Biomedical application; Fiber sensing; Polymer optical fiber; Biomedical applications; Foot pressures; Heart-rate; Joint movement; Life qualities; Medical advances; Polymer optical fibre; Quality improvement; Respiration rate; Electronic, Optical and Magnetic Materials; Atomic and Molecular Physics, and Optics; Electrical and Electronic Engineering
Abstract :
[en] The monitoring of human physiological signs and body functions, such as respiration rate, heart rate, foot pressure, and joint movement, plays an important role in medical advances and life quality improvements. Polymer optical fibers are made of polymer materials with attractive characteristics compared with silica fibers, such as low Young's modulus, high failure strain levels, high flexibility, and bio-compatibility. These advantages are well-aligned with the instrumentation requirements for monitoring human physiological and body functions. In this perspective, this paper provides a comprehensive review about polymer optical fiber for human physiological and body functions monitoring, namely mechanisms, materials, and applications, which makes it possible to envisage a widespread implementation of such sensors in this research field in the next few years.
Disciplines :
Materials science & engineering
Author, co-author :
Min, Rui; Center for Cognition and Neuroergonomics, State Key Laboratory of Cognitive Neuroscience and Learning, Beijing Normal University at Zhuhai, Zhuhai, China
Hu, Xuehao ; Université de Mons - UMONS > Recherche > Service ERC Unit - Advanced Photonic ; Research Center for Advanced Optics and Photoelectronics, Department of Physics, College of Science, Shantou University, Shantou, China ; Key Laboratory of Intelligent Manufacturing Technology of MOE, Shantou University, Shantou, China
Pereira, Luis ; I3N & Physics Department, Universidade de Aveiro, Aveiro, Portugal
Simone Soares, M.; I3N & Physics Department, Universidade de Aveiro, Aveiro, Portugal
Silva, Luís C.B.; Department of Electrical Engineering, Federal University of Espírito Santo, Vitória, Brazil
Wang, Guoqing; School of Electronic and Electrical Engineering, Southern University of Science and Technology, Shenzhen, China
Martins, Luis ; I3N & Physics Department, Universidade de Aveiro, Aveiro, Portugal
Qu, Hang; Research Center for Advanced Optics and Photoelectronics, Department of Physics, College of Science, Shantou University, Shantou, China ; Key Laboratory of Intelligent Manufacturing Technology of MOE, Shantou University, Shantou, China
Antunes, Paulo ; I3N & Physics Department, Universidade de Aveiro, Aveiro, Portugal
Marques, Carlos ; I3N & Physics Department, Universidade de Aveiro, Aveiro, Portugal
Li, Xiaoli; Center for Cognition and Neuroergonomics, State Key Laboratory of Cognitive Neuroscience and Learning, Beijing Normal University at Zhuhai, Zhuhai, China
Language :
English
Title :
Polymer optical fiber for monitoring human physiological and body function: A comprehensive review on mechanisms, materials, and applications
Research Institute for Materials Science and Engineering
Funding text :
National Natural Science Foundation of China (62003046, 6211101138); 2020 Li Ka Shing Foundation Cross-Disciplinary Research Grant (No. 2020LKSFG01B and No. 2020LKSFG14B); The Start-up fund (No. NTF19023 and No. NTF18016) from Shantou University; Guangdong Basic and Applied Basic Research Foundation (2021A1515011997); Special projects in key fields of colleges and universities in Guangdong Province (2020ZDZX3037, 2020ZDZX3035, 2021ZDZX1050); Specialized Project Fund in Science and Technology of Guangdong Province (2019ST135 and 2019ST096); The Innovation Team Project of Guangdong Provincial Department of Education (2021KCXTD014). Carlos A. F. Marques acknowledges Fundação para a Ciência e a Tecnologia (FCT) through the CEECIND/00034/2018 (iFish project); Luis Pereira acknowledges FCT for the grant with reference SFRH/BD/146295/2019; this work was developed within the scope of the project i3N, UIDB/50025/2020 &UIDP/50025/2020, financed by national funds through the FCT/MEC; Luís C. B. Silva acknowledge the Fundação de Amparo à Pesquisa e Inovação do Espírito Santo - FAPES/Brazil (projects 66/2017 and 031/2021) by funding this work.
Al-Naji, A., Gibson, K., Lee, S.H., Chahl, J., Monitoring of Cardiorespiratory Signal: Principles of Remote Measurements and Review of Methods. IEEE Access 5 (2017), 15776–15790.
S. Lin, W. Chen, and Y. Lin, “A Pulse Rate Detection Method for Mouse Application Based on Multi-PPG Sensors,” Sensors (Switzerland), vol. 17, no. 1628, 2017.
Alzahrani, A., Hu, S., Peris, V.A., Barrett, L., Esliger, D., Hayes, M., Akbare, S., Achart, J., Kuoch, S., A Multi-Channel Opto-Electronic A Multi-Channel Opto-Electronic Sensor to Accurately Monitor Heart Rate against Motion Artefact during Exercise. Sensors (Switzerland) 15 (2015), 25681–25702.
Lin, X., Gao, S., Fei, T., Liu, S., Zhao, H., Zhang, T., Study on a paper-based piezoresistive sensor applied to monitoring human physiological signals. Sensors Actuat. A Phys. 292 (2019), 66–70.
Jian, M., Wang, C., Wang, Q., Wang, H., Xia, K., Yin, Z., Zhang, M., Liang, X., Zhang, Y., Advanced carbon materials for flexible and wearable sensors. Sci. China Mater. 60:11 (2017), 1026–1062.
Banerjee, A., Park, Y., Clarke, F., Song, H., Yang, S., Kramer, G., Kim, K., Mukherjee, B., Wavelength-division-multiplexed passive optical network (WDM-PON) technologies for broadband access: A review. J. Opt. Netw. 4:11 (2005), 737–758.
K. Peters, “Polymer optical fiber sensors - A review,” Smart Mater. Struct., vol. 20, no. 1, 2011.
D. J. Webb, “Fibre Bragg grating sensors in polymer optical fibres,” Meas. Sci. Technol., vol. 26, no. 9, 2015.
Markos, C., Stefani, A., Nielsen, K., Rasmussen, H.K., Yuan, W., Bang, O., High-Tg TOPAS microstructured polymer optical fiber for fiber Bragg grating strain sensing at 110 degrees. Opt. Express 21:4 (2013), 4758–4765.
Woyessa, G., Fasano, A., Stefani, A., Markos, C., Nielsen, K., Rasmussen, H.K., Bang, O., Single mode step-index polymer optical fiber for humidity insensitive high temperature fiber Bragg grating sensors. Opt. Express 24:2 (2016), 1253–1260.
Woyessa, G., Fasano, A., Markos, C., Rasmussen, H.K., Bang, O., Low Loss Polycarbonate Polymer Optical Fiber for High Temperature FBG Humidity Sensing. IEEE Photonics Technol. Lett. 29:7 (2017), 575–578.
Gierej, A., Vagenende, M., Filipkowski, A., Siwicki, B., Buczynski, R., Thienpont, H., Vlierberghe, S.V., Geernaert, T., Dubruel, P., Berghmans, F., Poly(D, L-Lactic Acid) (PDLLA) Biodegradable and Biocompatible Polymer Optical Fiber. J. Light. Technol. 37:9 (2019), 1916–1923.
Lacraz, A., Polis, M., Theodosiou, A., Koutsides, C., Kalli, K., Femtosecond Laser Inscribed Bragg Gratings in Low Loss CYTOP Polymer Optical Fiber. IEEE Photonics Technol. Lett. 27:7 (2015), 693–696.
Leal-Junior, A.G., Frizera, A., Avellar, L.M., Pontes, M.J., Design considerations, analysis, and application of a low-cost, fully portable, wearable polymer optical fiber curvature sensor. Appl. Opt., 57(24), 2018, 6927, 10.1364/AO.57.006927.
Mizuno, Y., Nakamura, K., Brillouin Scattering in polymer optical fibers: Fundamental properties and potential use in sensors. MDPI Polym. 3:2 (2011), 886–898.
Bilro, L., Alberto, N., Pinto, J.L., Nogueira, R., Optical sensors based on plastic fibers. Sensors (Switzerland) 12:9 (2012), 12184–12207.
Mizuno, Y., Theodosiou, A., Kalli, K., Liehr, S., Lee, H., Nakamura, K., Distributed polymer optical fiber sensors: a review and outlook. Photonics Res. early access, 9(9), 2021, 1719, 10.1364/PRJ.435143.
Large, M.C.J., Blacket, D., Bunge, C.A., Microstructured polymer optical fibers compared to conventional POF: Novel properties and applications. IEEE Sens. J. 10:7 (2010), 1213–1217.
Broadway, C., Min, R., Leal-Junior, A.G., Marques, C., Caucheteur, C., Toward Commercial Polymer Fiber Bragg Grating Sensors: Review and Applications. J. Light. Technol. 37:11 (2019), 2605–2615.
Leal-Junior, A.G., Diaz, C.A.R., Avellar, L.M., Pontes, M.J., Marques, C., Frizera, A., Polymer optical fiber sensors in healthcare applications: A comprehensive review. Sensors (Switzerland) 19:14 (2019), 1–30.
R. Min, B. Ortega, and C. Marques, “Latest achievements in polymer optical fiber gratings: Fabrication and applications,” Photonics (Switzerland), vol. 6, no. 2, 2019.
Marques, C.A.F., Leal-Junior, A.G., Min, R., Domingues, M., Leitão, C., Antunes, P., Ortega, B., André, P., Advances on Polymer Optical Fiber Gratings Using a KrF Pulsed Laser System Operating at 248 nm. Fibers (Switzerland), 6(1), 2018, 13.
Nogueira, R., Oliveira, R., Bilro, L., Heidarialamdarloo, J., New advances in polymer fiber Bragg gratings. Opt. Laser Technol. 78 (2016), 104–109.
Dobb, H., Webb, D.J., Kalli, K., Argyros, A., Large, M.C.J., van Eijkelenborg, M.A., Continuous wave ultraviolet light-induced fiber Bragg gratings in few- and single-mode microstructured polymer optical fibers. Opt. Lett. 30:24 (2005), 3296–3298.
Min, R., Ortega, B., Leal-Junior, A., Marques, C., Fabrication and Characterization of Bragg Grating in CYTOP POF at 600-nm Wavelength. IEEE Sensors Lett. 2:3 (2018), 1–4.
D. Vilarinho, A. Theodosiou, C. Leitão, A. G. Leal-Junior, M. F. Domingues, K. Kalli, P. André, P. Antunes and C. Marques, “POFBG-embedded cork insole for plantar pressure monitoring,” Sensors (Switzerland), vol. 17, no. 12, 2017.
Woyessa, G., Fasano, A., Markos, C., Stefani, A., Rasmussen, H.K., Bang, O., Zeonex microstructured polymer optical fiber: fabrication friendly fibers for high temperature and humidity insensitive Bragg grating sensing. Opt. Mater. Express 7:1 (2017), 286–295.
Marques, C.A.F., Min, R., Leal Junior, A., Antunes, P., Fasano, A., Woyessa, G., Nielsen, K., Rasmussen, H.K., Ortega, B., Bang, O., Fast and stable gratings inscription in POFs made of different materials with pulsed 248 nm KrF laser. Opt. Express 26:2 (2018), 272–281.
Yue, X., Chen, H., Qu, H., Min, R., Woyessa, G., Bang, O., Hu, X., Polycarbonate mPOF-Based Mach-Zehnder Interferometer for Temperature and Strain Measurement. Sensors (Switzerland), 20(22), 2020, 6643, 10.3390/s20226643.
Ferreira, M.F.S., Statkiewicz-Barabach, G., Kowal, D., Mergo, P., Urbanczyk, W., Frazão, O., Fabry-Perot cavity based on polymer FBG as refractive index sensor. Opt. Commun. 394 (2017), 37–40.
Oliveira, R., Bilro, L., Marques, T.H.R., Cordeiro, C.M.B., Nogueira, R., Simultaneous detection of humidity and temperature through an adhesive based Fabry-Pérot cavity combined with polymer fiber Bragg grating. Opt. Lasers Eng. 114 (2019), 37–43.
Min, R., Pereira, L., Paixão, T., Woyessa, G., André, P., Bang, O., Antunes, P., Pinto, J., Li, Z., Ortega, B., Marques, C., Inscription of Bragg gratings in undoped PMMA mPOF with Nd:YAG laser at 266 nm wavelength. Opt. Express, 27(26), 2019, 38039.
Pont, D., Risks much to gain much. Chem. Eng. News 44 (1966), 21–22.
Brown, R.G., Derick, B.N., Plastic Fiber Optics II: Loss Measurements and Loss Mechanisms. Appl. Opt., 7(8), 1968, 1565, 10.1364/AO.7.001565.
Bunge, C.A., Gries, T., Beckers, M., Polymer Optical Fibres: Fibre Types, Materials. 2017, Characterization, and Applications. Woodhead Publishing, Fabrication.
Koeppen, C., Shi, R.F., Chen, W.D., Garito, A.F., Properties of plastic optical fibers. J. Opt. Soc. Am. B 15:2 (1998), 15–16.
Groh, W., Overtone absorption in macromolecules for polymer optical fibers. Macromol. Chem. Phys. 189:12 (1988), 2861–2874.
Argyros, A., Microstructured polymer optical fibers. J. Light. Technol. 27:11 (2009), 1571–1579.
Startsev, O.V., Rudnev, V.P., Perov, B.V., Reversible moisture effects in the climatic ageing of organic glass. Polym. Degrad. Stab. 39:3 (1993), 373–379.
Zhang, W., Webb, D.J., Peng, G.D., Investigation into time response of polymer fiber bragg grating based humidity sensors. J. Light. Technol. 30:8 (2012), 1090–1096.
Fasano, A., Woyessa, G., Stajanca, P., Markos, C., Stefani, A., Nielsen, K., Rasmussen, H.K., Krebber, K., Bang, O., Fabrication and characterization of polycarbonate microstructured polymer optical fibers for high-temperature-resistant fiber Bragg grating strain sensors. Opt. Mater. Express 6:2 (2016), 649–659.
Yang, D.X., Yu, J., Tao, X., Tam, H., Structural and mechanical properties of polymeric optical fiber. Mater. Sci. Eng. A 364:1-2 (2004), 256–259.
M. G. Zubel, A. Fasano, G. Woyessa, R. Min, A. G. Leal, A. Theodosiou, C. A. F. Marques, H. K. Rasmussen, O. Bang, B. Ortega, K. Kalli, A. F. Neto, M. J. Pontes, and K. Sugden, “Bragg gratings inscribed in solid-core microstructured single-mode polymer optical fiber drawn from a 3D-printed polycarbonate preform,” IEEE Sens. J., vol. 20, no. 21, 2020.
Koike, Y., Koike, K., Progress in low-loss and high-bandwidth plastic optical fibers. J. Polym. Sci. Part B Polym. Phys. 49:1 (2011), 2–17.
Koike, Y., Fundamentals of Plastic Optical Fibers. 2014, Wiley.
Koike, Y., Asai, M., The future of plastic optical fiber. NPG Asia Mater. 1:1 (2009), 22–28.
Yuan, W., Khan, L., Webb, D.J., Kalli, K., Rasmussen, H.K., Stefani, A., Bang, O., Humidity insensitive TOPAS polymer fiber Bragg grating sensor. Opt. Express 19:20 (2011), 19731–19739.
Johnson, I.P., Yuan, W., Stefani, A., Nielsen, K., Rasmussen, H.K., Khan, L., Webb, D.J., Kalli, K., Bang, O., Optical fibre Bragg grating recorded in TOPAS cyclic olefin copolymer. Electron. Lett. 47:4 (2011), 271–272.
Hoare, T.R., Kohane, D.S., Hydrogels in drug delivery: Progress and challenges. Polymer 49:8 (2008), 1993–2007.
E. Tamahkar, B. Özkahraman, A. K. Süloğlu, N. İdil, and I. Perçin, “A novel multilayer hydrogel wound dressing for antibiotic release,” J. Drug Deliv. Sci. Technol., vol. 58, no. December 2019, pp. 1–7, 2020.
Guo, J., Niu, M., Yang, C., Highly flexible and stretchable optical strain sensing for human motion detection. Optica, 4(10), 2017, 1285, 10.1364/OPTICA.4.001285.
Gentile, P., Chiono, V., Carmagnola, I., Hatton, P.V., An overview of poly(lactic-co-glycolic) Acid (PLGA)-based biomaterials for bone tissue engineering. Int. J. Mol. Sci. 15:3 (2014), 3640–3659.
Fu, R., Luo, W., Nazempour, R., Tan, D., Ding, H., Zhang, K., Yin, L., Guan, J., Sheng, X., Implantable and Biodegradable Poly(l-lactic acid) Fibers for Optical Neural Interfaces. Adv. Opt. Mater. 6:3 (2018), 1–8.
Gierej, A., Filipkowski, A., Pysz, D., Buczyński, R., Vagenende, M., Dubruel, P., Thienpont, H., Geernaert, T., Berghmans, F., On the Characterization of Novel Step-Index Biocompatible and Biodegradable poly(D, L-lactic acid) Based Optical Fiber. J. Light. Technol. 38:7 (2020), 1905–1914.
S. Farajikhah, A. F. J. Runge, B. B. Boumelhem, I. D. Rukhlenko, A. Stefani, S. Sayyar, P. C. Innis, S. T. Fraser, S. Fleming, M. C. J. Large, “Thermally drawn biodegradable fibers with tailored topography for biomedical applications,” J. Biomed. Mater. Res. - Part B Appl. Biomater., pp. 1–11, 2020.
Canales, A., Jia, X., Froriep, U.P., Koppes, R.A., Tringides, C.M., Selvidge, J., Lu, C., Hou, C., Wei, L., Fink, Y., Anikeeva, P., Multifunctional fibers for simultaneous optical, electrical and chemical interrogation of neural circuits in vivo. Nat. Biotechnol. 33:3 (2015), 277–284.
S. Kamimura and R. Furukawa, “Strain sensing based on radiative emission-absorption mechanism using dye-doped polymer optical fiber,” Appl. Phys. Lett., vol. 111, no. 6, 2017.
Leal-Junior, A., Guo, J., Min, R., Fernandes, A.J., Frizera, A., Marques, C., Photonic smart bandage for wound healing assessment. Photonics Res., 9(3), 2021, 272, 10.1364/PRJ.410168.
Guo, J., Zhou, B., Yang, C., Dai, Q., Kong, L., Stretchable and Temperature-Sensitive Polymer Optical Fibers for Wearable Health Monitoring. Adv. Funct. Mater., 29(33), 2019, 1902898, 10.1002/adfm.v29.3310.1002/adfm.201902898.
Min, R., Liu, Z., Pereira, L., Yang, C., Sui, Q., Marques, C., Optical fiber sensing for marine environment and marine structural health monitoring: A review. Opt. Laser Technol., 140, 2021, 107082.
Zhang, Z.F., Tao, X.M., Synergetic effects of humidity and temperature on PMMA based fiber Bragg gratings. J. Light. Technol. 30:6 (2012), 841–845.
Erdogan, T., Sipe, J.E., Tilted fiber phase gratings. J. Opt. Soc. Am. A, 13(2), 1996, 296, 10.1364/JOSAA.13.000296.
Guo, T., González-Vila, Á., Loyez, M., Caucheteur, C., Plasmonic optical fiber-grating Immunosensing: A review. Sensors (Switzerland) 17:12 (2017), 1–20.
Zhu, T., Wu, D., Liu, M., Duan, D.W., In-line fiber optic interferometric sensors in single-mode fibers. Sensors (Switzerland) 12:8 (2012), 10430–10449.
Jacquot, P., Speckle interferometry: A review of the principal methods in use for experimental mechanics applications. Strain 44:1 (2008), 57–69.
Podbreznik, P., Donlagic, D., Lešnik, D., Cigale, B., Zazula, D., Cost-efficient speckle interferometry with plastic optical fiber for unobtrusive monitoring of human vital signs. J. Biomed. Opt., 18(10), 2013, 107001.
Bao, X., Chen, L., Recent progress in Brillouin scattering based fiber sensors. Sensors (Switzerland) 11:4 (2011), 4152–4187.
Witt, J., Narbonneau, F., Schukar, M., Krebber, K., De Jonckheere, J., Jeanne, M., Kinet, D., Paquet, B., Depre, A., D'Angelo, L.T., Thiel, T., Logier, R., Medical textiles with embedded fiber optic sensors for monitoring of respiratory movement. IEEE Sens. J. 12:1 (2012), 246–254.
Leal-Junior, A.G., Frizera, A., Avellar, L.M., Marques, C., Pontes, M.J., Polymer Optical Fiber for In-Shoe Monitoring of Ground Reaction Forces during the Gait. IEEE Sens. J. 18:6 (2018), 2362–2368.
Haseda, Y., Bonefacino, J., Tam, H.-Y., Chino, S., Koyama, S., Ishizawa, H., Measurement of Pulse Wave Signals and Blood Pressure by a Plastic Optical Fiber FBG Sensor. Sensors (Switzerland), 19(23), 2019, 5088, 10.3390/s19235088.
B. M. Quandt, F. Braun, D. Ferrario, R. M. Rossi, A. S. Sailer, M. Wolf, G. L. Bona, R.Hufenus, L. J. Scherer, and L. F. Boesel, “Body-monitoring with photonic textiles: A reflective heartbeat sensor based on polymer optical fibres,” J. R. Soc. Interface, vol. 14, no. 128, 2017.
Leal-Junior, A.G., Díaz, C.R., Leitão, C., Pontes, M.J., Marques, C., Frizera, A., Polymer optical fiber-based sensor for simultaneous measurement of breath and heart rate under dynamic movements. Opt. Laser Technol. 109 (2019), 429–436.
Aitkulov, A., Tosi, D., Optical Fiber Sensor Based on Plastic Optical Fiber and Smartphone for Measurement of the Breathing Rate. IEEE Sens. J. 19:9 (2019), 3282–3287.
Rezende, A., Alves, C., Marques, I., Silva, M.A., Naves, E., Polymer optical fiber goniometer: A new portable, low cost and reliable sensor for joint analysis. Sensors (Switzerland) 18:12 (2018), 1–9.