Bioinformatics-based analysis of fatty acid metabolic reprogramming in hepatocellular carcinoma: cellular heterogeneity, therapeutic targets, and drug discovery
[en] Fatty acid (FA) reprogramming has a significant role in liver cancer. However, the contribution of FA metabolism reprogramming to the heterogeneity of hepatocellular carcinoma (HCC) has not been established. Bioinformatics analysis using single-cell sequencing, a non-negative matrix factorization (NMF) algorithm, and survival analyses were used to investigate FA metabolism reprogramming in HCC patients. Molecular targets and the progress of drug discovery were also analyzed and discussed. Among 13 types of HCC cells, epithelial cells exhibited the highest score for FA metabolic aberrance, while certain lymphocytes, such as B cells, CD8Tcm cells, and Treg cells, exhibited the lowest score. Furthermore, epithelial cells displayed significant diversity in FA metabolism with a wide distribution range (−0.2 to 0.8). Additionally, a low level of FA metabolism was associated with poor prognosis in HCC patients (log-rank test, P=0.0089). Higher oxidase expression was correlated with a lower risk of oncogenesis and higher overall survival. However, enzymes involved in synthesis, oxidation, storage, and release exhibited considerable phenotypic diversity in HCC. FA metabolism reprograming was shown to be significantly correlated with the heterogeneity of HCC, which is characterized by a diversity of cancerous cells and enzymes.
Disciplines :
Pharmacy, pharmacology & toxicology
Author, co-author :
Guo, Yingying
Shi, Run
Xu, Yu
Cho, William C.
Yang, Jun
Choi, You Yeon
Sun, Jing
Ma, Yan
Pozharitskaya, Olga
Shikov, Alexander
Li, Hongliang
Li, Minglun
Qiu, Zhenpeng
Yang, Woong Mo
DUEZ, Pierre ; Université de Mons - UMONS > Faculté de Médecine et de Pharmacie > Service de Chimie thérapeutique et Pharmacognosie
Bioinformatics-based analysis of fatty acid metabolic reprogramming in hepatocellular carcinoma: cellular heterogeneity, therapeutic targets, and drug discovery
R550 - Institut des Sciences et Technologies de la Santé R100 - Institut des Biosciences
Funders :
NSCF - National Natural Science Foundation of China Open Project of Hubei Key Laboratory of Wudang Local Chinese Medicine Research Key Project of the Department of Science and Technology of Hubei Province
Funding text :
The study was financially supported by the National Natural Science Foundation of China (82274155, Prof. Xuanbin WANG), the Open Project of Hubei Key Laboratory of Wudang Local Chinese Medicine Research (Hubei University of Medicine [WDCM201918, Dr. Hongliang LI]), and the Key Project of the Department of Science and Technology of Hubei Province (2022EHB046, Prof. Xuanbin WANG).
Bray F, Laversanne M, Sung H, Ferlay J, Siegel RL, Soerjomataram I, et al.: Global Cancer Statistics 2022: GLOBOCAN Estimates of Incidence and Mortality Worldwide for 36 Cancers in 185 Countries. CA: A Cancer Journal for Clinicians 2024, 74:229–263.
Tabrizian P, Jibara G, Shrager B, Schwartz M, Roayaie S: Recurrence of Hepatocellular Cancer after Resection: Patterns, Treatments, and Prognosis. Annals of Surgery 2015, 261:947–955.
Man S, Luo C, Yan M, Zhao G, Ma L, Gao W: Treatment for Liver Cancer: From Sorafenib to Natural Products. European Journal of Medicinal Chemistry 2021, 224:113690.
Zheng Y, Wang S, Cai J, Ke A, Fan J: The Progress of Immune Checkpoint Therapy in Primary Liver Cancer. Biochimica Biophysica Acta Reviews on Cancer 2021, 1876:188638.
Du D, Liu C, Qin M, Zhang X, Xi T, Yuan S, et al.: Metabolic Dysregulation and Emerging Therapeutical Targets for Hepatocellular Carcinoma. Acta Pharmaceutica Sinica B 2022, 12:558–580.
Nagarajan SR, Butler LM, Hoy AJ: The Diversity and Breadth of Cancer Cell Fatty Acid Metabolism. Cancer & Metabolism 2021, 9:2.
Pope ED 3rd, Kimbrough EO, Vemireddy LP, Surapaneni PK, Copland JA 3rd, Mody K: Aberrant Lipid Metabolism as a Therapeutic Target in Liver Cancer. Expert Opinion on Therapeutic Targets 2019, 23:473–483.
Currie E, Schulze A, Zechner R, Walther TC, Farese RV Jr: Cellular Fatty Acid Metabolism and Cancer. Cell Metabolism 2013, 18:153–161.
Han H, He T, Wu Y, He T, Zhou W: Multidimensional Analysis of Tumor Stem Cells: From Biological Properties, Metabolic Adaptations to Immune Escape Mechanisms. Frontiers in Cell and Devlopment Biology 2024, 12:1441081.
Mitchelson KAJ, O’Connell F, O’Sullivan J, Roche HM: Obesity, Dietary Fats, and Gastrointestinal Cancer Risk-Potential Mechanisms Relating to Lipid Metabolism and Inflammation. Metabolites 2024, 14:42.
Zhou L, Xia S, Liu Y, Ji Q, Li L, Gao X, et al.: A Lipid Metabolism-based Prognostic Risk Model for HBV-related Hepatocellular Carcinoma. Lipids in Health and Disease 2023, 22:46.
Lonardo A, Nascimbeni F, Maurantonio M, Marrazzo A, Rinaldi L, Adinolfi LE: Nonalcoholic Fatty Liver Disease: Evolving Paradigms. World Journal of Gastroenterology 2017, 23:6571–6592.
Chen D, Zhang Y, Wang W, Chen H, Ling T, Yang R, et al.: Identification and Characterization of Robust Hepatocellular Carcinoma Prognostic Subtypes Based on an Integrative Metabolite-Protein Interaction Network. Advanced Science (Weinh) 2021, 8:e2100311.
Wang J, Jin X: Analysis of the Impact of Fatty Acid Metabolism on Immunotherapy for Hepatocellular Carcinoma. Annals of Hepatology 2023, 28:101148.
Yang N, Li C, Li H, Liu M, Ca, X, Cao F, et al.: Emodin Induced SREBP1-Dependent and SREBP1-Independent Apoptosis in Hepatocellular Carcinoma Cells. Frontiers in Pharmacology 2019, 10:709.
Lin Y, Fang H, Ma C, Zhou J, Ding M, Sun H, et al.: ACLY-β-Catenin Axis Modulates Hepatoblastoma Cell Proliferation. Biochemical and Biophysical Research Communications 2023, 663:104–112.
Liu D, Zhang T, Chen X, Zhang B, Wang Y, Xie M, et al.: ONECUT2 Facilitates Hepatocellular Carcinoma Metastasis by Transcriptionally Upregulating FGF2 and ACLY. Cell Death and Disease 2021, 12:1113.
Shen Y, Wang X, Ni Z, Xu S, Qiu S, Zheng W, et al.: Identification of Acetyl-CoA Carboxylase Alpha as a Prognostic and Targeted Candidate for Hepatocellular Carcinoma. Clinical Translational Oncology 2023, 25:2499–2513.
Abu-Elheiga L, Brinkley WR, Zhong L, Chirala SS, Woldegiorgis G, Wakil SJ: The Subcellular Localization of Acetyl-CoA Carboxylase 2. Proceedings of the National Academy of Sciences of the United States of America 2000, 97:1444–1449.
Ye B, Yin L, Wang Q, Xu C: ACC1 is Overexpressed in Liver Cancers and Contributes to the Proliferation of Human Hepatoma Hep G2 Cells and the Rat Liver Cell Line BRL 3A. Molecular Medicine Reports 2019, 19:3431–3440.
Shueng PW, Chan HW, Lin WC, Kuo DY, Chuang HY: Orlistat Resensitizes Sorafenib-Resistance in Hepatocellular Carcinoma Cells Through Modulating Metabolism. International Journal of Molecular Sciences 2022, 23:6501.
Lally JSV, Ghoshal S, DePeralta DK, Moaven O, Wei L, Masia R, et al.: Inhibition of Acetyl-CoA Carboxylase by Phosphorylation or the Inhibitor ND-654 Suppresses Lipogenesis and Hepatocellular Carcinoma. Cell Metabolism 2019, 29:174–182.e175.
Yu X, Lin Q, Wu Z, Zhang Y, Wang T, Zhao S, et al.: ZHX2 Inhibits SREBP1c-mediated De novo Lipogenesis in Hepatocellular Carcinoma via miR-24-3p. The Journal of Pathology 2020, 252:358–370.
Chakravarty B, Gu Z, Chirala SS, Wakil SJ, Quiocho FA: Human Fatty Acid Synthase: Structure and Substrate Selectivity of the Thioesterase Domain. Proceedings of the National Academy of Sciences of the United States of America 2004, 101:15567–15572.
Huang H, Wei Y, Wang J, Ran F, Chen Q: Effect of Fatty Acid Synthase Gene Silencing on Lipid Metabolism and Biological Behaviors of Human Hepatoblastoma HepG2 Cells. Nan Fang Yi Ke Da Xue Xue Bao 2021, 41:747–753.
Sun D, Zhao T, Zhang Q, Wu M, Zhang Z: Fat Mass and Obesity-associated Protein Regulates Lipogenesis via m(6) A Modification in Fatty Acid Synthase mRNA. Cell Biology International 2021, 45:334–344.
Gu L, Zhu Y, Lin X, Tan X, Lu B, Li Y: Stabilization of FASN by ACAT1-mediated GNPAT Acetylation Promotes Lipid Metabolism and Hepatocarcinogenesis. Oncogene 2020, 39:2437–2449.
Huang J, Zou XQ, She S, Shu F, Tuo H, Ren H, et al.: Fatty Acid Synthase Interacts with Signal Transducer and Activator of Transcription 3 to Promote Migration and Invasion in Liver Cancer Cells. Zhonghua Gan Zang Bing Za Zhi 2019, 27:681–686.
Wang H, Zhou Y, Xu H, Wang X, Zhang Y, Shang R, et al.: Therapeutic Efficacy of FASN Inhibition in Preclinical Models of HCC. Hepatology 2022, 76:951–966.
Zhao G, Dong L, Shi H, Li H, Lu X, Guo X, et al.: MicroRNA-1207-5p Inhibits Hepatocellular Carcinoma Cell Growth and Invasion Through the Fatty Acid Synthase-mediated Akt/mTOR Signalling Pathway. Oncology Reports 2016, 36:1709–1716.
Zhao Z, Liu M, Xu Z, Cai Y, Peng B, Liang Q, et al.: Identification of ACSF Gene Family as Therapeutic Targets and Immune-associated Biomarkers in Hepatocellular Carcinoma. Aging (Albany NY) 2022, 14:7926–7940.
Tang Y, Zhou J, Hooi SC, Jiang YM, Lu GD: Fatty Acid Activation in Carcinogenesis and Cancer Development: Essential Roles of Long-chain Acyl-CoA Synthetases. Oncology Letters 2018, 16:1390–1396.
Ndiaye H, Liu JY, Hall A, Minogue S, Morgan MY, Waugh MG: Immunohistochemical Staining Reveals Differential Expression of ACSL3 and ACSL4 in Hepatocellular Carcinoma and Hepatic Gastrointestinal Metastases. Bioscience Reports 2020, 40: BSR20200219.
Chen J, Ding C, Chen Y, Hu W, Yu C, Peng C, et al.: ACSL4 Reprograms Fatty Acid Metabolism in Hepatocellular Carcinoma via c-Myc/SREBP1 Pathway. Cancer Letters 2021, 502:154–165.
Toshida K, Itoh S, Iseda N, Tomiyama T, Yoshiya S, Toshima T, et al.: Impact of ACSL4 on the Prognosis of Hepatocellular Carcinoma: Association with Cancer-associated Fibroblasts and the Tumour Immune Microenvironment. Liver International: Official Journal of the International Association for the Study of the Liver 2024, 44:1011–1023.
Feng J, Lu PZ, Zhu GZ, Hooi SC, Wu Y, Huang XW, et al.: ACSL4 is a Predictive Biomarker of Sorafenib Sensitivity in Hepatocellular Carcinoma. Acta Pharmacologica Sinica 2021, 42:160–170.
Lu Y, Chan YT, Tan HY, Zhang C, Guo W, Xu Y, et al.: Epigenetic Regulation of Ferroptosis via ETS1/miR-23a-3p/ ACSL4 Axis Mediates Sorafenib Resistance in Human Hepatocellular Carcinoma. Journal of Experimental & Clinical Cancer Research: CR 2022, 41:3.
Sawai M, Uchida Y, Ohno Y, Miyamoto M, Nishioka C, Itohara S, et al.: The 3-Hydroxyacyl-CoA Dehydratases HACD1 and HACD2 Exhibit Functional Redundancy and are Active in a Wide Range of Fatty acid Elongation Pathways. The Journal of Biological Chemistry 2017, 292:15538–15551.
Hama K, Fujiwara Y, Hayama T, Ozawa T, Nozawa K, Matsuda K, et al.: Very Long-chain Fatty Acids are Accumulated in Triacylglycerol and Nonesterified Forms in Colorectal Cancer Tissues. Scientific Reports 2021, 11:6163.
Naganuma T, Sato Y, Sassa T, Ohno Y, Kihara A: Biochemical Characterization of the Very Long-chain Fatty Acid Elongase ELOVL7. FEBS Letters 2011, 585:3337–3341.
Rugolo F, Bazan NG, Calandria J, Jun B, Raschellà G, Melino G, et al.: The Expression of ELOVL4, Repressed by MYCN, Defines Neuroblastoma Patients with Good Outcome. Oncogene 2021, 40:5741–5751.
Jakobsson A, Westerberg R, Jacobsson A: Fatty Acid Elongases in Mammals: Their Regulation and Roles in Metabolism. Progress in Lipid Research 2006, 45:237–249.
Tanaka K, Kandori S, Sakka S, Nitta S, Tanuma K, Shiga M, et al.: ELOVL2 Promotes Cancer Progression by Inhibiting Cell Apoptosis in Renal Cell Carcinoma. Oncology Reports 2022, 47:23.
Zhang Y, Pang S, Sun B, Zhang M, Jiao X, Lai L, et al.: ELOVLs Predict Distinct Prognosis Value and Immunotherapy Efficacy In Patients With Hepatocellular Carcinoma. Frontiers in Oncology 2022, 12:884066.
Yuan C, Yuan M, Chen M, Ouyang J, Tan W, Dai F, et al.: Prognostic Implication of a Novel Metabolism-related Gene Signature in Hepatocellular Carcinoma. Frontiers in Oncology 2021, 11:666199.
Kobayashi T, Fujimori K: Very Long-chain-fatty Acids Enhance Adipogenesis Through Coregulation of Elovl3 and PPARγ in 3T3-L1 Cells. American Journal of Physiology. Endocrinology and Metabolism 2012, 302:E1461–1471.
Qin Z, Wang P, Chen W, Wang JR, Ma X, Zhang H, et al.: Hepatic ELOVL3 is Dispensable for Lipid Metabolism in Mice. Biochemical and Biophysical Research Communications 2023, 658:128–135.
Kessler SM, Simon Y, Gemperlein K, Gianmoena K, Cadenas C, Zimmer V, et al.: Fatty Acid Elongation in NonAlcoholic Steatohepatitis and Hepatocellular Carcinoma. International Journal of Molecular Sciences 2014, 15:5762–5773.
Centenera MM, Scott JS, Machiels J, Nassar ZD, Miller DC, Zinonos I, et al.: ELOVL5 Is a Critical and Targetable Fatty Acid Elongase in Prostate Cancer. Cancer Research 2021, 81:1704–1718.
Shibasaki Y, Horikawa M, Ikegami K, Kiuchi R, Takeda M, Hiraide T, et al.: Stearate-to-Palmitate Ratio Modulates Endoplasmic Reticulum Stress and Cell Apoptosis in Non-B Non-C Hepatoma Cells. Cancer Science 2018, 109:1110–1120.
Su YC, Feng YH, Wu HT, Huang YS, Tung CL, Wu P, Chang CJ, et al.: Elovl6 is a Negative Clinical Predictor for Liver Cancer and Knockdown of Elovl6 Reduces Murine Liver Cancer Progression. Scientific Reports 2018, 8:6586.
Wu D, Yang Y, Hou Y, Zhao Z, Liang N, Yuan P, et al.: Increased Mitochondrial Fission Drives the Reprogramming of Fatty Acid Metabolism in Hepatocellular Carcinoma Cells Through Suppression of Sirtuin 1. Cancer Communications (London, England) 2022, 42:37–55.
Matsuzaka T, Atsumi A, Matsumori R, Nie T, Shinozaki H, Suzuki-Kemuriyama N, et al.: Elovl6 Promotes Nonalcoholic Steatohepatitis. Hepatology 2012, 56:2199–2208.
Ma Y, Temkin SM, Hawkridge AM, Guo C, Wang W, Wang XY, et al.: Fatty Acid Oxidation: An Emerging Facet of Metabolic Transformation in Cancer. Cancer Letters 2018, 435:92–100.
Houten SM, Violante S, Ventura FV, Wanders RJ: The Biochemistry and Physiology of Mitochondrial Fatty Acid β-Oxidation and its Genetic Disorders. Annual Review of Physiology 2016, 78:23–44.
Wang M, Han J, Xing H, Zhang H, Li Z, Liang L, et al.: Dysregulated Fatty Acid Metabolism in Hepatocellular Carcinoma. Hepatic Oncology 2016, 3:241–251.
Li S, Gao D, Jiang Y: Function, Detection and Alteration of Acylcarnitine Metabolism in Hepatocellular Carcinoma. Metabolites 2019, 9:36.
Schlaepfer IR, Joshi M: CPT1A-mediated Fat Oxidation, Mechanisms, and Therapeutic Potential. Endocrinology 2020, 161:bqz046.
Casals N, Zammit V, Herrero L, Fadó R, Rodríguez-Rodríguez R, Serra D: Carnitine Palmitoyltransferase 1C: From Cognition to Cancer. Progress in Lipid Research 2016, 61:134–148.
Wang MD, Wu H, Fu GB, Zhang HL, Zhou X, Tang L, et al.: Acetyl-Coenzyme A Carboxylase Alpha Promotion of Glucose-mediated Fatty Acid Synthesis Enhances Survival of Hepatocellular Carcinoma in Mice and Patients. Hepatology 2016, 63:1272–1286.
Ren M, Xu H, Xia H, Tang Q, Bi F: Simultaneously Targeting SOAT1 and CPT1A Ameliorates Hepatocellular Carcinoma by Disrupting Lipid Homeostasis. Cell Death Discovery 2021, 7:125.
Paumen MB, Ishida Y, Han H, Muramatsu M, Eguchi Y, Tsujimoto Y, et al.: Direct Interaction of the Mitochondrial Membrane Protein Carnitine Palmitoyltransferase I with Bcl-2. Biochemical and Biophysical Research Communications 1997, 231:523–525.
Samudio I, Harmancey R, Fiegl M, Kantarjian H, Konopleva M, Korchin B, et al.: Pharmacologic Inhibition of Fatty Acid Oxidation Sensitizes Human Leukemia Cells to Apoptosis Induction. The Journal of Clinical Investigation 2010, 120:142–156.
Lin M, Lv D, Zheng Y, Wu M, Xu C, Zhang Q, et al.: Downregulation of CPT2 Promotes Tumorigenesis and Chemoresistance to Cisplatin in Hepatocellular Carcinoma. OncoTargets and Therapy 2018, 11:3101–3110.
Fujiwara N, Nakagawa H, Enooku K, Kudo Y, Hayata Y, Nakatsuka T, et al.: CPT2 Downregulation Adapts HCC to Lipid-rich Environment and Promotes Carcinogenesis via Acylcarnitine Accumulation in Obesity. Gut 2018, 67:1493–1504.
Wang Y, Lu JH, Wang F, Wang YN, He MM, Wu QN, et al.: Inhibition of Fatty acid Catabolism Augments the Efficacy of Oxaliplatin-based Chemotherapy in Gastrointestinal Cancers. Cancer Letters 2020, 473:74–89.
Thorpe C, Kim JJ: Structure and Mechanism of Action of the Acyl-CoA Dehydrogenases. Faseb Journal 1995, 9:718–725.
Ghisla S, Thorpe C: Acyl-CoA Dehydrogenases. A Mechanistic Overview. European Journal of Biochemistry 2004, 271:494–508.
Chen D, Feng X, Lv Z, Xu X, Lu Y, Wu W, et al.: ACADS Acts as a Potential Methylation Biomarker Associated with the Proliferation and Metastasis of Hepatocellular Carcinomas. Aging (Albany NY) 2019, 11:8825–8844.
Ma APY, Yeung CLS, Tey SK, Mao X, Wong SWK, Ng TH, et al.: Suppression of ACADM-mediated Fatty Acid Oxidation Promotes Hepatocellular Carcinoma via Aberrant CAV1/SREBP1 Signaling. Cancer Research 2021, 81:3679–3692.
Huang D, Li T, Li X, Zhang L, Sun L, He X, et al.: HIF-1-mediated Suppression of Acyl-CoA Dehydrogenases and Fatty Acid Oxidation is Critical for Cancer Progression. Cell Reports 2014, 8:1930–1942.
Zhao X, Qin W, Jiang Y, Yang Z, Yuan B, Dai R, et al.: ACADL Plays a Tumor-suppressor Role by Targeting Hippo/ YAP Signaling in Hepatocellular Carcinoma. NPJ Precision Oncology 2020, 4:7.
Zhu QW, Yu Y, Zhang Y, Wang XH: VLCAD Inhibits the Proliferation and Invasion of Hepatocellular Cancer Cells Through Regulating PI3K/AKT Axis. Clinical & Translational Oncology 2022, 24:864–874.
Hu T, Chen X, Lu S, Zeng H, Guo L, Han Y: Biological Role and Mechanism of Lipid Metabolism Reprogramming Related Gene ECHS1 in Cancer. Technology in Cancer Research & Treatment 2022, 21:15330338221140655.
Lu T, Sun L, Fan Q, Yan J, Zhao D, Xu C, et al.: Expression and Clinical Significance of ECHS1 in Gastric Cancer. Journal of Cancer 2024, 15:418–427.
Li R, Hao Y, Wang Q, Meng Y, Wu K, Liu C, et al.: ECHS1, an Interacting Protein of LASP1, Induces Sphingolipid-metabolism Imbalance to Promote Colorectal Cancer Progression by Regulating Ceramide Glycosylation. Cell Death Disease 2021, 12:911.
Liu X, Feng R, Du L: The Role of Enoyl-CoA Hydratase Short Chain 1 and Peroxiredoxin 3 in PP2-induced Apoptosis in Human Breast Cancer MCF-7 Cells. FEBS Letters 2010, 584:3185–3192.
Xu WJ, Chen LG, Chen X, Liu YS, Zheng TH, Song JJ, et al.: Silencing ECHS1 Attenuates the Proliferation and Induces the Autophagy of Hepatocellular Carcinoma via Impairing Cell Metabolism and Activating AMPK. Neoplasma 2015, 62:872–880.
Lin BY, Xiao CX, Zhao WX, Xiao L, Chen X, Li P, et al.: Enoyl-coenzyme A Hydratase Short Chain 1 Silencing Attenuates the Proliferation of Hepatocellular Carcinoma by Inhibiting Epidermal Growth Factor Signaling In Vitro and In Vivo. Molecular Medicine Reports 2015, 12:1421–1428.
Ribas GS, Vargas CR: Evidence that Oxidative Disbalance and Mitochondrial Dysfunction are Involved in the Pathophysiology of Fatty Acid Oxidation Disorders. Cellular and Molecular Neurobiology 2022, 42:521–532.
Nwosu ZC, Battello N, Rothley M, Piorońska W, Sitek B, Ebert MP, et al.: Liver Cancer Cell Lines Distinctly Mimic the Metabolic Gene Expression Pattern of the Corresponding Human Tumours. Journal of Experimental & Clinical Cancer Research 2018, 37:211.
Tanaka M, Masaki Y, Tanaka K, Miyazaki M, Kato M, Sugimoto R, et al.: Reduction of Fatty Acid Oxidation and Responses to Hypoxia Correlate with the Progression of De-differentiation in HCC. Molecular Medicine Reports 2013, 7:365–370.
Wanders RJA, Baes M, Ribeiro D, Ferdinandusse S, Waterham HR: The Physiological Functions of Human Peroxisomes. Physiological Reviews 2023, 103:957–1024.
Dahabieh MS, Di Pietro E, Jangal M, Goncalves C, Witcher M, Braverman NE, et al.: Peroxisomes and Cancer: The Role of a Metabolic Specialist in a Disease of Aberrant Metabolism. Biochimica et Biophysica Acta. Reviews on Cancer 2018, 1870:103–121.
Van Veldhoven PP: Biochemistry and Genetics of Inherited Disorders of Peroxisomal Fatty Acid Metabolism. Journal of Lipid Research 2010, 51:2863–2895.
Wang H, Lu J, Chen X, Schwalbe M, Gorka JE, Mandel JA, et al.: Acquired Deficiency of Peroxisomal Dicarboxylic Acid Catabolism is a Metabolic Vulnerability in Hepatoblastoma. The Journal of Biological Chemistry 2021, 296:100283.
Aleksic M, Golic I, Jankovic A, Cvoro A, Korac A: ACOX-driven Peroxisomal Heterogeneity and Functional Compartmentalization in Brown Adipocytes of Hypothyroid Rats. Royal Society Open Science 2023, 10:230109.
Li J, Huang Q, Long X, Zhang J, Huang X, Aa J, et al.: CD147 Reprograms Fatty Acid Metabolism in Hepatocellular Carcinoma Cells Through Akt/mTOR/SREBP1c and P38/PPARα Pathways. Journal of Hepatology 2015, 63:1378–1389.
Zhang Q, Zhang Y, Sun S, Wang K, Qian J, Cui Z, et al.: ACOX2 is a Prognostic Marker and Impedes the Progression of Hepatocellular Carcinoma via PPARα Pathway. Cell Death & Disease 2021, 12:15.
Kong G, Lee H, Tran Q, Kim C, Gong N, Park J, et al.: Current Knowledge on the Function of α-methyl Acyl-CoA Racemase in Human Diseases. Frontiers in Molecular Biosciences 2020, 7:153.
Li W, Cagle PT, Botero RC, Liang JJ, Zhang Z, Tan D: Significance of Overexpression of Alpha Methylacyl-coenzyme a Racemase in Hepatocellular Carcinoma. Journal of Experimental & Clinical Cancer Research 2008, 27:2.
Sekine S, Ogawa R, Ojima H, Kanai Y: Overexpression of α-Methylacyl-CoA Racemase is Associated with CTNNB1 Mutations in Hepatocellular Carcinomas. Histopathology 2011, 58:712–719.
Wanders RJ, Komen J, Kemp S: Fatty Acid Omega-oxidation as a Rescue Pathway for Fatty Acid Oxidation Disorders in Humans. FEBS Journal 2011, 278:182–194.
Kam W, Kumaran K, Landau BR: Contribution of Omega-oxidation to Fatty Acid Oxidation by Liver of Rat and Monkey. Journal of Lipid Research 1978, 19:591–600.
Westphal C, Konkel A, Schunck WH: Cytochrome p450 Enzymes in the Bioactivation of Polyunsaturated Fatty Acids and Their Role in Cardiovascular Disease. Advances in Experimental Medicine and Biology 2015, 851:151–187.
Hardwick JP: Cytochrome P450 Omega Hydroxylase (CYP4) Function in Fatty Acid Metabolism and Metabolic Diseases. Biochemical Pharmacology 2008, 75:2263–2275.
Wan S, Pan Q, Yang G, Kuang J, Luo S: Role of CYP4F2 as a Novel Biomarker Regulating Malignant Phenotypes of Liver Cancer Cells via the Nrf2 Signaling Axis. Oncology Letters 2020, 20:13.
Ryu JS, Lee M, Mun SJ, Hong SH, Lee HJ, Ahn HS, et al.: Targeting CYP4A Attenuates Hepatic Steatosis in a Novel Multicellular Organotypic Liver Model. Journal of Biological Engineering 2019, 13:69.
Parkinson A, Leonard N, Draper A, Ogilvie BW: On the Mechanism of Hepatocarcinogenesis of Benzodiazepines: Evidence that Diazepam and Oxazepam are CYP2B Inducers in Rats, and Both CYP2B and CYP4A Inducers in Mice. Drug Metabolism Reviews 2006, 38:235–259.
Qin XY, Su T, Yu W, Kojima S: Lipid Desaturation-associated Endoplasmic Reticulum Stress Regulates MYCN Gene Expression in Hepatocellular Carcinoma Cells. Cell Death & Disease 2020, 11:66.
Ntambi JM, Miyazaki M, Dobrzyn A: Regulation of Stearoyl-CoA Desaturase Expression. Lipids 2004, 39:1061–1065.
Ntambi JM, Miyazaki M: Regulation of Stearoyl-CoA Desaturases and Role in Metabolism. Progress in Lipid Research 2004, 43:91–104.
Tracz-Gaszewska Z, Dobrzyn P: Stearoyl-CoA Desaturase 1 as a Therapeutic Target for the Treatment of Cancer. Cancers (Basel) 2019, 11:948.
Igal RA: Stearoyl-CoA Desaturase-1: A Novel Key Player in the Mechanisms of Cell Proliferation, Programmed Cell Death and Transformation to Cancer. Carcinogenesis 2010, 31:1509–1515.
Sangineto M, Villani R, Cavallone F, Romano A, Loizzi D, Serviddio G: Lipid Metabolism in Development and Progression of Hepatocellular Carcinoma. Cancers (Basel) 2020, 12:1419.
Bansal S, Berk M, Alkhouri N, Partrick DA, Fung JJ, Feldstein A: Stearoyl-CoA Desaturase Plays an Important Role in Proliferation and Chemoresistance in Human Hepatocellular Carcinoma. The Journal of Surgical Research 2014, 186:29–38.
Huang GM, Jiang QH, Cai C, Qu M, Shen W: SCD1 Negatively Regulates Autophagy-induced Cell Death in Human Hepatocellular Carcinoma Through Inactivation of the AMPK Signaling Pathway. Cancer Letters 2015, 358:180–190.
Liu G, Kuang S, Cao R, Wang J, Peng Q, Sun C: Sorafenib Kills Liver Cancer Cells by Disrupting SCD1-mediated Synthesis of Monounsaturated Fatty Acids via the ATP-AMPK-mTOR-SREBP1 Signaling Pathway. FASEB Journal 2019, 33:10089–10103.
Zhang L, Li XM, Shi XH, Ye K, Fu XL, Wang X, et al.: Sorafenib Triggers Ferroptosis via Inhibition of HBXIP/SCD Axis in Hepatocellular Carcinoma. Acta Pharmacologica Sinica 2023, 44:622–634.
Guo D, Wang Y, Wang J, Song L, Wang Z, Mao B, et al.: RA-XII Suppresses the Development and Growth of Liver Cancer by Inhibition of Lipogenesis via SCAP-dependent SREBP Supression. Molecules 2019, 24:1829.
Kawano Y, Cohen DE: Mechanisms of Hepatic Triglyceride Accumulation in Non-alcoholic Fatty Liver Disease. Journal of Gastroenterology 2013, 48:434–441.
Sanders FW, Griffin JL: De novo Lipogenesis in the Liver in Health and Disease: More Than Just a Shunting Yard for Glucose. Biological Reviews of the Cambridge Philosophical Society 2016, 91:452–468.
Listenberger LL, Han X, Lewis SE, Cases S, Farese RV Jr, Ory DS, et al.: Triglyceride Accumulation Protects Against Fatty Acid-induced Lipotoxicity. Proceedings of the National Academy of Sciences of the United States of America 2003, 100:3077–3082.
Smith GI, Shankaran M, Yoshino M, Schweitzer GG, Chondronikola M, Beals JW, et al.: Insulin Resistance Drives Hepatic De Novo Lipogenesis in Nonalcoholic Fatty Liver Disease. The Journal of Clinical Investigation 2020, 130:1453–1460.
Vatner DF, Majumdar SK, Kumashiro N, Petersen MC, Rahimi Y, Gattu AK, et al.: Insulin-independent Regulation of Hepatic Triglyceride Synthesis by Fatty Acids. Proceedings of the National Academy of Sciences of the United States of America 2015, 112:1143–1148.
Musso G, Cassader M, Paschetta E, Gambino R: Bioactive Lipid Species and Metabolic Pathways in Progression and Resolution of Nonalcoholic Steatohepatitis. Gastroenterology 2018, 155:282–302.e288.
Guri Y, Colombi M, Dazert E, Hindupur SK, Roszik J, Moes S, et al.: mTORC2 Promotes Tumorigenesis via Lipid Synthesis. Cancer Cell 2017, 32:807–823.e812.
Semova I, Biddinger SB: Triglycerides in Nonalcoholic Fatty Liver Disease: Guilty Until Proven Innocent. Trends in Pharmacological Sciences 2021, 42:183–190.
Wen P, Wang R, Xing Y, Ouyang W, Yuan Y, Zhang S, et al.: The Prognostic Value of the GPAT/AGPAT Gene Family in Hepatocellular Carcinoma and its Role in the Tumor Immune Microenvironment. Frontiers in Immunology 2023, 14:1026669.
Thakral S, Ghoshal K: miR-122 is a Unique Molecule with Great Potential in Diagnosis, Prognosis of Liver Disease, and Therapy Both as miRNA Mimic and Antimir. Current Gene Therapy 2015, 15:142–150.
Slane EG, Tambrini SJ, Cummings BS: Therapeutic Potential of Lipin Inhibitors for the Treatment of Cancer. Biochemical Pharmacology 2024, 222:116106.
Casaschi A, Rubio BK, Maiyoh GK, Theriault AG: Inhibitory Activity of Diacylglycerol Acyltransferase (DGAT) and Microsomal Triglyceride Transfer Protein (MTP) by the Flavonoid, Taxifolin, in HepG2 Cells: Potential Role in the Regulation of Apolipoprotein B Secretion. Atherosclerosis 2004, 176:247–253.
Bauer D, Soon RL, Kulmatycki K, Chen Y, Noe A, Chen J, et al.: The DGAT1 Inhibitor pradIgastat Does Not Induce Photosensitivity in Healthy Human Subjects: A Randomized Controlled Trial Using Three Defined Sunlight Exposure Conditions. Photochemical and Photobiological Sciences 2016, 15:1155–1162.
Tan SY, Little HC, Sarver DC, Watkins PA, Wong GW: CTRP12 Inhibits Triglyceride Synthesis and Export in Hepatocytes by Suppressing HNF-4α and DGAT2 Expression. FEBS Letters 2020, 594:3227–3239.
Foglia B, Beltrà M, Sutti S, Cannito S: Metabolic Reprogramming of HCC: A New Microenvironment for Immune Responses. International Journal of Molecular Sciences 2023, 24:7463.
Li S, Xu Y, Guo W, Chen F, Zhang C, Tan HY, et al.: The Impacts of Herbal Medicines and Natural Products on Regulating the Hepatic Lipid Metabolism. Frontiers in Pharmacology 2020, 11:351.
Girousse A, Tavernier G, Valle C, Moro C, Mejhert N, Dinel AL, et al.: Partial Inhibition of Adipose Tissue Lipolysis Improves Glucose Metabolism and Insulin Sensitivity Without Alteration of Fat Mass. PLoS Biology 2013, 11:e1001485.
Berndt N, Eckstein J, Heucke N, Gajowski R, Stockmann M, Meierhofer D, et al.: Characterization of Lipid and Lipid Droplet Metabolism in Human HCC. Cells 2019, 8:512.
Fu Y, Zou T, Shen X, Nelson PJ, Li J, Wu C, et al.: Lipid Metabolism in Cancer Progression and Therapeutic Strategies. MedComm (2020) 2021, 2:27–59.
Budhu A, Roessler S, Zhao X, Yu Z, Forgues M, Ji J, et al.: Integrated Metabolite and Gene expression Profiles Identify Lipid Biomarkers Associated With Progression of Hepatocellular Carcinoma and Patient Outcomes. Gastroenterology 2013, 144:1066–1075.e1061.
Schweiger M, Schreiber R, Haemmerle G, Lass A, Fledelius C, Jacobsen P, et al.: Adipose Triglyceride Lipase and Hormone-Sensitive Lipase are the Major Enzymes in Adipose Tissue Triacylglycerol Catabolism. The Journal of Biological Chemistry 2006, 281:40236–40241.
Yang G, Wang Y, Feng J, Liu Y, Wang T, Zhao M, et al.: Aspirin Suppresses the Abnormal Lipid Metabolism in Liver Cancer Cells via Disrupting an NFκB-ACSL1 Signaling. Biochemical and Biophysical Research Communications 2017, 486:827–832.
Yokohama K, Fukunishi S, Ii M, Nakamura K, Ohama H, Tsuchimoto Y, et al.: Rosuvastatin as a Potential Preventive Drug for the Development of Hepatocellular Carcinoma Associated with Non-alcoholic Fatty Liver Disease in Mice. International Journal of Molecular Medicine 2016, 38:1499–1506.
Qiu Z, Zhang C, Zhou J, Hu J, Sheng L, Li X, et al.: Celecoxib Alleviates AKT/c-Met-Triggered Rapid Hepatocarcinogenesis by Suppressing a Novel COX-2/AKT/ FASN Cascade. Molecular Carcinogenesis 2019, 58:31–41.
Zhou Y, Guo Y, Zhu Y, Sun Y, Li W, Li Z, et al.: Dual PPARγ/α Agonist Oroxyloside Suppresses Cell Cycle Progression by Glycolipid Metabolism Switch-mediated Increase of Reactive Oxygen Species Levels. Free Radical Biology & Medicine 2021, 167:205–217.
Zhang C, Hu J, Sheng L, Yuan M, Wu Y, Chen L, et al.: Metformin Delays AKT/c-Met-driven Hepatocarcinogenesis by Regulating Signaling Pathways for De Novo Lipogenesis and ATP Generation. Toxicology and Applied Pharmacology 2019, 365:51–60.
Gao J, Xiong R, Xiong D, Zhao W, Zhang S, Yin T, et al.: The Adenosine Monophosphate (AMP) Analog, 5-Aminoimidazole-4-Carboxamide Ribonucleotide (AICAR) Inhibits Hepatosteatosis and Liver Tumorigenesis in a High-Fat Diet Murine Model Treated with Diethylnitrosamine (DEN). Medical Science Monitor: International Medical Journal of Experimental and Clinical Research 2018, 24:8533–8543.
O’Farrell M, Duke G, Crowley R, Buckley D, Martins EB, Bhattacharya D, et al.: FASN Inhibition Targets Multiple Drivers of NASH by Reducing Steatosis, Inflammation and Fibrosis in Preclinical Models. Scientifc Reports 2022, 12:15661.
Zhang J, Liu Z, Lian Z, Liao R, Chen Y, Qin Y, et al.: Monoacylglycerol Lipase: A Novel Potential Therapeutic Target and Prognostic Indicator for Hepatocellular Carcinoma. Scientific Reports 2016, 6:35784.
Zou XZ, Hao JF, Zhou XH: Inhibition of SREBP-1 Activation by a Novel Small-Molecule Inhibitor Enhances the Sensitivity of Hepatocellular Carcinoma Tissue to Radiofrequency Ablation. Frontiers in Oncology 2021, 11:796152.
Huang T, Wu X, Yan S, Liu T, Yin X: Synthesis and In Vitro Evaluation of Novel Spiroketopyrazoles as Acetyl-CoA Carboxylase Inhibitors and Potential Antitumor Agents. European Journal of Medicinal Chemistry 2021, 212:113036.
Nakano D, Kawaguchi T, Iwamoto H, Hayakawa M, Koga H, Torimura T: Effects of Canagliflozin on Growth and Metabolic Reprograming in Hepatocellular Carcinoma Cells: Multi-omics Analysis of Metabolomics and Absolute Quantification Proteomics (iMPAQT). PLoS One 2020, 15:e0232283.
You BJ, Hour MJ, Chen LY, Luo SC, Hsu PH, Lee HZ: Fenofibrate Induces Human Hepatoma Hep3B Cells Apoptosis and Necroptosis Through Inhibition of Thioesterase Domain of Fatty Acid Synthase. Scientific Reports 2019, 9:3306.
Amrutha NA, Archana PR, Mohan SG, Anto RJ, Sadasivan C: Pyridine Derivatives as Anticancer Lead Compounds with Fatty Acid Synthase as the Target: An in Silico-guided In Vitro Study. Journal of Cellular Biochemistry 2019, 120:16643–16657.
Xu A, Wang B, Fu J, Qin W, Yu T, Yang Z, et al.: Diet-induced Hepatic Steatosis Activates Ras to Promote Hepatocarcinogenesis via CPT1α. Cancer Letters 2019, 442:40–52.
Yao J, Man S, Dong H, Yang L, Ma L, Gao W: Combinatorial Treatment of Rhizoma Paridis Saponins and Sorafenib Overcomes the Intolerance of Sorafenib. The Journal of Steroid Biochemistry and Molecular Biology 2018, 183:159–166.
Man S, Yao J, Lv P, Liu Y, Yang L, Ma L: Curcumin-enhanced Antitumor Effects of Sorafenib via Regulating the Metabolism and Tumor Microenvironment. Food & Function 2020, 11:6422–6432.
Meng H, Shen M, Li J, Zhang R, Li X, Zhao L, et al.: Novel SREBP1 Inhibitor Cinobufotalin Suppresses Proliferation of Hepatocellular Carcinoma by Targeting Lipogenesis. European Journal of Pharmacology 2021, 906:174280.
Ding Y, Gu Z, Wang Y, Wang S, Chen H, Zhang H, et al.: Clove Extract Functions as a Natural Fatty Acid Synthesis Inhibitor and Prevents Obesity in a Mouse Model. Food & Function 2017, 8:2847–2856.
Chen JW, Kong ZL, Tsai ML, Lo CY, Ho CT, Lai CS: Tetrahydrocurcumin Ameliorates Free Fatty Acid-induced Hepatic Steatosis and Improves Insulin Resistance in HepG2 Cells. Journal of Food and Drug Analysis 2018, 26:1075–1085.
Li H, Xiang L, Yang N, Cao F, Li C, Chen P, et al.: Zhiheshouwu Ethanol Extract Induces Intrinsic Apoptosis and Reduces Unsaturated Fatty Acids via SREBP1 Pathway in Hepatocellular Carcinoma Cells. Food and Chemical Toxicology: An International Journal Published for the British Industrial Biological Research Association 2018, 119:169–175.
Mo Y, Wu Y, Li X, Rao H, Tian X, Wu D, et al.: Osthole Delays Hepatocarcinogenesis in Mice by Suppressing AKT/FASN Axis and ERK Phosphorylation. European Journal of Pharmacology 2020, 867:172788.
Yu R, Zhang ZQ, Wang B, Jiang HX, Cheng L, Shen LM: Berberine-induced Apoptotic and Autophagic Death of HepG2 Cells Requires AMPK Activation. Cancer Cell International 2014, 14:49.
Zheng YS, Zhang JY, Zhang DH: Fatsioside A-Induced Apoptotic Death of HepG2 Cells Requires Activation of AMP-Activated Protein Kinase. Molecular Medicine Reports 2015, 12:5679–5684.
Yin F, Feng F, Wang L, Wang X, Li Z, Cao Y: SREBP-1 Inhibitor Betulin Enhances the Antitumor Effect of Sorafenib on Hepatocellular Carcinoma via Restricting Cellular Glycolytic Activity. Cell Death & Disease 2019, 10:672.
Forbes-Hernández TY, Giampieri F, Gasparrini M, Afrin S, Mazzoni L, Cordero MD, et al.: Lipid Accumulation in HepG2 Cells Is Attenuated by Strawberry Extract Through AMPK Activation. Nutrients 2017, 9:621.
Yu MH, Tsai MC, Wang CC, Wu SW, Chang YJ, Wu CH, et al.: Mulberry Leaf Polyphenol Extract and Rutin Induces Autophagy Regulated by p53 in Human Hepatoma HepG2 Cells. Pharmaceuticals (Basel) 2021, 14:1310.
Ren G, Guo JH, Feng CL, Ding YW, Dong B, Han YX, et al.: Berberine Inhibits Carcinogenesis Through Antagonizing the ATX-LPA-LPAR2-p38-Leptin Axis in a Mouse Hepatoma Model. Molecular Therapy Oncolytics 2022, 26:372–386.
Di TM, Yang SL, Du FY, Zhao L, Li XH, Xia T, et al.: Oleiferasaponin A2, a Novel Saponin from Camellia oleifera Abel. Seeds, Inhibits Lipid Accumulation of HepG2 Cells Through Regulating Fatty Acid Metabolism. Molecules 2018, 23:3296.
Huang CH, Shiu SM, Wu MT, Chen WL, Wang SG, Lee HM: Monacolin K Affects Lipid Metabolism Through SIRT1/ AMPK Pathway in HepG2 Cells. Archives of Pharmacal Research 2013, 36:1541–155.
Schreiber R, Xie H, Schweiger M: Of Mice and Men: The Physiological Role of Adipose Triglyceride Lipase (ATGL). Biochimica Et Biophysica Acta-Molecular and Cell Biology of Lipids 2019, 1864:880–899.
Li T, Guo W, Zhou Z: Adipose Triglyceride Lipase in Hepatic Physiology and Pathophysiology. Biomolecules 2021, 12:57.
Liu X, Liang Y, Song R, Yang G, Han J, Lan Y, et al.: Long Non-Coding RNA NEAT1-Modulated Abnormal Lipolysis via ATGL Drives Hepatocellular Carcinoma Proliferation. Molecular Cancer 2018, 17:90.
Di Leo L, Vegliante R, Ciccarone F, Salvatori I, Scimeca M, Bonanno E, et al.: Forcing ATGL Expression in Hepatocarcinoma Cells Imposes Glycolytic Rewiring thRough PPAR-α/p300-Mediated Acetylation of p53. Oncogene 2019, 38:1860–1875.
Wu JW, Wang SP, Alvarez F, Casavant S, Gauthier N, Abed L, et al.: Deficiency of Liver Adipose Triglyceride Lipase in Mice Causes Progressive Hepatic Steatosis. Hepatology 2011, 54:122–132.
Reid BN, Ables GP, Otlivanchik OA, Schoiswohl G, Zechner R, Blaner WS, et al.: Hepatic Overexpression of Hormone-Sensitive Lipase and Adipose Triglyceride Lipase Promotes Fatty Acid Oxidation, Stimulates Direct Release of Free Fatty Acids, and Ameliorates Steatosis. The Journal of Biological Chemistry 2008, 283:13087–13099.
Turnbull PC, Longo AB, Ramos SV, Roy BD, Ward WE, Peters SJ: Increases in Skeletal Muscle ATGL and its Inhibitor G0S2 Following 8 Weeks of Endurance Training in Metabolically Different Rat Skeletal Muscles. American Journal of Physiology-Regulatory, Integrative and Comparative Physiology 2016, 310:R125–R133.
Riegler-Berket L, Wechselberger L, Cerk IK, Padmanabha Das KM, Viertlmayr R, Kulminskaya N, et al.: Residues of the Minimal Sequence of G0S2 Collectively Contribute to ATGL Inhibition While C-and N-Terminal Extensions Promote Binding to ATGL. Biochimica Et Biophysica Acta-Molecular and Cell Biology of Lipids 2022, 1867:159105.
Wong CP, Kaneda T, Morita H: Plant Natural Products as an Anti-Lipid Droplets Accumulation Agent. Journal of Natural Medicines 2014, 68:253–266.
Zong Z, Liu J, Wang N, Yang C, Wang Q, Zhang W, et al.: Nicotinamide Mononucleotide Inhibits Hepatic Stellate Cell Activation to Prevent Liver Fibrosis via Promoting PGE(2) Degradation. Free Radical Biology and Medicine 2021, 162:571–581.
Sun Z, Liu L, Liang H, Zhang L: Nicotinamide Mononucleotide Induces Autophagy and Ferroptosis via AMPK/mTOR Pathway in Hepatocellular Carcinoma. Molecular Carcinogenesis 2024, 63:577–588.
Althaher AR: An Overview of Hormone-Sensitive Lipase (HSL). The Scientific World Journal 2022, 2022:1964684.
Mir SA, Dar A, Hamid L, Nisar N, Malik JA, Ali T, et al.: Flavonoids as Promising Molecules in the Cancer Therapy: An Insight. Current Research in Pharmacology and Drug Discovery 2024, 6:100167.
Lee JE, Kim EJ, Kim MH, Hong J, Yang WM: Polygonatum Stenophyllum Improves Menopausal Obesity via Regulation of Lipolysis-related Enzymes. Journal of Natural Medicines 2016, 70:789–796.
Suzuki H, Kohjima M, Tanaka M, Goya T, Itoh S, Yoshizumi T, et al.: Metabolic Alteration in Hepatocellular Carcinoma: Mechanism of Lipid Accumulation in Well-Differentiated Hepatocellular Carcinoma. Canadian Journal of Gastroenterology and Hepatology 2021, 2021:8813410.
Xia B, Cai GH, Yang H, Wang SP, Mitchell GA, Wu JW: Adipose Tissue Deficiency of Hormone-Sensitive Lipase Causes Fatty Liver in Mice. PLoS Genetics 2017, 13:e1007110.
Lei P, Tian S, Teng C, Huang L, Liu X, Wang J, et al.: Sulforaphane Improves Lipid Metabolism by Enhancing Mitochondrial Function and Biogenesis In Vivo and In Vitro. Molecular Nutrition and Food Research 2019, 63:e1800795.
Peng CH, Liu LK, Chuang CM, Chyau CC, Huang CN, Wang CJ: Mulberry Water Extracts Possess an Anti-obesity Effect and Ability to Inhibit Hepatic Lipogenesis and Promote Lipolysis. Journal of Agricultural and Food Chemistry 2011, 59:2663–2671.
Lass A, Zimmermann R, Oberer M, Zechner R: Lipolysis-A Highly Regulated Multi-enzyme Complex Mediates the Catabolism of Cellular Fat Stores. Progress in Lipid Research 2011, 50:14–27.
Deng H, Li W: Monoacylglycerol Lipase Inhibitors: Modulators for Lipid Metabolism in Cancer Malignancy, Neurological and Metabolic Disorders. Acta Pharmaceutica Sinica. B 2020, 10:582–602.
De Leo M, Huallpa CG, Alvarado B, Granchi C, Poli G, De Tommasi N, et al.: New Diterpenes From Salvia pseudorosmarinus and Their Activity as Inhibitors of Monoacylglycerol Lipase (MAGL). Fitoterapia 2018, 130:251–258.
Mei J, Guo R, Zhang F, Zhang H, Yang X, Yu B, et al.: Identification of Bioactive Natural Products Using Yeast: Application to Monoacylglycerol Lipase Inhibitor Extraction From Corydalis Rhizoma. Biomedicine and Pharmacotherapy 2022, 149:112798.
Burke JE, Dennis EA: Phospholipase A2 Biochemistry. Cardiovascular Drugs and Therapy 2009, 23:49–59.
Kudo I, Murakami M: Phospholipase A2 Enzymes. Prostaglandins and Other Lipid Mediators 2002, 68–69:3–58.
Bennett M, Gilroy DW: Lipid Mediators in Inflammation. Microbiology Spectrum 2016, 4:1–21.
Ranjpour M, Wajid S, Jain SK: Elevated Expression of Cytosolic Phospholipase A2 Delta is Associated With Lipid Metabolism Dysregulation During Hepatocellular Carcinoma Progression. Cell Journal 2020, 22:17–22.
Ying Z, Tojo H, Komatsubara T, Nakagawa M, Inada M, Kawata S, et al.: Enhanced Expression of Group II Phospholipase A2 in Human Hepatocellular Carcinoma. Biochimica et Biophysica Acta 1994, 1226:201–205.
Tao Y, Li Y, Liu X, Deng Q, Yu Y, Yang Z: Nonsteroidal Anti-inflammatory Drugs, Especially Aspirin, Are Linked to Lower Risk and Better Survival of Hepatocellular Carcinoma: A Meta-Analysis. Cancer Management and Research 2018, 10:2695–2709.
Singh N, Jabeen T, Sharma S, Somvanshi RK, Dey S, Srinivasan A, et al.: Specific Binding of Nonsteroidal Anti-inflammatory Drugs (NSAIDs) to Phospholipase A2: Structure of the Complex Formed Between Phospholipase A2 and Diclofenac at 2.7 A Resolution. Acta Crystallographica Section D: Biological Crystallography 2006, 62:410–416.
Mouchlis VD, Mavromoustakos TM, Kokotos G: Design of New Secreted Phospholipase A2 Inhibitors Based on Docking Calculations by Modifying the Pharmacophore Segments of the FPL67047XX Inhibitor. Journal of Computer-Aided Molecular Design 2010, 24:107–115.
Ma K, Chen Y, Liang X, Miao J, Zhao Q: Inhibition of 5-Lipoxygenase Inhibitor Zileuton in High-Fat Diet-Induced Nonalcoholic Fatty Liver Disease Progression Model. Iranian Journal of Basic Medical Sciences 2017, 20:1207–1212.
Hajicek N, Keith NC, Siraliev-Perez E, Temple BR, Huang W, Zhang Q, et al.: Structural Basis for the Activation of PLC-γ Isozymes by Phosphorylation and Cancer-associated Mutations. Elife 2019, 8:e51700.
Suh PG, Park JI, Manzoli L, Cocco L, Peak JC, Katan M, et al.: Multiple Roles of Phosphoinositide-specific Phospholipase C Isozymes. BMB Reports 2008, 41:415–434.
Kim HY, Suh PG, Kim JI: The Role of Phospholipase C in GABAergic Inhibition and its Relevance to Epilepsy. International Journal of Molecular Sciences 2021, 22:3149.
Niu M, Yi M, Li N, Wu K, Wu K: Advances of Targeted Therapy for Hepatocellular Carcinoma. Frontiers in Oncology 2021, 11:719896.
Seo EB, Jang HJ, Kwon SH, Kwon YJ, Kim SK, Lee SH, et al.: Loss of Phospholipase Cγ1 Suppresses Hepatocellular Carcinogenesis Through Blockade of STAT3-mediated Cancer Development. Hepatology Communications 2022, 6:3234–3246.
Chang YS, Adnane J, Trail PA, Levy J, Henderson A, Xue D, et al.: Sorafenib (BAY 43-9006) Inhibits Tumor Growth and Vascularization and Induces Tumor Apoptosis and Hypoxia in RCC Xenograft Models. Cancer Chemotherapy and Pharmacology 2007, 59:561–574.
Kim YS, Lee YM, Oh TI, Shin DH, Kim GH, Kan SY, et al.: Emodin Sensitizes Hepatocellular Carcinoma Cells to the Anti-Cancer Effect of Sorafenib Through Suppression of Cholesterol Metabolism. International Journal of Molecular Sciences 2018, 19:3127.
Kim TH, Lee KM, Hong ND, Jung YS: Anti-platelet and Anti-thrombotic Effect of a Traditional Herbal Medicine Kyung-Ok-Ko. Journal of Ethnopharmacology 2016, 178:172–179.
Jain D, Murti Y, Khan WU, Hossain R, Hossain MN, Agrawal KK, et al.: Roles of Therapeutic Bioactive Compounds in Hepatocellular Carcinoma. Oxidative Medicine and Cellular Longevity 2021, 2021:9068850.
Ray U, Roy SS: Aberrant Lipid Metabolism in Cancer Cells-The Role of Oncolipid-activated Signaling. The FEBS Journal 2018, 285:432–443.
Rivera-Lopez CM, Tucker AL, Lynch KR: Lysophosphatidic Acid (LPA) and Angiogenesis. Angiogenesis 2008, 11:301–310.
Liu S, Murph M, Panupinthu N, Mills GB: ATX-LPA Receptor Axis in Inflammation and Cancer. Cell Cycle 2009, 8:3695–3701.
She S, Zhang Q, Shi J, Yang F, Dai K: Roles of Autotaxin/ Autotaxin-Lysophosphatidic Acid Axis in the Initiation and Progression of Liver Cancer. Frontiers in Oncology 2022, 12:922945.
Sengupta D, Chowdhury KD, Sarkar A, Paul S, Sadhukhan GC: Berberine and S Allyl Cysteine Mediated Amelioration of DEN+CCl4 Induced Hepatocarcinoma. Biochimica et Biophysica Acta 2014, 1840:219–244.
Qu L, Liu Y, Deng J, Ma X, Fan D: Ginsenoside Rk3 is a Novel PI3K/AKT-targeting Therapeutics Agent that Regulates Autophagy and Apoptosis in Hepatocellular Carcinoma. Journal of Pharmaceutical Analysis 2023, 13:463–482.
Hannun YA, Obeid LM: Principles of Bioactive Lipid Signalling: Lessons from Sphingolipids. Nature Reviews. Molecular Cell Biology 2008, 9:139–150.
Gomez-Larrauri A, Das Adhikari U, Aramburu-Nuñez M, Custodia A, Ouro A: Ceramide Metabolism Enzymes-Therapeutic Targets Against Cancer. Medicina (Kaunas) 2021, 57:729.
Coant N, Sakamoto W, Mao C, Hannun YA: Ceramidases, Roles in Sphingolipid Metabolism and in Health and Disease. Advances in Biological Regulation 2017, 63:122–131.
Tagaram HR, Divittore NA, Barth BM, Kaiser JM, Avella D, Kimchi ET, et al.: Nanoliposomal Ceramide Prevents In Vivo Growth of Hepatocellular Carcinoma. Gut 2011, 60:695–701.
Morales A, París R, Villanueva A, Llacuna L, García-Ruiz C, Fernández-Checa JC: Pharmacological Inhibition or Small Interfering RNA Targeting Acid Ceramidase Sensitizes Hepatoma Cells to Chemotherapy and Reduces Tumor Growth In Vivo. Oncogene 2007, 26:905–916.
Liu B, Xiao J, Dong M, Qiu Z, Jin J: Human Alkaline Ceramidase 2 Promotes the Growth, Invasion, and Migration of Hepatocellular Carcinoma Cells via Sphingomyelin Phosphodiesterase Acid-like 3B. Cancer Science 2020, 111:2259–2274.
Yin Y, Xu M, Gao J, Li M: Alkaline Ceramidase 3 Promotes Growth of Hepatocellular Carcinoma Cells via Regulating S1P/S1PR2/PI3K/AKT Signaling. Pathology, Research and Practice 2018, 214:1381–1387.
Yura Y, Masui A, Hamada M: Inhibitors of Ceramide-and Sphingosine-Metabolizing Enzymes as Sensitizers in Radiotherapy and Chemotherapy for Head and Neck Squamous Cell Carcinoma. Cancers (Basel) 2020, 12:2062.
Li L, Wang H: Heterogeneity of Liver Cancer and Personalized Therapy. Cancer Letters 2016, 379:191–197.
Wang C, Chen Z, Yi Y, Ding Y, Xu F, Kang H, et al.: RBM45 Reprograms Lipid Metabolism Promoting Hepatocellular Carcinoma via Rictor and ACSL1/ACSL4. Oncogene 2024, 43:328–340.
Sato Y, Nishiofuku H, Yasumoto T, Nakatsuka A, Matsuo K, Kodama Y, et al.: Multicenter Phase II Clinical Trial of Sorafenib Combined with Transarterial Chemoembolization for Advanced Stage Hepatocellular Carcinomas (Barcelona Clinic Liver Cancer Stage C): STAB Study. Journal of Vascular and Interventional Radiology: JVIR 2018, 29:1061–1067.
Cheng AL, Kang YK, Chen Z, Tsao CJ, Qin S, Kim JS, et al.: Efficacy and Safety of Sorafenib in Patients in the Asia-Pacific Region with Advanced Hepatocellular Carcinoma: a Phase III Randomised, Double-blind, Placebo-controlled Trial. The Lancet. Oncology 2009, 10:25–34.
Bruix J, Takayama T, Mazzaferro V, Chau GY, Yang J, Kudo M, et al.: STORM Investigators: Adjuvant Sorafenib for Hepatocellular Carcinoma after Resection or Ablation (STORM): a Phase 3, Randomised, Double-blind, Placebo-controlled Trial. The Lancet. Oncology 2015, 16:1344–1354.
Lencioni R, Llovet JM, Han G, Tak WY, Yang J, Guglielmi A, et al.: Sorafenib or Placebo Plus TACE with Doxorubicin-Eluting Beads for Intermediate Stage HCC: The SPACE Trial. Journal of Hepatology 2016, 64:1090–1098.
Park JW, Kim YJ, Kim DY, Bae SH, Paik SW, Lee YJ, et al.: Sorafenib with or without Concurrent Transarterial Chemoembolization in Patients with Advanced Hepatocellular Carcinoma: The Phase III STAH Trial. Journal of Hepatology 2019, 70:684–691.
Wang X, Wang N, Li H, Liu M, Cao F, Yu X, et al.: Up-regulation of PAI-1 and Down-regulation of uPA Are Involved in Suppression of Invasiveness and Motility of Hepatocellular Carcinoma Cells by a Natural Compound Berberine. International Journal of Molecular Sciences 2016, 17:577.
Chang X, Zheng Y, Xu K: Single-Cell RNA Sequencing: Technological Progress and Biomedical Application in Cancer Research. Molecular Biotechnology 2024, 66:1497–1519.
Du J, An ZJ, Huang ZF, Yang YC, Zhang MH, Fu XH, et al.: Novel Insights from Spatial Transcriptome Analysis in Solid Tumors. International Journal of Biological Sciences 2023, 19:4778–4792.
Patarat R, Riku S, Kunadirek P, Chuaypen N, Tangkijvanich P, Mutirangura A, et al.: The Expression of FLNA and CLU in PBMCs as a Novel Screening Marker for Hepatocellular Carcinoma. Scientific Reports 2021, 11:14838.
Elia I, Schmieder R, Christen S, Fendt SM: Organ-Specific Cancer Metabolism and Its Potential for Therapy. Handbook of Experimental Pharmacology 2016, 233:321–353.
Liberzon A, Birger C, Thorvaldsdóttir H, Ghandi M, Mesirov JP, Tamayo P: The Molecular Signatures Database (MSigDB) Hallmark Gene Set Collection. Cell Systems 2015, 1:417–425.
Meng Y, Zhao Q, An L, Jiao S, Li R, Sang Y, et al.: A TNFR2-hnRNPK Axis Promotes Primary Liver Cancer Development via Activation of YAP Signaling in Hepatic Progenitor Cells. Cancer Research 2024, 81:3036–3050.
Wang X, Ma Y, Xu Q, Shikov AN, Pozharitskaya ON, Flisyuk EV, et al.: Flavonoids and Saponins: What Have We Got or Missed? Phytomedicine 2023, 109:154580.