end-of-life; heat-shrinkable films; PBAT; pulp fibers; reactive extrusion; Biocomposite; Disposables; End of lives; Heat shrinkable; Heat shrinkable films; Polies (butylene adipate co terephthalate); Pulp fibers; Reactive extrusions; Recyclables; Chemistry (all); Environmental Chemistry; Chemical Engineering (all); Renewable Energy, Sustainability and the Environment
Abstract :
[en] Heat-shrinkable films are widely used as disposable secondary packaging but are conventionally made from fossil-based and nonbiodegradable polyvinyl chloride or polyethylene. To lower the environmental impact of such products, this work reports the development of recyclable, biodegradable, and partially biosourced heat-shrinkable biocomposites that are cost-competitive with existing shrink wraps. Poly(butylene adipate-co-terephthalate), a growing biodegradable thermoplastic, was simultaneously reinforced with pulp fibers and partially cross-linked in a single-step reactive melt processing. The designed peroxide-initiated reaction led to a 55 wt % cocontinuous insoluble gel incorporating all the pulp fibers into a cross-linked polymer network. In the solid state, the cross-linked biocomposite shows 60% elongation at break with a 200% increase in Young's modulus, while the only addition of pulp fibers stiffens and embrittles the matrix. Creep tests in the melt state indicated that the cross-linked network induces homogeneous shrinking even during the loading phase, demonstrating the potential use of the biocomposites as heat-shrinkable films. The shrinking also promotes the shape-memory of the biocomposite, which retains its dimensions after four cycles. The circularity of the materials was assessed by mechanical recycling and industrial composting, which have proven feasible end-of-life options for heat-shrinkable biocomposites.
Disciplines :
Chemistry
Author, co-author :
Avella, Angelica; Department of Industrial and Materials Science, Chalmers University of Technology, Rännvägen 2A, 41258 Gothenburg, Sweden ; Wallenberg Wood Science Centre, Chalmers University of Technology, Kemigården 4, 41296 Gothenburg, Sweden
Salse, Mathieu; Department of Industrial and Materials Science, Chalmers University of Technology, Rännvägen 2A, 41258 Gothenburg, Sweden ; Laboratoire MATEIS, Institut National des Sciences Appliquées Lyon, Bât. B. Pascal, Avenue Jean Capelle, 69621 Villeurbanne, France ; Wallenberg Wood Science Centre, Chalmers University of Technology, Kemigården 4, 41296 Gothenburg, Sweden
Sessini, Valentina ; Université de Mons - UMONS > Faculté des Sciences > Matériaux Polymères et Composites ; Department of Industrial and Materials Science, Chalmers University of Technology, Rännvägen 2A, 41258 Gothenburg, Sweden ; Department of Organic and Inorganic Chemistry, Institute of Chemical Research "Andrés M. del Río" (IQAR), Universidad de Alcalá, Campus Universitario, Alcalá de Henares, 28871 Madrid, Spain ; Wallenberg Wood Science Centre, Chalmers University of Technology, Kemigården 4, 41296 Gothenburg, Sweden
MINCHEVA, Rosica ; Université de Mons - UMONS > Faculté des Sciences > Service des Matériaux Polymères et Composites
Lo Re, Giada ; Department of Industrial and Materials Science, Chalmers University of Technology, Rännvägen 2A, 41258 Gothenburg, Sweden ; Wallenberg Wood Science Centre, Chalmers University of Technology, Kemigården 4, 41296 Gothenburg, Sweden
Language :
English
Title :
Reusable, Recyclable, and Biodegradable Heat-Shrinkable Melt Cross-Linked Poly(butylene adipate-co-terephthalate)/Pulp Biocomposites for Polyvinyl Chloride Replacement.
European Regional Development Fund Chalmers Tekniska H?gskola Wallenberg Wood Science Center Knut och Alice Wallenbergs Stiftelse Gouvernement Wallon
Funding text :
Knut and Alice Wallenberg Biocomposites (grant number V-2019–0041, Dnr. KAW 2018.0551), the Wallenberg Wood Science Center (WWSC) 2.0 program, and Chalmers Genie are acknowledged for financial support. Rosica Mincheva acknowledges the support from Wallonia and the European Commission (FEDER) in the frame of LCFM-BIOMAT and UP_PLASTICS projects.
Liu, C.; Qin, H.; Mather, P. T. Review of Progress in Shape-Memory Polymers. J. Mater. Chem. 2007, 17 ( 16), 1543- 1558, 10.1039/b615954k
Vinyl Chloride | Medical Management Guidelines|Toxic Substance Portal|ATSDR. https://wwwn.cdc.gov/TSP/MMG/MMGDetails.aspx?mmgid=278&toxid=51 (accessed June 6, 2023).
Schyns, Z. O. G.; Shaver, M. P. Mechanical Recycling of Packaging Plastics: A Review. Macromol. Rapid Commun. 2021, 42 ( 3), 1- 27, 10.1002/marc.202000415
Geyer, R.; Jambeck, J. R.; Law, K. L. Production, Use, and Fate of All Plastics Ever Made. Sci. Adv. 2017, 3 ( 7), e1700782 10.1126/sciadv.1700782
United Nations Environment Programme . Guidelines for national waste management strategies: moving from challenges to opportunities. https://wedocs.unep.org/20.500.11822/8669 (accessed July 11, 2023).
Tullo, A. H. The biodegradable polymer PBAT is hitting the big time. https://cen.acs.org/business/biobased-chemicals/biodegradable-polymer-PBAT-hitting-big/99/i34 (accessed June 5, 2023).
European Bioplastics . Bioplastics market data. https://www.european-bioplastics.org/market/(accessed June 6, 2022).
Long, Z.; Wang, W.; Zhou, Y.; Yu, L.; Shen, L.; Dong, Y. Effect of Polybutylene Adipate Terephthalate on the Properties of Starch/Polybutylene Adipate Terephthalate Shape Memory Composites. Int. J. Biol. Macromol. 2023, 240 ( March), 124452, 10.1016/j.ijbiomac.2023.124452
Pietrosanto, A.; Apicella, A.; Scarfato, P.; Incarnato, L.; Di Maio, L. Development of Novel Blown Shrink Films from Poly(Lactide)/Poly(Butylene-Adipate-Co-Terephthalate) Blends for Sustainable Food Packaging Applications. Polymers 2022, 14 ( 14), 2759, 10.3390/POLYM14142759
Yu, L.; Fu, Y.; Dong, Y. Shape Memory Property of Polybutylene Adipate-Co-Terephthalate. Pigment Resin Technol. 2022, 10.1108/PRT-09-2022-0109
Ferreira, F. V.; Cividanes, L. S.; Gouveia, R. F.; Lona, L. M. F. An Overview on Properties and Applications of Poly(Butylene Adipate-Co-Terephthalate)-PBAT Based Composites. Polym. Eng. Sci. 2019, 59 ( s2), E7 10.1002/pen.24770
Avella, A.; Ruda, M.; Gioia, C.; Sessini, V.; Roulin, T.; Carrick, C.; Verendel, J.; Lo Re, G. Lignin Valorization in Thermoplastic Biomaterials: From Reactive Melt Processing to Recyclable and Biodegradable Packaging. Chem. Eng. J. 2023, 463 ( February), 142245, 10.1016/j.cej.2023.142245
Botta, L.; Titone, V.; Teresi, R.; Scarlata, M. C.; Lo Re, G.; La Mantia, F. P.; Lopresti, F. Biocomposite PBAT/Lignin Blown Films with Enhanced Photo-Stability. Int. J. Biol. Macromol. 2022, 217 ( June), 161- 170, 10.1016/j.ijbiomac.2022.07.048
Fortunati, E.; Kenny, J. M.; Torre, L. Lignocellulosic Materials as Reinforcements in Sustainable Packaging Systems: Processing, Properties, and Applications. Biomass, Biopolym.-Based Mater., Bioenergy 2019, 5, 87- 102, 10.1016/B978-0-08-102426-3.00005-9
Sessini, V.; Haseeb, B.; Boldizar, A.; Lo Re, G. Sustainable Pathway towards Large Scale Melt Processing of the New Generation of Renewable Cellulose-Polyamide Composites. RSC Adv. 2021, 11 ( 2), 637- 656, 10.1039/D0RA07141B
Mukherjee, T.; Czaka, M.; Kao, N.; Gupta, R. K.; Choi, H. J.; Bhattacharya, S. Dispersion Study of Nanofibrillated Cellulose Based Poly(Butylene Adipate-Co-Terephthalate) Composites. Carbohydr. Polym. 2014, 102 ( 1), 537- 542, 10.1016/j.carbpol.2013.11.047
Vatansever, E.; Arslan, D.; Sarul, D. S.; Kahraman, Y.; Gunes, G.; Durmus, A.; Nofar, M. Development of CNC-Reinforced PBAT Nanocomposites with Reduced Percolation Threshold: A Comparative Study on the Preparation Method. J. Mater. Sci. 2020, 55 ( 32), 15523- 15537, 10.1007/s10853-020-05105-4
Avella, A.; Idström, A.; Mincheva, R.; Nakayama, K.; Evenäs, L.; Raquez, J. M.; Lo Re, G. Reactive Melt Crosslinking of Cellulose Nanocrystals/Poly(ϵ-Caprolactone) for Heat-Shrinkable Network. Composites, Part A 2022, 163 ( July), 107166, 10.1016/j.compositesa.2022.107166
Imre, B.; García, L.; Puglia, D.; Vilaplana, F. Reactive Compatibilization of Plant Polysaccharides and Biobased Polymers: Review on Current Strategies, Expectations and Reality. Carbohydr. Polym. 2019, 209, 20- 37, 10.1016/j.carbpol.2018.12.082
Avella, A.; Mincheva, R.; Raquez, J.-M.; Lo Re, G. Substantial Effect of Water on Radical Melt Crosslinking and Rheological Properties of Poly(ϵ-Caprolactone). Polymers 2021, 13 ( 4), 491- 505, 10.3390/polym13040491
Rajendran, N.; Runge, T.; Bergman, R. D.; Nepal, P.; Houtman, C. Techno-Economic Analysis and Life Cycle Assessment of Cellulose Nanocrystals Production from Wood Pulp. Bioresour. Technol. 2023, 377 ( January), 128955, 10.1016/j.biortech.2023.128955
Venkatesh, A.; Forsgren, L.; Avella, A.; Banke, K.; Wahlberg, J.; Vilaseca, F.; Lo Re, G.; Boldizar, A. Water-assisted Melt Processing of Cellulose Biocomposites with Poly(Ε-caprolactone) or Poly(Ethylene-acrylic Acid) for the Production of Carton Screw Caps. J. Appl. Polym. Sci. 2022, 139, 51615, 10.1002/app.51615
Siyamak, S.; Ibrahim, N. A.; Abdolmohammadi, S.; Yunus, W. M. Z. W.; Rahman, M. Z. A. B. Effect of Fiber Esterification on Fundamental Properties of Oil Palm Empty Fruit Bunch Fiber/Poly(Butylene Adipate-Co-Terephthalate) Biocomposites. Int. J. Mol. Sci. 2012, 13 ( 2), 1327- 1346, 10.3390/IJMS13021327
Hamdu, H. H. An Isocratic Normal-Phase High-Performance Liquid Chromatographic Method for the Simultaneous Determination of Benzoyl Peroxide and Benzoic Acid in One Pharmaceutical Preparation and Their Stability in Different Solvents. IOSR J. Pharm. Biol. Sci. 2014, 9 ( 1), 04- 12, 10.9790/3008-09110412
Sessini, V.; Navarro-Baena, I.; Arrieta, M. P.; Dominici, F.; López, D.; Torre, L.; Kenny, J. M.; Dubois, P.; Raquez, J. M.; Peponi, L. Effect of the Addition of Polyester-Grafted-Cellulose Nanocrystals on the Shape Memory Properties of Biodegradable PLA/PCL Nanocomposites. Polym. Degrad. Stab. 2018, 152, 126- 138, 10.1016/j.polymdegradstab.2018.04.012
Chivrac, F.; Kadlecová, Z.; Pollet, E.; Avérous, L. Aromatic Copolyester-Based Nano-Biocomposites: Elaboration, Structural Characterization and Properties. J. Polym. Environ. 2006, 14 ( 4), 393- 401, 10.1007/s10924-006-0033-4
Wei, L.; McDonald, A. G.; Stark, N. M. Grafting of Bacterial Polyhydroxybutyrate (PHB) onto Cellulose via In Situ Reactive Extrusion with Dicumyl Peroxide. Biomacromolecules 2015, 16 ( 3), 1040- 1049, 10.1021/acs.biomac.5b00049
Wu, F.; Misra, M.; Mohanty, A. K. Sustainable Green Composites from Biodegradable Plastics Blend and Natural Fibre with Balanced Performance: Synergy of Nano-Structured Blend and Reactive Extrusion. Compos. Sci. Technol. 2020, 200 ( July), 108369, 10.1016/j.compscitech.2020.108369
Wu, F.; Misra, M.; Mohanty, A. K. Novel Tunable Super-Tough Materials from Biodegradable Polymer Blends: Nano-Structuring through Reactive Extrusion. RSC Adv. 2019, 9 ( 5), 2836- 2847, 10.1039/C8RA09596E
Muthuraj, R.; Misra, M.; Mohanty, A. K. Biodegradable Biocomposites from Poly(Butylene Adipate-Co-Terephthalate) and Miscanthus: Preparation, Compatibilization, and Performance Evaluation. J. Appl. Polym. Sci. 2017, 134 ( 43), 45448, 10.1002/app.45448
Wu, D.; Huang, A.; Fan, J.; Xu, R.; Liu, P.; Li, G.; Yang, S. Effect of Blending Procedures and Reactive Compatibilizers on the Properties of Biodegradable Poly (Butylene Adipate- Co-Terephthalate)/Poly (Lactic Acid) Blends. J. Polym. Eng. 2021, 41 ( 2), 95- 108, 10.1515/polyeng-2020-0161
Rzepna, M.; Przybytniak, G.; Sadło, J. Radiation Degradation and Stability of PBAT: Copolymer of Aromatic and Aliphatic Esters. J. Appl. Polym. Sci. 2018, 135 ( 37), 46682, 10.1002/app.46682
Hioe, J.; Zipse, H. Radical Stability and Its Role in Synthesis and Catalysis. Org. Biomol. Chem. 2010, 8 ( 16), 3609- 3617, 10.1039/c004166a
Abderrahim, B.; Abderrahman, E.; Mohamed, A.; Fatima, T.; Abdesselam, T.; Krim, O. Kinetic Thermal Degradation of Cellulose, Polybutylene Succinate and a Green Composite: Comparative Study. World J. Environ. Eng. 2015, 3 ( 4), 95- 110, 10.12691/WJEE-3-4-1
Azubuike, C. P.; Odulaja, J. O.; Okhamafe, A. O. Physicotechnical, Spectroscopic and Thermogravimetric Properties of Powdered Cellulose and Microcrystalline Cellulose Derived from Groundnut Shells. J. Excipients Food Chem. 2016, 3 ( 3), 106- 115
Lo Re, G.; Spinella, S.; Boujemaoui, A.; Vilaseca, F.; Larsson, P. T.; Adås, F.; Berglund, L. A.; Tomas Larsson, P.; Ada, F.; Berglund, L. A. Poly(ϵ-Caprolactone) Biocomposites Based on Acetylated Cellulose Fibers and Wet Compounding for Improved Mechanical Performance. ACS Sustain. Chem. Eng. 2018, 6 ( 5), 6753- 6760, 10.1021/acssuschemeng.8b00551
Suzuki, K.; Homma, Y.; Igarashi, Y.; Okumura, H.; Yano, H. Effect of Preparation Process of Microfibrillated Cellulose-Reinforced Polypropylene upon Dispersion and Mechanical Properties. Cellulose 2017, 24 ( 9), 3789- 3801, 10.1007/s10570-017-1355-1
Wang, Z.; Jin, K.; Lim, K. H.; Liu, P.; Lu, D.; Yang, X.; Wang, W. J. Biodegradable Poly(Butylene Adipate-Co-Terephthalate) Nanocomposites Reinforced with In Situ Fibrillated Nanocelluloses. ACS Sustain. Chem. Eng. 2023, 11 ( 27), 9947- 9955, 10.1021/acssuschemeng.3c00474
Hong, C. K.; Maeng, H.; Song, K.; Kaang, S. Thermal Behaviors of Heat Shrinkable Poly(Vinyl Chloride) Film. J. Appl. Polym. Sci. 2009, 112 ( 2), 886- 895, 10.1002/app.29550
Morshedian, J.; Khonakdar, H. A.; Mehrabzadeh, M.; Eslami, H. Preparation and Properties of Heat-Shrinkable Cross-Linked Low-Density Polyethylene. Adv. Polym. Technol. 2003, 22 ( 2), 112- 119, 10.1002/adv.10041
Basak, S. Redesigning the Modern Applied Medical Sciences and Engineering with Shape Memory Polymers. Adv. Compos. Hybrid Mater. 2021, 4, 223- 234, 10.1007/s42114-021-00216-1
Trinkle, S.; Friedrich, C. Van Gurp-Palmen-Plot: A Way to Characterize Polydispersity of Linear Polymers. Rheol. Acta 2001, 40 ( 4), 322- 328, 10.1007/s003970000137
Li, F. J.; Yu, X. T.; Huang, Z.; Liu, D. F. Interfacial Improvements in Cellulose Nanofibers Reinforced Polylactide Bionanocomposites Prepared by in Situ Reactive Extrusion. Polym. Adv. Technol. 2021, 32 ( 6), 2352- 2366, 10.1002/pat.5264
Rosenstock Völtz, L.; Di Guiseppe, I.; Geng, S.; Oksman, K. The Effect of Recycling on Wood-Fiber Thermoplastic Composites. Polymers 2020, 12 ( 8), 1750, 10.3390/POLYM12081750
Koh, L. M.; Khor, S. M. Biodegradation Process: Basics, Factors Affecting, and Industrial Applications. Handbook of Biodegradable Materials; Springer International Publishing, 2023; pp 19- 56.
Yoshii, F.; Darwis, D.; Mitomo, H.; Makuuchi, K. Crosslinking of Poly(ϵ-Caprolactone) by Radiation Technique and Its Biodegradability. Radiat. Phys. Chem. 2000, 57 ( 3-6), 417- 420, 10.1016/S0969-806X(99)00449-1
Palsikowski, P. A.; Kuchnier, C. N.; Pinheiro, I. F.; Morales, A. R. Biodegradation in Soil of PLA/PBAT Blends Compatibilized with Chain Extender. J. Polym. Environ. 2018, 26 ( 1), 330- 341, 10.1007/s10924-017-0951-3
Jian, J.; Xiangbin, Z.; Xianbo, H. An Overview on Synthesis, Properties and Applications of Poly(Butylene-Adipate-Co-Terephthalate)-PBAT. Adv. Ind. Eng. Polym. Res. 2020, 3 ( 1), 19- 26, 10.1016/j.aiepr.2020.01.001
Pinheiro, I. F.; Ferreira, F. V.; Souza, D. H. S.; Gouveia, R. F.; Lona, L. M. F.; Morales, A. R.; Mei, L. H. I. Mechanical, Rheological and Degradation Properties of PBAT Nanocomposites Reinforced by Functionalized Cellulose Nanocrystals. Eur. Polym. J. 2017, 97, 356- 365, 10.1016/j.eurpolymj.2017.10.026
Vilaplana, F.; Strömberg, E.; Karlsson, S. Environmental and Resource Aspects of Sustainable Biocomposites. Polym. Degrad. Stab. 2010, 95 ( 11), 2147- 2161, 10.1016/j.polymdegradstab.2010.07.016
Re, G. L.; Morreale, M.; Scaffaro, R.; La Mantia, F. P. Biodegradation paths of Mater-Bi®/kenaf biodegradable composites. J. Appl. Polym. Sci. 2013, 129 ( 6), 3198- 3208, 10.1002/APP.39027