George, S.M., Nayak, C., Singh, I., Balani, K., Multifunctional hydroxyapatite composites for orthopedic applications: a review. ACS Biomater. Sci. Eng. 8 (2022), 3162–3186, 10.1021/acsbiomaterials.2c00140.
Pajor, K., Pajchel, L., Kolmas, J., Hydroxyapatite and fluorapatite in conservative dentistry and oral implantology—a review. Materials, 12, 2019, 2683, 10.3390/ma12172683.
Fiume, E., Magnaterra, G., Rahdar, A., Verné, E., Baino, F., Hydroxyapatite for biomedical applications: a short overview. Ceramics 4 (2021), 542–563, 10.3390/ceramics4040039.
Mondal, S., Pal, U., 3D hydroxyapatite scaffold for bone regeneration and local drug delivery applications. J. Drug Deliv. Sci. Technol., 53, 2019, 101131, 10.1016/j.jddst.2019.101131.
Wang, L., Luo, X., Barbieri, D., Bao, C., Yuan, H., Controlling surface microstructure of calcium phosphate ceramic from random to custom-design. Ceram. Int. 40 (2014), 7889–7897, 10.1016/j.ceramint.2013.12.136.
Zhou, H., Lee, J., Nanoscale hydroxyapatite particles for bone tissue engineering. Acta Biomater. 7 (2011), 2769–2781, 10.1016/j.actbio.2011.03.019.
Du, M., Chen, J., Liu, K., Xing, H., Song, C., Recent advances in biomedical engineering of nano-hydroxyapatite including dentistry, cancer treatment and bone repair. Compos. B Eng., 215, 2021, 108790, 10.1016/j.compositesb.2021.108790.
Zhou, C., Deng, C., Chen, X., Zhao, X., Chen, Y., Fan, Y., Zhang, X., Mechanical and biological properties of the micro-/nano-grain functionally graded hydroxyapatite bioceramics for bone tissue engineering. J. Mech. Behav. Biomed. Mater. 48 (2015), 1–11, 10.1016/j.jmbbm.2015.04.002.
Covarrubias, C., Arroyo, F., Balanda, C., Neira, M., Von Marttens, A., Caviedes, P., Rodríguez, J.P., Urra, C., The effect of the nanoscale structure of nanobioceramics on their in vitro bioactivity and cell differentiation properties. J. Nanomater., 16, 2015, 430, 10.1155/2015/526230 -430.
Gui, X., Peng, W., Xu, X., Su, Z., Liu, G., Zhou, Z., Liu, M., Li, Z., Song, G., Zhou, C., Kong, Q., Synthesis and application of nanometer hydroxyapatite in biomedicine. Nanotechnol. Rev. 11 (2022), 2154–2168, 10.1515/ntrev-2022-0127.
Indurkar, A., Choudhary, R., Rubenis, K., Locs, J., Advances in sintering techniques for calcium phosphates ceramics. Materials, 14, 2021, 6133, 10.3390/ma14206133.
Muralithran, G., Ramesh, S., The effects of sintering temperature on the properties of hydroxyapatite. Ceram. Int. 26 (2000), 221–230, 10.1016/S0272-8842(99)00046-2.
Youness, R.A., Taha, M.A., Ibrahim, M.A., Effect of sintering temperatures on the in vitro bioactivity, molecular structure and mechanical properties of titanium/carbonated hydroxyapatite nanobiocomposites. J. Mol. Struct. 1150 (2017), 188–195, 10.1016/j.molstruc.2017.08.070.
Karimzadeh, A., Ayatollahi, M.R., Bushroa, A.R., Herliansyah, M.K., Effect of sintering temperature on mechanical and tribological properties of hydroxyapatite measured by nanoindentation and nanoscratch experiments. Ceram. Int. 40 (2014), 9159–9164, 10.1016/j.ceramint.2014.01.131.
Guo, H., Baker, A., Guo, J., Randall, C.A., Cold sintering process: a novel technique for low‐temperature ceramic processing of ferroelectrics. J. Am. Ceram. Soc. 99 (2016), 3489–3507, 10.1111/jace.14554.
Guo, H., Guo, J., Baker, A., Randall, C.A., Hydrothermal-assisted cold sintering process: a new guidance for low-temperature ceramic sintering. ACS Appl. Mater. Interfaces 8 (2016), 20909–20915, 10.1021/acsami.6b07481.
Galotta, A., Sglavo, V.M., The cold sintering process: a review on processing features, densification mechanisms and perspectives. J. Eur. Ceram. Soc. 41 (2021), 1–17, 10.1016/j.jeurceramsoc.2021.09.024.
Guo, H., Baker, A., Guo, J., Randall, C.A., Protocol for ultralow-temperature ceramic sintering: an integration of nanotechnology and the cold sintering process. ACS Nano 10 (2016), 10606–10614, 10.1021/acsnano.6b03800.
Guo, J., Floyd, R., Lowum, S., Maria, J.P., Herisson de Beauvoir, T., Seo, J.H., Randall, C.A., Cold sintering: progress, challenges, and future opportunities. Annu. Rev. Mater. Res. 49 (2019), 275–295, 10.1146/annurev-matsci-070218-010041.
Guo, J., Zhao, X., Herisson De Beauvoir, T., Seo, J.H., Berbano, S.S., Baker, A.L., Azina, C., Randall, C.A., Recent progress in applications of the cold sintering process for ceramic–polymer composites. Adv. Funct. Mater., 28, 2018, 1801724, 10.1002/adfm.201801724.
Guo, J., Berbano, S.S., Guo, H., Baker, A.L., Lanagan, M.T., Randall, C.A., Cold sintering process of composites: bridging the processing temperature gap of ceramic and polymer materials. Adv. Funct. Mater. 26 (2016), 7115–7121, 10.1002/adfm.201602489.
Ndayishimiye, A., Sengul, M.Y., Sada, T., Dursun, S., Bang, S.H., Grady, Z.A., Tsuji, K., Funahashi, S., Van Duin, A.C., Randall, C.A., Roadmap for densification in cold sintering: chemical pathways. Open Ceram, 2, 2020, 100019, 10.1016/j.oceram.2020.100019.
Biesuz, M., Taveri, G., Duff, A.I., Olevsky, E., Zhu, D., Hu, C., Grasso, S., A theoretical analysis of cold sintering. Adv. Appl. Ceram. 119 (2020), 75–89, 10.1080/17436753.2019.1692173.
ul Hassan, M., Ryu, H.J., Cold sintering and durability of iodate-substituted calcium hydroxyapatite (IO-HAp) for the immobilization of radioiodine. J. Nucl. Mater. 514 (2019), 84–89, 10.1016/j.jnucmat.2018.11.024.
Shen, H.Z., Guo, N., Zhao, L., Shen, P., Role of ion substitution and lattice water in the densification of cold-sintered hydroxyapatite. Scripta Mater. 177 (2020), 141–145, 10.1016/j.scriptamat.2019.10.024.
ul Hassan, M., Akmal, M., Ryu, H.J., Cold sintering of as-dried nanostructured calcium hydroxyapatite without using additives. J. Mater. Res. Technol. 11 (2021), 811–822, 10.1016/j.jmrt.2021.01.060.
Galotta, A., Agostinacchio, F., Motta, A., Dirè, S., Sglavo, V.M., Mechanochemical synthesis and cold sintering of mussel shell-derived hydroxyapatite nano-powders for bone tissue regeneration. J. Eur. Ceram. Soc. 43 (2023), 639–647, 10.1016/j.jeurceramsoc.2022.09.024.
Shen, H.Z., Guo, N., Liang, Y.H., Shen, P., Synthesis and densification of hydroxyapatite by mechanochemically-activated reactive cold sintering. Scripta Mater., 194, 2021, 113717, 10.1016/j.scriptamat.2020.113717.
Jabr, A., Fanghanel, J., Fan, Z., Bermejo, R., Randall, C., The effect of liquid phase chemistry on the densification and strength of cold sintered ZnO. J. Eur. Ceram. Soc. 43 (2023), 1531–1541, 10.1016/j.jeurceramsoc.2022.11.071.
Dorozhkin, S.V., Inorganic chemistry of the dissolution phenomenon: the dissolution mechanism of calcium apatites at the atomic (ionic) level. Comments Mod. Chem. 20 (1999), 285–299, 10.1080/02603599908021447.
Dorozhkin, S.V., Dissolution mechanism of calcium apatites in acids: a review of literature. World J. Methodol., 2, 2012, 1 10.5662%2Fwjm.v2.i1.1.
Wang, D., Xie, Y., Jaisi, D.P., Jin, Y., Effects of low-molecular-weight organic acids on the dissolution of hydroxyapatite nanoparticles. Environ. Sci.: Nano 3 (2016), 768–779, 10.1039/C6EN00085A.
Dorozhkin, S.V., Surface reactions of apatite dissolution. J. Colloid Interface Sci. 191 (1997), 489–497, 10.1006/jcis.1997.4942.
Smith, A.N., Posner, A.M., Quirk, J.P., Incongruent dissolution and surface complexes of hydroxyapatite. J. Colloid Interface Sci. 48 (1974), 442–449, 10.1016/0021-9797(74)90188-X.
Rubenis, K., Zemjane, S., Vecstaudza, J., Bitenieks, J., Locs, J., Densification of amorphous calcium phosphate using principles of the cold sintering process. J. Eur. Ceram. Soc. 41 (2021), 912–919, 10.1016/j.jeurceramsoc.2020.08.074.
Swain, S.K., Dorozhkin, S.V., Sarkar, D., Synthesis and dispersion of hydroxyapatite nanopowders. Mater. Sci. Eng. C 32 (2012), 1237–1240, 10.1016/j.msec.2012.03.014.
Santhosh, B., Galotta, A., Sorarù, G.D., Sglavo, V.M., Biesuz, M., Cold sintering of colloidal silica particles using different alkali solutions. Ceram. Int. 48 (2022), 35627–35632, 10.1016/j.ceramint.2022.08.334.
Ramesh, S., Tan, C.Y., Bhaduri, S.B., Teng, W.D., Sopyan, I., Densification behaviour of nanocrystalline hydroxyapatite bioceramics. J. Mater. Process. Technol. 206 (2008), 221–230, 10.1016/S0272-8842(99)00046-2.
Bianco, A., Cacciotti, I., Lombardi, M., Montanaro, L., Gusmano, G., Thermal stability and sintering behaviour of hydroxyapatite nanopowders. J. Therm. Anal. Calorim. 88 (2007), 237–243, 10.1007/s10973-006-8011-6.
Kingery, W.D., Densification during sintering in the presence of a liquid phase. I. Theory. J. Appl. Phys. 30 (1959), 301–306, 10.1063/1.1735155.
Jongebloed, W.L., Molenaar, I., Arends, J., Orientation-dependent etchpit penetration and dissolution of fluoroapatite. Caries Res. 7 (1973), 154–165, 10.1016/0003-9969(66)90032-X.
Johnson, N.W., Differences in the shape of human enamel crystallites after partial destruction by caries, EDTA and various acids. Arch. Oral Biol., 11, 1966, 10.1159/000259839 1421-IN49.
Hills, J.E., Sullivan, H.R., Studies on the acid decalcification of human dental enamel. I. Aust. Dent. J. 3 (1958), 6–18, 10.1111/j.1834-7819.1958.tb01812.x.
Pearce, E.I.F., On the dissolution of hydroxyapatite in acid solutions. J. Dent. Res. 67 (1988), 1056–1058, 10.1177/00220345880670070801.
Hossain, M.S., Ahmed, S., FTIR spectrum analysis to predict the crystalline and amorphous phases of hydroxyapatite: a comparison of vibrational motion to reflection. RSC Adv. 13 (2023), 14625–14630, 10.1039/D3RA02580B.
Diallo-Garcia, S., Osman, M.B., Krafft, J.M., Casale, S., Thomas, C., Kubo, J., Costentin, G., Identification of surface basic sites and acid–base pairs of hydroxyapatite. J. Phys. Chem. C 118 (2014), 12744–12757, 10.1021/jp500469x.
Joris, S.J., Amberg, C.H., Nature of deficiency in nonstoichiometric hydroxyapatites. II. Spectroscopic studies of calcium and strontium hydroxyapatites. J. Phys. Chem. 75 (1971), 3172–3178, 10.1021/j100689a025.
Berry, E.E., The structure and composition of some calcium-deficient apatites. J. Inorg. Nucl. Chem. 29 (1967), 317–327, 10.1016/0022-1902(67)80033-2.
Lazić, S., Zec, S., Miljević, N., Milonjić, S., The effect of temperature on the properties of hydroxyapatite precipitated from calcium hydroxide and phosphoric acid. Thermochim. Acta 374 (2001), 13–22, 10.1016/S0040-6031(01)00453-1.
Agbabiaka, O.G., Oladele, I.O., Akinwekomi, A.D., Adediran, A.A., Balogun, A.O., Olasunkanm, O.G., Olayanju, T.M.A., Effect of calcination temperature on hydroxyapatite developed from waste poultry eggshell. Scientific African, 8, 2020, e00452, 10.1016/j.sciaf.2020.e00452.