[en] Plastic production reached 400 million tons in 2022 (ref. 1), with packaging and single-use plastics accounting for a substantial amount of this2. The resulting waste ends up in landfills, incineration or the environment, contributing to environmental pollution3. Shifting to biodegradable and compostable plastics is increasingly being considered as an efficient waste-management alternative4. Although polylactide (PLA) is the most widely used biosourced polymer5, its biodegradation rate under home-compost and soil conditions remains low6-8. Here we present a PLA-based plastic in which an optimized enzyme is embedded to ensure rapid biodegradation and compostability at room temperature, using a scalable industrial process. First, an 80-fold activity enhancement was achieved through structure-based rational engineering of a new hyperthermostable PLA hydrolase. Second, the enzyme was uniformly dispersed within the PLA matrix by means of a masterbatch-based melt extrusion process. The liquid enzyme formulation was incorporated in polycaprolactone, a low-melting-temperature polymer, through melt extrusion at 70 °C, forming an 'enzymated' polycaprolactone masterbatch. Masterbatch pellets were integrated into PLA by melt extrusion at 160 °C, producing an enzymated PLA film (0.02% w/w enzyme) that fully disintegrated under home-compost conditions within 20-24 weeks, meeting home-composting standards. The mechanical and degradation properties of the enzymated film were compatible with industrial packaging applications, and they remained intact during long-term storage. This innovative material not only opens new avenues for composters and biomethane production but also provides a feasible industrial solution for PLA degradation.
Research center :
CIRMAP - Centre d'Innovation et de Recherche en Matériaux Polymères
Disciplines :
Materials science & engineering
Author, co-author :
Guicherd, M; Toulouse Biotechnology Institute, Université de Toulouse, CNRS, INRAE, INSA, Toulouse, France ; Carbios, Clermont-Ferrand, France
Ben Khaled, M ; Toulouse Biotechnology Institute, Université de Toulouse, CNRS, INRAE, INSA, Toulouse, France
Guéroult, M; Toulouse Biotechnology Institute, Université de Toulouse, CNRS, INRAE, INSA, Toulouse, France ; Carbios, Clermont-Ferrand, France
Nomme, J; Toulouse Biotechnology Institute, Université de Toulouse, CNRS, INRAE, INSA, Toulouse, France
Dalibey, M; Carbios, Clermont-Ferrand, France
Grimaud, F; Carbios, Clermont-Ferrand, France
Alvarez, P; Toulouse Biotechnology Institute, Université de Toulouse, CNRS, INRAE, INSA, Toulouse, France
Kamionka, E; Toulouse Biotechnology Institute, Université de Toulouse, CNRS, INRAE, INSA, Toulouse, France
Gavalda, S; Toulouse Biotechnology Institute, Université de Toulouse, CNRS, INRAE, INSA, Toulouse, France ; Carbios, Clermont-Ferrand, France
Noel, Maxime
Vuillemin, M; Toulouse Biotechnology Institute, Université de Toulouse, CNRS, INRAE, INSA, Toulouse, France
Amillastre, E; Toulouse Biotechnology Institute, Université de Toulouse, CNRS, INRAE, INSA, Toulouse, France
Labourdette, D; Toulouse Biotechnology Institute, Université de Toulouse, CNRS, INRAE, INSA, Toulouse, France
Cioci, G; Toulouse Biotechnology Institute, Université de Toulouse, CNRS, INRAE, INSA, Toulouse, France
Tournier, V ; Carbios, Clermont-Ferrand, France
Kitpreechavanich, V; Department of Microbiology, Faculty of Science, Kasetsart University, Bangkok, Thailand
DUBOIS, Philippe ; Université de Mons - UMONS > Faculté des Sciences > Service des Matériaux Polymères et Composites
André, I ; Toulouse Biotechnology Institute, Université de Toulouse, CNRS, INRAE, INSA, Toulouse, France. isabelle.andre@insa-toulouse.fr
Duquesne, S; Toulouse Biotechnology Institute, Université de Toulouse, CNRS, INRAE, INSA, Toulouse, France
Marty, A ; Toulouse Biotechnology Institute, Université de Toulouse, CNRS, INRAE, INSA, Toulouse, France. alain.marty@carbios.com ; Carbios, Clermont-Ferrand, France. alain.marty@carbios.com
R400 - Institut de Recherche en Science et Ingénierie des Matériaux
Funding text :
We thank the PICT-ICEO facility of the Toulouse Biotechnology Institute, which is part of the Integrated Screening Platform of Toulouse (PICT, IBiSA), for providing access to HPLC and protein purification equipment; the structural biophysics team of the Institute of Pharmacology and Structural Biology (Toulouse, France) and the PICT platform for access to the crystallization facility, as well as the ALBA (Barcelona, Spain) and European Synchrotron Radiation Facility (Grenoble, France) synchrotrons for data collection; and the CRITT Bioindustries from INSA Toulouse for providing access to their equipment and for their help and expertise. We also thank P. Tsvetkov and F. Devred from the Microcalorimetry Pole in the PINT platform of the Institute of NeuroPhysiopathology (Marseille, France) for the nanoDSF analysis and the staff of the PISSARO proteomic platform (University of Rouen, France) for the N-terminal amino acid analysis; B. Chezeau of Bio-Valo laboratory for anaerobic digestion evaluation; J. Jacquin from the biodegradation and microbiology team of the Industrial Technical Centre for Plastics and Composites of Clermont-Ferrand (Clermont-Ferrand, France) for conducting aerobic biodegradation experiments; D. Thizy, A. Beaugeon and V. Legrand from Carbiolice for their help; L.-A. Chabaud, A. Math\u00E9 and N. Panel for help in the conception of the cover art. Finally, we thank Toulouse White Biotechnology (UMS INRAE 1337/UMS CNRS 3582) for administrative support. For this work, we were granted access to high-performance computing resources from the regional computing mesocenter CALMIP and the HPC-Regional Center ROMEO. This work was mainly conducted in the cooperative INSA/Carbios laboratory PoPlaB (Polymers, Plastics and Biotechnology) at the Toulouse Biotechnology Institute and was supported by a grant-in-aid for scientific research (THANAPLAST project, OSEO ISI contract number I 1206040W).
Plastics – the fast facts 2023. Plastics Europehttps://plasticseurope.org/knowledge-hub/plastics-the-fast-facts-2023/ (2023).
C.J. Rhodes Solving the plastic problem: from cradle to grave, to reincarnation Sci. Prog. 2019 102 218 248 31829850 10424522
Geyer, R. in Plastic Waste and Recycling (ed. Letcher, T. M.) Ch. 2 (Academic, 2020).
T. Iwata Biodegradable and bio-based polymers: future prospects of eco-friendly plastics Angew. Chemie Int. Ed. 2015 54 3210 3215 1:CAS:528:DC%2BC2MXos1alsQ%3D%3D
Bioplastics Market Development Update 2022 (European Bioplastics, 2022); https://docs.european-bioplastics.org/publications/market_data/2022/Report_Bioplastics_Market_Data_2022_short_version.pdf.
G. Kale R. Auras S.P. Singh Comparison of the degradability of poly(lactide) packages in composting and ambient exposure conditions Packag. Technol. Sci. 2007 20 49 70 1:CAS:528:DC%2BD2sXktFOgsrc%3D
I.E. Napper R.C. Thompson Environmental deterioration of biodegradable, oxo-biodegradable, compostable, and conventional plastic carrier bags in the sea, soil, and open-air over a 3-year period Environ. Sci. Technol. 2019 53 4775 4783 2019EnST..53.4775N 1:CAS:528:DC%2BC1MXot1Cms74%3D 31030509
Teixeira, S., Eblagon, K. M., Miranda, F., R. Pereira, M. F. & Figueiredo, J. L. Towards controlled degradation of poly(lactic) acid in technical applications. C 7, 42 (2021).
R. Datta M. Henry Lactic acid: recent advances in products, processes and technologies – a review J. Chem. Technol. Biotechnol. 2006 81 1119 1129 1:CAS:528:DC%2BD28XntVCmt7Y%3D
J.R. Dorgan H. Lehermeier M. Mang Thermal and rheological properties of commercial-grade poly(lactic acid)s J. Polym. Environ. 2000 8 1 9
E. Castro-Aguirre F. Iñiguez-Franco H. Samsudin X. Fang R. Auras Poly(lactic acid)—mass production, processing, industrial applications, and end of life Adv. Drug Deliv. Rev. 2016 107 333 366 1:CAS:528:DC%2BC28XlsF2ms7w%3D 27046295
S. Choe Y. Kim Y. Won J. Myung Bridging three gaps in biodegradable plastics: misconceptions and truths about biodegradation Front. Chem. 2021 9 671750 1:CAS:528:DC%2BB3MXhvVektrrF 34055740 8160376
H. Tsuji K. Suzuyoshi Environmental degradation of biodegradable polyesters 1. Poly(ε-caprolactone), poly[(R)-3-hydroxybutyrate], and and poly(L-lactide) films in controlled static seawater Polym. Degrad. Stab. 2002 75 347 355 1:CAS:528:DC%2BD38Xhs1Cn
M. Karamanlioglu G.D. Robson The influence of biotic and abiotic factors on the rate of degradation of poly(lactic) acid (PLA) coupons buried in compost and soil Polym. Degrad. Stab. 2013 98 2063 2071 1:CAS:528:DC%2BC3sXhtFOhsbvK
V. Siracusa Microbial degradation of synthetic biopolymers waste Polymers 2019 11 1066 1:CAS:528:DC%2BC1MXhtleiur%2FP 31226767 6630276
D.F. Williams Enzymic hydrolysis of polylactic acid Eng. Med. 1981 10 5 7
Y. Tokiwa B.P. Calabia Biodegradability and biodegradation of poly(lactide) Appl. Microbiol. Biotechnol. 2006 72 244 251 1:CAS:528:DC%2BD28XotlCiu7c%3D 16823551
M. Arena C. Abbate K. Fukushima M. Gennari Degradation of poly (lactic acid) and nanocomposites by Bacillus licheniformis Environ. Sci. Pollut. Res. 2011 18 865 870 1:CAS:528:DC%2BC3MXos1ehtLY%3D
S. Prema U.M.D. Palempalli Degradation of polylactide plastic by PLA depolymerase isolated from thermophilic Bacillus Int. J. Curr. Microbiol. App. Sci 2015 4 645 654 1:CAS:528:DC%2BC1cXlvVKjsr0%3D
N.F. Zaaba M. Jaafar A review on degradation mechanisms of polylactic acid: hydrolytic, photodegradative, microbial, and enzymatic degradation Polym. Eng. Sci. 2020 60 2061 2075 1:CAS:528:DC%2BB3cXhslektLbJ
H. Pranamuda Y. Tokiwa H. Tanaka Polylactide degradation by an Amycolatopsis sp Appl. Environ. Microbiol. 1997 63 1637 1640 1997ApEnM.63.1637P 1:CAS:528:DyaK2sXisVWrsb0%3D 16535586 1389564
A.K. Urbanek et al. Biochemical properties and biotechnological applications of microbial enzymes involved in the degradation of polyester-type plastics Biochim. Biophys. Acta Proteins Proteom. 2020 1868 140315 1:CAS:528:DC%2BC1MXit1WrtLnF 31740410
Y. Oda A. Yonetsu T. Urakami K. Tonomura Degradation of polylactide by commercial proteases J. Polym. Environ. 2000 8 29 32
Barbier, T., Ferreira, F., Bataille, C., Dever, J. & Barbier, J. Method for preparing a polymer/biological entities blend. Patent WO2013093355 (2011).
I. Khan R. Nagarjuna J.R. Dutta R. Ganesan Enzyme-embedded degradation of poly(ϵ-caprolactone) using lipase-derived from probiotic Lactobacillus plantarum ACS Omega 2019 4 2844 2852 1:CAS:528:DC%2BC1MXisFGntr8%3D 31459515 6648548
M. Ganesh R. Gross Embedding enzymes to control biomaterial lifetime ACS Symp. Ser. 2010 1043 375 384 1:CAS:528:DC%2BC3MXkvVOlsrk%3D
Q. Huang M. Hiyama T. Kabe S. Kimura T. Iwata Enzymatic self-biodegradation of poly(L-lactic acid) films by embedded heat-treated and immobilized proteinase K Biomacromolecules 2020 21 3301 3307 1:CAS:528:DC%2BB3cXhtl2rsL7E 32678613
C. DelRe et al. Near-complete depolymerization of polyesters with nano-dispersed enzymes Nature 2021 592 558 563 2021Natur.592.558D 1:CAS:528:DC%2BB3MXptlOntbo%3D 33883730
Q.Y. Huang S. Kimura T. Iwata Thermal embedding of Humicola insolens cutinase: a strategy for improving polyester biodegradation in seawater Biomacromolecules 2023 24 5836 5846 1:CAS:528:DC%2BB3sXitlSjsbnJ 37940601
Q.Y. Huang S. Kimura T. Iwata Development of self-degradable aliphatic polyesters by embedding lipases via melt extrusion Polym. Degrad. Stab. 2021 190 109647 1:CAS:528:DC%2BB3MXhsVSmt7jL
C. Xu et al. Investigation of the thermal stability of proteinase K for the melt processing of poly(L-lactide) Biomacromolecules 2022 23 4841 4850 1:CAS:528:DC%2BB38Xislynur%2FL 36327974 9667878
S. Sukkhum S. Tokuyama V. Kitpreechavanich Development of fermentation process for PLA-degrading enzyme production by a new thermophilic Actinomadura sp. T16-1 Biotechnol. Bioprocess Eng. 2009 14 302 306 1:CAS:528:DC%2BD1MXosVGqur8%3D
S. Sukkhum S. Tokuyama T. Tamura V. Kitpreechavanich A novel poly (L-lactide) degrading actinomycetes isolated from Thai forest soil, phylogenic relationship and the enzyme characterization J. Gen. Appl. Microbiol. 2009 55 459 467 1:CAS:528:DC%2BC3cXhtVahtbY%3D 20118610
N.D. Rawlings A.J. Barrett Evolutionary families of peptidases Biochem. J. 1993 290 205 218 1:CAS:528:DyaK3sXhsVantbg%3D 8439290 1132403
Azrin, N. A. M., Ali, M. S. M., Rahman, R. N. Z. R. A., Oslan, S. N. & Noor, N. D. M. Versatility of subtilisin: a review on structure, characteristics, and applications. Biotechnol. Appl. Biochem. https://doi.org/10.1002/bab.2309 (2022).
F. Tatàno G. Pagliaro P. Di Giovanni E. Floriani F. Mangani Biowaste home composting: experimental process monitoring and quality control Waste Manag. 2015 38 72 85 25577687
R.C. Wilmouth et al. X-ray snapshots of serine protease catalysis reveal a tetrahedral intermediate Nat. Struct. Biol. 2001 8 689 694 1:CAS:528:DC%2BD3MXls1Onur0%3D 11473259
L. Hedstrom Serine protease mechanism and specificity Chem. Rev. 2002 102 4501 4523 1:CAS:528:DC%2BD38XovFCnsrk%3D 12475199
K. Peek R.M. Daniel C. Monk L. Parker T. Coolbear Purification and characterization of a thermostable proteinase isolated from Thermus sp. strain Rt41A Eur. J. Biochem. 1992 207 1035 1044 1:CAS:528:DyaK38Xls1Kgtrs%3D 1499549
Guemard, E. & Dalibey, M. Liquid composition comprising biological entities and uses thereof. Patent WO2019043145 (2018).
N. Fukuda H. Tsuji Y. Ohnishi Physical properties and enzymatic hydrolysis of poly(L-lactide)-CaCO3 composites Polym. Degrad. Stab. 2002 78 119 127 1:CAS:528:DC%2BD38XmtVGrtbg%3D
Chateau, M. & Rousselle, J.-P. Masterbatch composition comprising a high concentration of biological entities. Patent WO2016198650 (2016).
G. Ye T. Gu B. Chen H. Bi Y. Hu Mechanical, thermal properties and shape memory behaviors of PLA/PCL/PLA-g-GMA blends Polym. Eng. Sci. 2023 63 2084 2092 1:CAS:528:DC%2BB3sXhtVajs73N
L. Aliotta V. Gigante R. Geerinck M.B. Coltelli A. Lazzeri Micromechanical analysis and fracture mechanics of poly(lactic acid) (PLA)/polycaprolactone (PCL) binary blends Polym. Test. 2023 121 107984 1:CAS:528:DC%2BB3sXlt1amur8%3D
D. Zhang et al. Characterization of biodegradable food packaging films prepared with polyamide 4: influence of molecular weight and environmental humidity Food Bioeng. 2022 1 276 288 1:CAS:528:DC%2BB2cXms1Oqtbk%3D
H. Jeong et al. Mechanical properties and cytotoxicity of PLA/PCL films Biomed. Eng. Lett. 2018 8 267 272 30603210 6208544
A. Bher Y. Cho R. Auras Boosting degradation of biodegradable polymers Macromol. Rapid Commun. 2023 44 e2200769 36648129
O. García-Depraect et al. Enhancement of biogas production rate from bioplastics by alkaline pretreatment Waste Manag. 2023 164 154 161 37059039
H. Li et al. The Sequence alignment/map format and SAMtools Bioinformatics 2009 25 2078 2079 19505943 2723002
M.G. Grabherr et al. Full-length transcriptome assembly from RNA-Seq data without a reference genome Nat. Biotechnol. 2011 29 644 652 1:CAS:528:DC%2BC3MXmtV2hsbc%3D 21572440 3571712
S.F. Altschul et al. Gapped BLAST and PSI-BLAST: a new generation of protein database search programs Nucleic Acids Res. 1997 25 3389 3402 1:CAS:528:DyaK2sXlvFyhu7w%3D 9254694 146917
F. Madeira et al. Search and sequence analysis tools services from EMBL-EBI in 2022 Nucleic Acids Res. 2022 50 W276 W279 1:CAS:528:DC%2BB3sXhtVyiu7nI 35412617 9252731
H. Liu J.H. Naismith An efficient one-step site-directed deletion, insertion, single and multiple-site plasmid mutagenesis protocol BMC Biotechnol. 2008 8 19055817 2629768
F.W. Studier Protein production by auto-induction in high density shaking cultures Protein Expr. Purif. 2005 41 207 234 1:CAS:528:DC%2BD2MXjsFCktLw%3D 15915565
K.D. Tartof Improved media for growing plasmid and cosmid clones Bethesda Res. Lab. Focus 1987 9 12
Gasteiger, E. et al. The Proteomics Protocols Handbook (Humana, 2005); https://doi.org/10.1385/1592598900.
C. Vonrhein et al. Data processing and analysis with the autoPROC toolbox Acta Crystallogr. Sect. D 2011 67 293 302 2011AcCrD.67.293V 1:CAS:528:DC%2BC3MXktFWqtLs%3D
A.J. McCoy et al. Phaser crystallographic software J. Appl. Crystallogr. 2007 40 658 674 2007JApCr.40.658M 1:CAS:528:DC%2BD2sXnslWqsLk%3D 19461840 2483472
G. Langer S.X. Cohen V.S. Lamzin A. Perrakis Automated macromolecular model building for X-ray crystallography using ARP/wARP version 7 Nat. Protoc. 2008 3 1171 1179 1:CAS:528:DC%2BD1cXotFaku7s%3D 18600222 2582149
P.D. Adams et al. PHENIX: a comprehensive Python-based system for macromolecular structure solution Acta Crystallogr. Sect. D 2010 66 213 221 2010AcCrD.66.213A 1:CAS:528:DC%2BC3cXhs1Sisbc%3D
P. Emsley B. Lohkamp W.G. Scott K. Cowtan Features and development of Coot Acta Crystallogr. Sect. D 2010 66 486 501 2010AcCrD.66.486E 1:CAS:528:DC%2BC3cXksFKisb8%3D
G.G. Krivov M.V. Shapovalov R.L. Dunbrack Improved prediction of protein side-chain conformations with SCWRL4 Proteins 2009 77 778 795 1:CAS:528:DC%2BD1MXhtlSru7nN 19603484 2885146
M.H.M. Olsson C.R. SØndergaard M. Rostkowski J.H. Jensen PROPKA3: consistent treatment of internal and surface residues in empirical pKa predictions J. Chem. Theory Comput. 2011 7 525 537 1:CAS:528:DC%2BC3MXit1aqsA%3D%3D 26596171
G.A. Kaminski R.A. Friesner J. Tirado-rives W.L. Jorgensen Evaluation and reparametrization of the OPLS-AA force field for proteins via comparison with accurate quantum chemical calculations on peptides J. Phys. Chem. B 2001 105 6474 6487 1:CAS:528:DC%2BD3MXislKhsLk%3D
J.H. McAliley D.A. Bruce Development of force field parameters for molecular simulation of polylactide J. Chem. Theory Comput. 2011 7 3756 3767 1:CAS:528:DC%2BC3MXht1Cqt7bK 22180734 3237685
W.L. Jorgensen J. Chandrasekhar J.D. Madura R.W. Impey M.L. Klein Comparison of simple potential functions for simulating liquid water J. Chem. Phys. 1983 79 926 935 1983JChPh.79.926J 1:CAS:528:DyaL3sXksF2htL4%3D
G. Bussi D. Donadio M. Parrinello Canonical sampling through velocity rescaling J. Chem. Phys. 2007 126 014101 2007JChPh.126a4101B 17212484
B. Hess P-LINCS: a parallel linear constraint solver for molecular simulation J. Chem. Theory Comput. 2008 4 116 122 1:CAS:528:DC%2BD2sXhtlKru7zL 26619985
T.E. Cheatham J.L. Miller T. Fox T.A. Darden P.A. Kollman Molecular dynamics simulations on solvated biomolecular systems: the particle mesh Ewald method leads to stable trajectories of DNA, RNA, and proteins J. Am. Chem. Soc. 1995 117 4193 4194 1:CAS:528:DyaK2MXkvVaisrc%3D
R. Kumari R. Kumar A. Lynn g-mmpbsa - a GROMACS tool for high-throughput MM-PBSA calculations J. Chem. Inf. Model. 2014 54 1951 1962 1:CAS:528:DC%2BC2cXotlWiu7o%3D 24850022
D. Daudé C.M. Topham M. Remaud-Siméon I. André Probing impact of active site residue mutations on stability and activity of Neisseria polysaccharea amylosucrase Protein Sci. 2013 22 1754 1765 24115119 3843629
Henton, D. E., Gruber, P., Lunt, J. & Randall, J. in Natural Fibers, Biopolymers, and Biocomposites (eds Mohanty, A. K., Misra, M. & Drzal, L. T.) Ch. 16 (CRC, 2005).
E.W. Fischer H.J. Sterzel G. Wegner Investigation of the structure of solution grown crystals of lactide copolymers by means of chemical reactions Kolloid-Zeitschrift Zeitschrift für Polym. 1973 251 980 990 1:CAS:528:DyaE2cXlt1Whsrs%3D
Cresson, R. et al. Etude interlaboratoires pour l’harmonisation des protocoles de mesure du potentiel bio-méthanogène des matrices solides hétérogènes (ADEME, 2014).