022.105627
Chen, G.; Zhou, M.; Catanach, J.; Liaw, T.; Fei, L.; Deng, S.; Luo, H. Solvothermal route based in situ carbonization to Fe3O4@C as anode material for lithium ion battery. Nano Energy 2014, 8, 126- 132, 10.1016/j.nanoen.2014.06.005
Zhao, R.; Qian, Z.; Liu, Z.; Zhao, D.; Hui, X.; Jiang, G.; Wang, C.; Yin, L. Molecular-level heterostructures assembled from layered black phosphorene and Ti3C2 MXene as superior anodes for high-performance sodium ion batteries. Nano Energy 2019, 65, 104037, 10.1016/j.nanoen.2019.104037
Tang, J.-Y.; Kong, X. Y.; Ng, B.-J.; Chew, Y.-H.; Mohamed, A. R.; Chai, S.-P. Midgap-state-mediated two-step photoexcitation in nitrogen defect-modified g-C3N4 atomic layers for superior photocatalytic CO2 reduction. Catal. Sci. Technol. 2019, 9, 2335- 2343, 10.1039/C9CY00449A
Kang, H.-J.; Lee, T.-G.; Kim, H.; Park, J.-W.; Hwang, H. J.; Hwang, H.; Jang, K.-S.; Kim, H. J.; Huh, Y. S.; Im, W. B.; Jun, Y.-S. Thick free-standing electrode based on carbon-carbon nitride microspheres with large mesopores for high-energy-density lithium-sulfur batteries. Carbon Energy 2021, 3, 410- 423, 10.1002/cey2.116
Shen, Q.; Jiang, P.; He, H.; Feng, Y.; Cai, Y.; Lei, D.; Cai, M.; Zhang, M. Designing C3N4/N-rich carbon fiber composites for high-performance potassium-ion hybrid capacitors. Energy Environ. Mater. 2021, 4, 638- 645, 10.1002/eem2.12148
Weng, G.-M.; Xie, Y.; Wang, H.; Karpovich, C.; Lipton, J.; Zhu, J.; Kong, J.; Pfefferle, L. D.; Taylor, A. D. A promising carbon/g-C3N4 composite negative electrode for a long-life sodium-ion battery. Angew. Chem., Int. Ed. 2019, 58, 13727- 13733, 10.1002/anie.201905803
Ren, W.; Cheng, J.; Ou, H.; Huang, C.; Anpo, M.; Wang, X. Optimizing the crystallization process of conjugated polymer photocatalysts to promote electron transfer and molecular oxygen activation. J. Catal. 2020, 389, 636- 645, 10.1016/j.jcat.2020.07.005
Wang, W.; Fan, X.; Shu, Z.; Zhou, J.; Meng, D. Sustainable and mild exfoliation of bulk crystalline carbon nitride into ultrathin nanosheets via ion-exchange in pure-water. Carbon 2023, 205, 76- 85, 10.1016/j.carbon.2023.01.002
Yang, M.; Lian, R.; Zhang, X.; Wang, C.; Cheng, J.; Wang, X. Photocatalytic cyclization of nitrogen-centered radicals with carbon nitride through promoting substrate/catalyst interaction. Nat. Commun. 2022, 13, 4900, 10.1038/s41467-022-32623-3
Xu, Y.; Fan, M.; Yang, W.; Xiao, Y.; Zeng, L.; Wu, X.; Xu, Q.; Su, C.; He, Q. Homogeneous carbon/potassium-incorporation strategy for synthesizing red polymeric carbon nitride capable of near-infrared photocatalytic H2 production. Adv. Mater. 2021, 33, 2101455, 10.1002/adma.202101455
Zhang, D.; Guo, Y.; Zhao, Z. Porous defect-modified graphitic carbon nitride via a facile one-step approach with significantly enhanced photocatalytic hydrogen evolution under visible light irradiation. Appl. Catal., B 2018, 226, 1- 9, 10.1016/j.apcatb.2017.12.044
Pan, Y.; Chen, X.; Yin, S.; Zhou, F.; Hou, J.; Lu, L.; Ji, S.; Linkov, V.; Wang, P. Polysulfides immobilization and conversion by nitrogen-doped porous carbon/graphitized carbon nitride heterojunction for high-rate lithium-sulfur batteries. Electrochim. Acta 2022, 423, 140387, 10.1016/j.electacta.2022.140387
Xu, Y.; He, X.; Zhong, H.; Singh, D. J.; Zhang, L.; Wang, R. Solid salt confinement effect: An effective strategy to fabricate high crystalline polymer carbon nitride for enhanced photocatalytic hydrogen evolution. Appl. Catal., B 2019, 246, 349- 355, 10.1016/j.apcatb.2019.01.069
Qian, Y.; Lai, H.; Ma, J.; Deng, G.; Long, B.; Song, T.; Liu, L.; Wang, X.; Tong, Y. Molten salt synthesis of KCl-preintercalated C3N4 nanosheets with abundant pyridinic-N as a superior anode with 10 K cycles in lithium ion battery. J. Colloid Interface Sci. 2022, 606, 537- 543, 10.1016/j.jcis.2021.08.063
Li, J.; Zhang, K.; Zhao, Y.; Wang, C.; Wang, L.; Wang, L.; Liao, M.; Ye, L.; Zhang, Y.; Gao, Y.; Wang, B.; Peng, H. High-efficiency and stable Li-CO2 battery enabled by carbon nanotube/carbon nitride heterostructured photocathode. Angew. Chem., Int. Ed. 2022, 61, e202114612, 10.1002/anie.202114612
Zheng, Y.; Luo, Y.; Ruan, Q.; Wang, S.; Yu, J.; Guo, X.; Zhang, W.; Xie, H.; Zhang, Z.; Huang, Y. Plasma-induced hierarchical amorphous carbon nitride nanostructure with two N2 c-site vacancies for photocatalytic H2O2 production. Appl. Catal., B 2022, 311, 121372, 10.1016/j.apcatb.2022.121372
Zhou, Y.; Zhang, S.; Xu, J.; Zhang, Y. Construction of MoS2-nitrogen-deficient graphitic carbon nitride anode toward high performance sodium-ions batteries. Mater. Lett. 2020, 273, 127890, 10.1016/j.matlet.2020.127890
Chen, J.; Mao, Z.; Zhang, L.; Wang, D.; Xu, R.; Bie, L.; Fahlman, B. D. Nitrogen-deficient graphitic carbon nitride with enhanced performance for lithium ion battery anodes. ACS Nano 2017, 11, 12650- 12657, 10.1021/acsnano.7b07116
Son, E. J.; Lee, S. H.; Kuk, S. K.; Pesic, M.; Choi, D. S.; Ko, J. W.; Kim, K.; Hollmann, F.; Park, C. B. Carbon nanotube-graphitic carbon nitride hybrid films for flavoenzyme-catalyzed photoelectrochemical cells. Adv. Funct. Mater. 2018, 28, 1705232, 10.1002/adfm.201705232
Zhu, X.; Xia, F.; Liu, D.; Xiang, X.; Wu, J.; Lei, J.; Li, J.; Qu, D.; Liu, J. Crumpling carbon-pillared atomic-thin dichalcogenides and cnts into elastic balls as superior anodes for sodium/potassium-ion batteries. Adv. Funct. Mater. 2023, 33, 2207548, 10.1002/adfm.202207548
Sang, J.; Zhang, X.; Liu, K.; Cao, G.; Guo, R.; Zhang, S.; Wu, Z.; Zhang, Y.; Hou, R.; Shen, Y.; Shao, G. Effective coupling of amorphous selenium phosphide with high-conductivity graphene as resilient high-capacity anode for sodium-ion batteries. Adv. Funct. Mater. 2023, 33, 2211640, 10.1002/adfm.202211640
Pei, Z.; Meng, Q.; Wei, L.; Fan, J.; Chen, Y.; Zhi, C. Toward efficient and high rate sodium-ion storage: A new insight from dopant-defect interplay in textured carbon anode materials. Energy Storage Mater. 2020, 28, 55- 63, 10.1016/j.ensm.2020.02.033
Yao, X.; Ke, Y.; Ren, W.; Wang, X.; Xiong, F.; Yang, W.; Qin, M.; Li, Q.; Mai, L. Defect-rich soft carbon porous nanosheets for fast and high-capacity sodium-ion storage. Adv. Energy Mater. 2019, 9, 1803260, 10.1002/aenm.201803260
Tang, Y.; Wang, X.; Chen, J.; Wang, X.; Wang, D.; Mao, Z. PVP-assisted synthesis of g- C3N4-derived N-doped graphene with tunable interplanar spacing as high-performance lithium/sodium ions battery anodes. Carbon 2021, 174, 98- 109, 10.1016/j.carbon.2020.12.010
Cheng, C.; Mao, L.; Kang, X.; Dong, C.-L.; Huang, Y.-C.; Shen, S.; Shi, J.; Guo, L. A high-cyano groups-content amorphous-crystalline carbon nitride isotype heterojunction photocatalyst for high-quantum-yield H2 production and enhanced CO2 reduction. Appl. Catal., B 2023, 331, 122733, 10.1016/j.apcatb.2023.122733
Li, Z.; Qin, H.; Tian, W.; Miao, L.; Cao, K.; Si, Y.; Li, H.; Wang, Q.; Jiao, L. 3D Sb-based composite framework with gradient sodiophilicity for ultrastable sodium metal anodes. Adv. Funct. Mater. 2023, 2301554, 10.1002/adfm.202301554
Li, Y.; Chen, M.; Liu, B.; Zhang, Y.; Liang, X.; Xia, X. Heteroatom doping: An effective way to boost sodium ion storage. Adv. Energy Mater. 2020, 10, 2000927, 10.1002/aenm.202000927
Adekoya, D.; Gu, X.; Rudge, M.; Wen, W.; Lai, C.; Hankel, M.; Zhang, S. Carbon nitride nanofibres with exceptional lithium storage capacity: From theoretical prediction to experimental implementation. Adv. Funct. Mater. 2018, 28, 1803972, 10.1002/adfm.201803972
Zhang, G.; Liu, M.; Heil, T.; Zafeiratos, S.; Savateev, A.; Antonietti, M.; Wang, X. Electron deficient monomers that optimize nucleation and enhance the photocatalytic redox activity of carbon nitrides. Angew. Chem., Int. Ed. 2019, 58, 14950- 14954, 10.1002/anie.201908322
Jiang, Y.; Wu, F.; Ye, Z.; Li, C.; Zhang, Y.; Li, L.; Xie, M.; Chen, R. Fe2VO4 nanoparticles anchored on ordered mesoporous carbon with pseudocapacitive behaviors for efficient sodium storage. Adv. Funct. Mater. 2021, 31, 2009756, 10.1002/adfm.202009756
Li, X.; Han, Z.; Yang, W.; Li, Q.; Li, H.; Xu, J.; Li, H.; Liu, B.; Zhao, H.; Li, S.; Wang, X.; Wu, X.-L. 3D ordered porous hybrid of ZnSe/N-doped carbon with anomalously high Na+ mobility and ultrathin solid electrolyte interphase for sodium-ion batteries. Adv. Funct. Mater. 2021, 31, 2106194, 10.1002/adfm.202170372
Meng, W.; Dang, Z.; Li, D.; Jiang, L. Long-cycle life sodium-ion battery fabrication via unique chemical bonding interface mechanism. Adv. Mater. 2023, 35, 2301376, 10.1002/adma.202301376
Chen, L.; Song, K.; Shi, J.; Zhang, J.; Mi, L.; Chen, W.; Liu, C.; Shen, C. PAANa-induced ductile SEI of bare micro-sized FeS enables high sodium-ion storage performance. Sci. China Mater. 2021, 64, 105- 114, 10.1007/s40843-020-1389-x
Chayambuka, K.; Mulder, G.; Danilov, D. L.; Notten, P. H. L. Sodium-ion battery materials and electrochemical properties reviewed. Adv. Energy Mater. 2018, 8, 1800079, 10.1002/aenm.201800079
Zhao, L.-F.; Hu, Z.; Lai, W.-H.; Tao, Y.; Peng, J.; Miao, Z.-C.; Wang, Y.-X.; Chou, S.-L.; Liu, H.-K.; Dou, S.-X. Hard carbon anodes: Fundamental understanding and commercial perspectives for Na-ion batteries beyond Li-ion and K-ion counterparts. Adv. Energy Mater. 2021, 11, 2002704, 10.1002/aenm.202002704
Liang, X.; Xue, S.; Yang, C.; Ye, X.; Wang, Y.; Chen, Q.; Lin, W.; Hou, Y.; Zhang, G.; Shalom, M.; Yu, Z.; Wang, X. The directional crystallization process of poly (triazine imide) single crystals in molten salts. Angew. Chem., Int. Ed. 2023, 62, e202216434, 10.1002/anie.202216434
Li, R.; Wang, Y.; Xu, L.-C.; Shen, J.; Zhao, W.; Yang, Z.; Liu, R.; Shao, J.-L.; Guo, C.; Li, X. A boron-exposed TiB3 monolayer with a lower electrostatic-potential surface as a higher-performance anode material for Li-ion and Na-ion batteries. Phys. Chem. Chem. Phys. 2020, 22, 22236- 22243, 10.1039/D0CP04204H
Li, Y.; Han, M.; Zhou, Z.; Xia, X.; Chen, Q.; Chen, M. Topological insulator-assisted MoSe2/Bi2Se heterostructure: Achieving fast reaction kinetics toward high rate sodium-ion batteries. ChemElectroChem. 2021, 8, 697- 704, 10.1002/celc.202001409
Chen, D.; Lu, R.; Yu, R.; Dai, Y.; Zhao, H.; Wu, D.; Wang, P.; Zhu, J.; Pu, Z.; Chen, L.; Yu, J.; Mu, S. Work-function-induced interfacial built-in electric fields in Os-OsSe2 heterostructures for active acidic and alkaline hydrogen evolution. Angew. Chem., Int. Ed. 2022, 61, e202208642, 10.1002/anie.202208642
Yu, Y.-X. Prediction of mobility, enhanced storage capacity, and volume change during sodiation on interlayer-expanded functionalized Ti3C2 mxene anode materials for sodium-ion batteries. J. Phys.Chem. C 2016, 120, 5288- 5296, 10.1021/acs.jpcc.5b10366