AFM; Alkyl chain; Benzothiophene; Benzothiophene derivatives; DFT study; Interfacial thermal resistance; Molecular junction; Thermal conductance; Thermal transport; Thermoelectric properties; Materials Science (all); Physical and Theoretical Chemistry; Physics - Mesoscopic Systems and Quantum Hall Effect; physics.app-ph
Abstract :
[en] We report a combined experimental (C-AFM and SThM) and theoretical (DFT) study of the thermoelectric properties of molecular junctions made of self-assembled monolayers on Au of thiolated benzothieno-benzothiophene (BTBT) and alkylated BTBT derivatives (C8-BTBT-C8). We measure the thermal conductance per molecule at 15 and 8.8 pW/K, respectively, among the lowest values for molecular junctions so far reported (10-50 pW/K). The lower thermal conductance for C8-BTBT-C8 is consistent with two interfacial thermal resistances introduced by the alkyl chains, which reduce the phononic thermal transport in the molecular junction. The Seebeck coefficients are 36 and 245 μV/K, respectively, the latter due to the weak coupling of the core BTBT with the electrodes. We deduce a thermoelectric figure of merit ZT up to ≈10-4 for the BTBT molecular junctions at 300 K, on a par with the values reported for archetype molecular junctions (oligo(phenylene ethynylene) derivatives).
Disciplines :
Chemistry
Author, co-author :
Gonzalez-Casal, Sergio; Institute for Electronics Microelectronics and Nanotechnology (IEMN), CNRS, Av. Poincaré, Villeneuve d'Ascq 59652, France
Jouclas, Rémy; Laboratory of Polymer Chemistry, Université Libre de Bruxelles, Bd. du triomphe, Bruxelles 1050, Belgium
Arbouch, Imane ; Université de Mons - UMONS > Faculté des Sciences > Service de Chimie des matériaux nouveaux
Geerts, Yves Henri ; Laboratory of Polymer Chemistry, Université Libre de Bruxelles, Bd. du triomphe, Bruxelles 1050, Belgium ; International Solvay Institutes of Physics and Chemistry, Université Libre de Bruxelles, Bd. du Triomphe, Bruxelles 1050, Belgium
VAN DYCK, Colin ; Université de Mons - UMONS > Faculté des Sciences > Service Chimie Physique Théorique
Cornil, Jérôme ; Université de Mons - UMONS > Faculté des Sciences > Service de Chimie des matériaux nouveaux
Vuillaume, Dominique ; Institute for Electronics Microelectronics and Nanotechnology (IEMN), CNRS, Av. Poincaré, Villeneuve d'Ascq 59652, France
Language :
English
Title :
Thermoelectric Properties of Benzothieno-Benzothiophene Self-Assembled Monolayers in Molecular Junctions.
R150 - Institut de Recherche sur les Systèmes Complexes R400 - Institut de Recherche en Science et Ingénierie des Matériaux
Funders :
Agence Nationale de la Recherche Fédération Wallonie-Bruxelles Fonds De La Recherche Scientifique - FNRS
Funding text :
S.G.C. and D.V. acknowledge support from the ANR (# ANR-21-CE30-0065, project HotElo). Y.G. is thankful to the Belgian National Fund for Scientific Research (FNRS) for financial support through research projects Pi-Fast (No T.0072.18), Pi-Chir (No T.0094.22), 2D to 3D (No 30489208), and CHISUB (No 40007495). Financial supports from the Fe\u0301de\u0301ration Wallonie-Bruxelles (ARC No 20061) is also acknowledged. The research in Mons is supported by the Belgian National Fund for Scientific Research (FRS-FNRS) via the EOS CHISUB project (No 40007495) and within the Consortium des E\u0301quipements de Calcul Intensif - CE\u0301CI (Grant Number U.G.018.18), and by the Walloon Region (LUCIA Tier-1 supercomputer; Grant Number 1910247). J.C. is an FNRS research director.S.G.C. and D.V. acknowledge support from the ANR (# ANR-21-CE30-0065, project HotElo). Y.G. is thankful to the Belgian National Fund for Scientific Research (FNRS) for financial support through research projects Pi-Fast (No T.0072.18), Pi-Chir (No T.0094.22), 2D to 3D (No 30489208), and CHISUB (No 40007495). Financial supports from the Fe\u0301de\u0301ration Wallonie-Bruxelles (ARC No 20061) is also acknowledged. The research in Mons is supported by the Belgian National Fund for Scientific Research (FRS-FNRS) via the EOS CHISUB project (No 40007495) and within the Consortium des E\u0301quipements de Calcul Intensif \u2013 CE\u0301CI (Grant Number U.G.018.18), and by the Walloon Region (LUCIA Tier-1 supercomputer; Grant Number 1910247). J.C. is an FNRS research director.
Paulsson, M.; Datta, S. Thermoelectric effect in molecular electronics. Phys. Rev. B 2003, 67 ( 2), 241403(R) 10.1103/PhysRevB.67.241403
Craven, G. T.; Nitzan, A. Electron hopping heat transport in molecules. J. Chem. Phys. 2023, 158 ( 1), 174306, 10.1063/5.0144248
Wang, R. Y.; Segalman, R. A.; Majumdar, A. Room temperature thermal conductance of alkanedithiol self-assembled monolayers. Appl. Phys. Lett. 2006, 89 ( 17), 173113, 10.1063/1.2358856
Wang, Z.; Carter, J. A.; Lagutchev, A.; Koh, Y. K.; Seong, N.-H.; Cahill, D. G.; Dlott, D. D. Ultrafast Flash Thermal Conductance of Molecular Chains. Science 2007, 317 ( 5839), 787- 790, 10.1126/science.1145220
Luo, T.; Lloyd, J. R. Equilibrium Molecular Dynamics Study of Lattice Thermal Conductivity/Conductance of Au-SAM-Au Junctions. J. Heat Transfer 2010, 132, 032401, 10.1115/1.4000047
Duda, J. C.; Saltonstall, C. B.; Norris, P. M.; Hopkins, P. E. Assessment and prediction of thermal transport at solid-self-assembled monolayer junctions. J. Chem. Phys. 2011, 134 ( 9), 094704, 10.1063/1.3557823
Meier, T.; Menges, F.; Nirmalraj, P.; Holscher, H.; Riel, H.; Gotsmann, B. Length-dependent thermal transport along molecular chains. Phys. Rev. Lett. 2014, 113 ( 6), 060801, 10.1103/PhysRevLett.113.060801
Cui, L.; Hur, S.; Akbar, Z. A.; Klockner, J. C.; Jeong, W.; Pauly, F.; Jang, S. Y.; Reddy, P.; Meyhofer, E. Thermal conductance of single-molecule junctions. Nature 2019, 572 ( 7771), 628- 633, 10.1038/s41586-019-1420-z
Wang, K.; Meyhofer, E.; Reddy, P. Thermal and Thermoelectric Properties of Molecular Junctions. Adv. Funct. Mater. 2020, 30 ( 8), 1904534, 10.1002/adfm.201904534
Gemma, A.; Gotsmann, B. A roadmap for molecular thermoelectricity. Nat. Nanotechnol. 2021, 16 ( 12), 1299- 1301, 10.1038/s41565-021-01012-0
Gemma, A.; Tabatabaei, F.; Drechsler, U.; Zulji, A.; Dekkiche, H.; Mosso, N.; Niehaus, T.; Bryce, M. R.; Merabia, S.; Gotsmann, B. Full thermoelectric characterization of a single molecule. Nat. Commun. 2023, 14 ( 1), 3868, 10.1038/s41467-023-39368-7
Cui, L.; Miao, R.; Jiang, C.; Meyhofer, E.; Reddy, P. Perspective: Thermal and thermoelectric transport in molecular junctions. J. Chem. Phys. 2017, 146 ( 9), 092201, 10.1063/1.4976982
Mosso, N.; Sadeghi, H.; Gemma, A.; Sangtarash, S.; Drechsler, U.; Lambert, C.; Gotsmann, B. Thermal Transport through Single-Molecule Junctions. Nano Lett. 2019, 19 ( 11), 7614- 7622, 10.1021/acs.nanolett.9b02089
Schweicher, G.; Lemaur, V.; Niebel, C.; Ruzie, C.; Diao, Y.; Goto, O.; Lee, W. Y.; Kim, Y.; Arlin, J. B.; Karpinska, J. Bulky end-capped [1]benzothieno[3,2-b]benzothiophenes: reaching high-mobility organic semiconductors by fine tuning of the crystalline solid-state order. Adv. Mater. 2015, 27 ( 19), 3066- 3072, 10.1002/adma.201500322
Tsutsui, Y.; Schweicher, G.; Chattopadhyay, B.; Sakurai, T.; Arlin, J. B.; Ruzie, C.; Aliev, A.; Ciesielski, A.; Colella, S.; Kennedy, A. R. Unraveling Unprecedented Charge Carrier Mobility through Structure Property Relationship of Four Isomers of Didodecyl[1]benzothieno[3,2-b][1]benzothiophene. Adv. Mater. 2016, 28 ( 33), 7106- 7114, 10.1002/adma.201601285
Gueye, M. N.; Vercouter, A.; Jouclas, R.; Guerin, D.; Lemaur, V.; Schweicher, G.; Lenfant, S.; Antidormi, A.; Geerts, Y.; Melis, C. Thermal conductivity of benzothieno-benzothiophene derivatives at the nanoscale. Nanoscale 2021, 13 ( 6), 3800- 3807, 10.1039/D0NR08619C
Ruzié, C.; Karpinska, J.; Laurent, A.; Sanguinet, L.; Hunter, S.; Anthopoulos, T. D.; Lemaur, V.; Cornil, J.; Kennedy, A. R.; Fenwick, O. Design, synthesis, chemical stability, packing, cyclic voltammetry, ionisation potential, and charge transport of [1]benzothieno[3,2-b][1]benzothiophene derivatives. J. Mater. Chem. C 2016, 4 ( 22), 4863- 4879, 10.1039/C6TC01409G
Košata, B.; Kozmík, V.; Svoboda, J. Reactivity of [1]Benzothieno[3,2-b][1]Benzothiophene - Electrophilic and Metallation Reactions. Collect. Czech. Chem. Commun. 2002, 67 ( 5), 645- 664, 10.1135/cccc20020645
Etori, H.; Hanna, J.; Inagaki, S.; Ishizuka, A.; Mizuguchi, M. Benzothienobenzothiophene Derivative, Organic Semiconductor Material and Organic Transistor. JP2017052707A, 2017.
Kawakami, Y.; Yamaguchi, K. Compound, Pattern Forming Substrate, Coupling Agent, and Pattern Forming Method. JP2019019092A, 2019.
Cho, S. J.; Kong, G. D.; Park, S.; Park, J.; Byeon, S. E.; Kim, T.; Yoon, H. J. Molecularly Controlled Stark Effect Induces Significant Rectification in Polycyclic-Aromatic-Hydrocarbon-Terminated n-Alkanethiolates. Nano Lett. 2019, 19 ( 1), 545- 553, 10.1021/acs.nanolett.8b04488
Niebel, C.; Kim, Y.; Ruzié, C.; Karpinska, J.; Chattopadhyay, B.; Schweicher, G.; Richard, A.; Lemaur, V.; Olivier, Y.; Cornil, J. Thienoacene dimers based on the thieno[3,2-b]thiophene moiety: synthesis, characterization and electronic properties. J. Mater. Chem. C 2015, 3 ( 3), 674- 685, 10.1039/C4TC02158D
Combe, C. M. S.; Biniek, L.; Schroeder, B. C.; McCulloch, I. Synthesis of [1]benzothieno[3,2-b][1]benzothiophene pendant and norbornene random co-polymers via ring opening metathesis. J. Mater. Chem. C 2014, 2 ( 3), 538- 541, 10.1039/C3TC32058H
Mervinetsky, E.; Alshanski, I.; Lenfant, S.; Guerin, D.; Medrano Sandonas, L.; Dianat, A.; Gutierrez, R.; Cuniberti, G.; Hurevich, M.; Yitzchaik, S. Electron Transport through Self-Assembled Monolayers of Tripeptides. J. Phys. Chem. C 2019, 123 ( 14), 9600- 9608, 10.1021/acs.jpcc.9b01082
Kim, K.; Chung, J.; Hwang, G.; Kwon, O.; Lee, J. S. Quantitative measurement with scanning thermal microscope by preventing the distortion due to the heat transfer through the air. ACS Nano 2011, 5 ( 11), 8700- 8709, 10.1021/nn2026325
Dryden, J. R. The Effect of a Surface Coating on the Constriction Resistance of a Spot on an Infinite Half-Plane. Journal of Heat Transfer 1983, 105 ( 2), 408- 410, 10.1115/1.3245596
Kondratenko, K.; Guerin, D.; Wallart, X.; Lenfant, S.; Vuillaume, D. Thermal and electrical cross-plane conductivity at the nanoscale in poly(3,4-ethylenedioxythiophene):trifluoromethanesulfonate thin films. Nanoscale 2022, 14, 6075, 10.1039/D2NR00819J
Carslaw, H. S.; Jaeger, J. C. Conduction of Heat in Solids; Oxford University Press: 1959.
Schreiber, F. Structure and growth of self-assembling monolayers. Prog. Surf. Sci. 2000, 65 ( 5-8), 151- 256, 10.1016/S0079-6816(00)00024-1
Duwez, A.-S. Exploiting electron spectroscopies to probe the structure and organization of self-assembled monolayers: a review. J. Electron Spectrosc. Relat. Phenom. 2004, 134 ( 2), 97- 138, 10.1016/j.elspec.2003.10.005
Love, J. C.; Estroff, L. A.; Kriebel, J. K.; Nuzzo, R. G.; Whitesides, G. M. Self-assembled monolayers of thiolates on metals as a form of nanotechnology. Chem. Rev. 2005, 105 ( 4), 1103- 1169, 10.1021/cr0300789
Kapitza, P. L. Heat Transfer and Superfluidity of Helium II. Phys. Rev. 1941, 60 ( 4), 354- 355, 10.1103/PhysRev.60.354
Hu, L.; Zhang, L.; Hu, M.; Wang, J.-S.; Li, B.; Keblinski, P. Phonon interference at self-assembled monolayer interfaces: Molecular dynamics simulations. Phys. Rev. B 2010, 81 ( 23), 235427, 10.1103/PhysRevB.81.235427
Losego, M. D.; Grady, M. E.; Sottos, N. R.; Cahill, D. G.; Braun, P. V. Effects of chemical bonding on heat transport across interfaces. Nat. Mater. 2012, 11 ( 6), 502- 506, 10.1038/nmat3303
Majumdar, S.; Sierra-Suarez, J. A.; Schiffres, S. N.; Ong, W. L.; Higgs, C. F., 3rd; McGaughey, A. J.; Malen, J. A. Vibrational mismatch of metal leads controls thermal conductance of self-assembled monolayer junctions. Nano Lett. 2015, 15 ( 5), 2985- 2991, 10.1021/nl504844d
Sadeghi, H.; Sangtarash, S.; Lambert, C. J. Oligoyne Molecular Junctions for Efficient Room Temperature Thermoelectric Power Generation. Nano Lett. 2015, 15 ( 11), 7467- 7472, 10.1021/acs.nanolett.5b03033
Mosso, N.; Drechsler, U.; Menges, F.; Nirmalraj, P.; Karg, S.; Riel, H.; Gotsmann, B. Heat transport through atomic contacts. Nat. Nanotechnol 2017, 12 ( 5), 430- 433, 10.1038/nnano.2016.302
Burkle, M.; Asai, Y. How To Probe the Limits of the Wiedemann-Franz Law at Nanoscale. Nano Lett. 2018, 18 ( 11), 7358- 7361, 10.1021/acs.nanolett.8b03651
Craven, G. T.; Nitzan, A. Wiedemann-Franz Law for Molecular Hopping Transport. Nano Lett. 2020, 20 ( 2), 989- 993, 10.1021/acs.nanolett.9b04070
Noori, M. D.; Sangtarash, S.; Sadeghi, H. The Effect of Anchor Group on the Phonon Thermal Conductance of Single Molecule Junctions. Applied Sciences 2021, 11 ( 3), 1066, 10.3390/app11031066
Noori, M.; Sadeghi, H.; Lambert, C. J. High-performance thermoelectricity in edge-over-edge zinc-porphyrin molecular wires. Nanoscale 2017, 9 ( 16), 5299- 5304, 10.1039/C6NR09598D
Gotsmann, B.; Gemma, A.; Segal, D. Quantum phonon transport through channels and molecules─A Perspective. Appl. Phys. Lett. 2022, 120 ( 16), 160503, 10.1063/5.0088460