[en] The phylum Echinodermata is remarkable in the sense that most of its species use temporary adhe-sion extensively for attachment to the substratum or food capture. Their adhesive systems are asso-ciated to specialized organs, the podia or tube feet. Tube feet function as duo-gland adhesive sys-tems in which adhesive cells release a proteinaceous secretion, while de-adhesive cells allow de-tachment. In this chapter recent advances in the areas of tube foot morphology and mechanical properties, ultrastructure and composition of the adhesive material, and development of tube foot-inspired structures and materials are covered. Although tube feet are present in every extant echi-noderm species, only those of asteroids and regular echinoids have been studied in detail in terms of adhesion. From an ecological perspective, the strength with which echinoderms can attach to a surface is determined by tube foot adhesive and tensile strength as well as by the number of tube feet involved. Data on echinoderm attachment strengths, usually reported as critical detachment forces, are now available for several sea star and sea urchin species. They can be integrated with the animals’ body size and shape to calculate a safety factor which proved to be useful to predict the flow velocity at which organisms would be dislodged in the field. From a molecular point of view, the recent use of “omic” approaches such as transcriptomics and proteomics on echinoderm tube feet and their adhesive secretions considerably expanded the list of adhesive protein candidates. Their comparison in terms of amino acid or domain composition indicate substantial conservation of some adhesion-related proteins across echinoderm classes. Their glycosylation patterns, howev-er, may differ between species of a same class. Based on this knowledge, bio-inspired adhesives are developed, mostly as formulations of recombinant proteins, and investigated for biomedical appli-cations.
scite shows how a scientific paper has been cited by providing the context of the citation, a classification describing whether it supports, mentions, or contrasts the cited claim, and a label indicating in which section the citation was made.
Bibliography
Aguzzi, J., Costa, C., Calisti, M., Funari, V., Stefanni, S., Danovaro, R., Gomes, H. I., et al., (2021). Research trends and future perspectives in marine biomimicking robotics. Sensors, 21, 3778.
Almeida, M., Reis, R. L., & Silva, T. H., (2020). Marine invertebrates are a source of bioadhesives with biomimetic interest. Mater. Sci. Eng. C, 108, 110467.
Ameye, L., Hermann, R., Dubois, Ph., Flammang, P., (2000). Ultrastructure of the echinoderm cuticle after fast freezing/freeze substitution and conventional chemical fixation. Microsc. Res. Tech., 48, 385-393.
Aruga, N., & Hirose, E., (2021). How to wear a sandy coat: Secretory cells in the dorsal epidermis in the sea cucumber Holothuria atra (Echinodermata: Holothuroidea). Zool. Sci., 38, 252-258.
Asnaghi, V., Chindris, A., Leggieri, F., Scolamacchia, M., Brundu, G., Guala, I., Loi, B., et al., (2020). Decreased pH impairs sea urchin resistance to predatory fish: A combined laboratory-field study to understand the fate of top-down processes in future oceans. Mar. Environ. Res., 162, 105194.
Bell, M. A., Pestovski, I., Scott, W., Kumar, K., Jawed, M. K., Paley, D. A., Majidi, C et al., (2018). Echinoderm-inspired tube feet for robust robot locomotion and adhesion. IEEE Robot. Autom. Lett., 3, 2222-2228.
Berger, V. Ya., & Naumov, A. D., (1996). Influence of salinity on the ability of starfishes Asterias rubens L. to attach to substrate. Biologiya Morya, 22, 99-101.
Berglin, M., & Gatenholm, P., (2003). The barnacle adhesive plaque: Morphological and chemical differences as a response to substrate properties. Coll. Surf. B, 28, 107-117.
Boaden, P. J. S., (1968). Water movement-A dominant factor in interstitial ecology. Sarsia, 34, 125-136.
Byrum, C. A., & Ruppert, E. E., (1994). The ultrastructure and functional morphology of a captaculum in Graptacme calamus (Mollusca, Scaphopoda). Acta Zool. (Stockh.), 75, 37-46.
Chaet, A. B., & Philpott, D. E., (1964). A new subcellular particle secreted by the starfish. J. Ultrastruct. Res., 11, 354-362.
Chaet, A. B., (1965). Invertebrate adhering surfaces: Secretions of the starfish, Asterias forbesi, and the coelenterate, Hydra pirardi. Ann. N.Y. Acad. Sci., 118, 921-992.
Claverie, M., McReynolds, C., Petitpas, A., Thomas, M., & Fernandes, S. C. M., (2020). Marine-derived polymeric materials and biomimetics: An overview. Polymers (Basel, Switz.), 12, 1002.
Cohen-Rengifo, M., Agüera, A., Detrain, C., Bouma, T., Dubois, P., & Flammang, P., (2018). Biomechanics and behaviour in the sea urchin Paracentrotus lividus(Lamarck, 1816) when facing gradually increasing water flows. J. Exp. Mar. Biol. Ecol., 506, 61-71.
Cohen-Rengifo, M., Moureaux, C., Dubois, P., & Flammang, P., (2017). Attachment capacity of the sea urchin Paracentrotus lividus in a range of seawater velocities in relation to test morphology and tube foot mechanical properties. Mar. Biol., 164, 164-179.
Davey, P. A., Power, A. M., Santos, R., Bertemes, P., Ladurner, P., Palmowski, P., Clarke, J., et al., (2021). Omics-based molecular analyses of adhesion by aquatic invertebrates. Biol. Rev., 9, 1051-1075.
Davies, M. S., Jones, H. D., & Hawkins, S. J., (1990). Seasonal variation in the composition of pedal mucus from Patella vulgata L. J. Exp. Mar. Biol. Ecol., 144, 101-112.
Defretin, R., (1952). Etude histochimique des mucocytes des pieds ambulacraires de quelques échinodermes. Rec. Trav. Stat. Mar. Endoume, 6, 31-33.
Delroisse, J., Kang, V., Gouveneaux, A., Santos, R., & Flammang, P., (2023). Convergent evolution of attachment mechanisms in aquatic animals. In: Bels, V., & Russell, A. P.,(eds.), Convergent Evolution (pp. 523-557). Springer Nature Switzerland, Cham.
Demeuldre, M., Chinh, N. T., Hennebert, E., Wattiez, R., Leclère, P., & Flammang, P., (2014). Instantaneous adhesion of Cuvierian tubules in the sea cucumber Holothuria forskali. Biointerphases, 9, 029016.
Dreanno, C., Matsumura, K., Dohmae, N., Takio, K., Hirota, H., Kirby, R. R., & Clare, A. S., (2006). An alpha(2)-macroglobulinlike protein cue to gregarious settlement barnacle Balanus amphitrite. Proc. Natl. Acad. Sci. USA, 103, 14396-14401.
Elbadawi, M., Andrikopoulos, G., Nikolakopoulos, G., & Gustafsson, T., (2018). Bio-inspired climbing robots in wet environments: Recent trends in adhesion methods and materials. 2018 IEEE International Conference on Robotics and Biomimetics (ROBIO), 2347-2353.
Engster, M. S., & Brown, S. C., (1972). Histology and ultrastructure of the tube foot epithelium in the phanerozonian starfish, Astropecten. Tiss. Cell, 4, 503-518.
Flammang, P., & Jangoux, M., (1992). Functional morphology of the locomotory podia of Holothuria forskali (Echinodermata, Holothuroidea). Zoomorphology, 11, 167-178.
Flammang, P., & Jangoux, M., (1993). Functional morphology of coronal and peristomial podia in Sphaerechinus granularis (Echinodermata, Echinoida). Zoomorphology, 113, 47-60.
Flammang, P., & Walker, G., (1997). Measurement of the adhesion of the podia in the asteroid Asterias rubens (Echinodermata). J. Mar. Biol. Ass. UK, 77, 1251-1254.
Flammang, P., (1996). Adhesion in echinoderms. In: Jangoux, M., & Lawrence, J. M., (eds.), Echinoderm Studies (Vol. 5, pp. 1-60). (Balkema). Rotterdam.
Flammang, P., (2006). Adhesive secretions in echinoderms: An overview. In: Smith, A. M., & Callow, J. A., (eds.), Biological Adhesives (pp. 183-206). Springer-Verlag: Berlin, Heidelberg.
Flammang, P., Demeuleneare, S., & Jangoux, M., (1994). The role of podial secretions in adhesion in two species of sea stars (Echinodermata). Biol. Bull., 187, 35-47.
Flammang, P., Michel, A., Van, C. A., Alexandre, H., & Jangoux, M., (1998). A study of the temporary adhesion of the podia in the sea star Asterias rubens(Echinodermata, Asteroidea) through their footprints. J. Exp. Biol., 201, 2383-2395.
Flammang, P., Santos, R., & Haesaerts, D., (2005). Echinoderm adhesive secretions: From experimental characterization to biotechnological applications. In: Matranga, V., (ed.), Marine Molecular Biotechnology: Echinodermata (pp. 201-220). Springer-Verlag: Berlin.
Gallien, W. B., (1986). A Comparison of Hydrodynamic Forces on Two Sympatric Sea Urchins: Implications of Morphology and Habitat. MSc thesis, University of Hawaii, Honolulu, HI, USA.
Gaspar, L., Flammang, P., José, R., Luis, R., Ramalhosa, P., Monteiro, J., Nogueira, N., et al., (2021). Interspecific analysis of sea urchin adhesive composition emphasizes variability of glycans conjugated with putative adhesive proteins. Front. Mar. Sci., 8, 737886.
Gohad, N. V., Aldred, N., Hartshorn, C. M., Jong, L. Y., Cicerone, M. T., Orihuela, B., Clare, A. S., et al., (2014). Synergistic roles for lipids and proteins in the permanent adhesive of barnacle larvae. Nat. Commun., 5, 4414.
Gosline, J., Margo, L., Carrington, E., Guerette, P., Ortlepp, C., & Savage, K., (2002). Elastic proteins: Biological roles and mechanical properties. Phil. Trans. R. Soc. Lond. B, 357, 121-132.
Guidetti, P., & Mori, M., (2005). Morpho-functional defenses of Mediterranean Sea urchins, Paracentrotus lividus and Arbacia lixula, against fish predators. Mar. Biol., 147, 797-802.
Hammer, Ø., Harper, D. A. T., & Ryan, P. D., (2001). PAST: Paleontological statistics software package for education and data analysis. Palaeontol. Ass., 4, 1-9.
Harrington, M. J., & Fratzl, P., (2021). Natural load-bearing protein materials. Prog. Mater. Sci., 120, 100767.
He, Y., Sun, C., Jiang, F., Yang, B., Li, J., Zhong, C., Zheng, L., & Ding, H., (2018). Lipids as integral components in mussel adhesion. Soft Matter, 14, 7145-7154.
Hennebert, E., Becker, P., & Flammang, P., (2012c). Lessons from sea organisms to produce new biomedical adhesives. In: Mano, J. F., (ed.), Biomimetic Approaches for Biomaterial Development (pp. 273-291). Wiley-VCH: Weinheim.
Hennebert, E., Gregorowicz, E., & Flammang, P., (2018). Involvement of sulfated biopolymers in adhesive secretions produced by marine invertebrates. Biol. Open, 7, bio037358.
Hennebert, E., Haesaerts, D., Dubois, P., & Flammang, P., (2010). Evaluation of the different forces brought into play during tube foot activities in sea stars. J. Exp. Biol., 213, 1162-1174.
Hennebert, E., Leroy, B., Wattiez, R., & Ladurner, P., (2015). An integrated transcriptomic and proteomic analysis of sea star epidermal secretions identifies proteins involved in defense and adhesion. J. Proteomics, 128, 83-91.
Hennebert, E., Santos, R., & Flammang, P., (2012a). Echinoderms don’t suck: Evidence against the involvement of suction in tube foot attachment. Zoosymposia, 7, 25-32.
Hennebert, E., Viville, P., Lazzaroni, R., & Flammang, P., (2008). Micro-and nanostructure of the adhesive material secreted by the tube feet of the sea star Asterias rubens. J. Struct. Biol., 164, 108-118.
Hennebert, E., Wattiez, R., & Flammang, P., (2011). Characterisation of the carbohydrate fraction of the temporary adhesive secreted by the tube feet of the sea star Asterias rubens. Mar. Biotechnol., 13, 484-495.
Hennebert, E., Wattiez, R., Demeuldre, M., Ladurner, P., Hwang, D. S., Waite, J. H., & Flammang, P., (2014). Sea star tenacity mediated by a protein that fragments, then aggregates. Proc. Natl. Acad. Sci. USA, 111, 6317-6322.
Hennebert, E., Wattiez, R., Waite, J. H., & Flammang, P., (2012b). Characterization of the protein fraction of the temporary adhesive secreted by the tube feet of the sea star Asterias rubens. Biofouling, 28, 289-303.
Hermans, C. O., (1983). The duo-gland adhesive system. Oceanogr. Mar. Biol. Ann. Rev., 21, 281-339.
Higgins, L. J., & Mostaert, A. S., (2013). Qualitative and quantitative study of spiny starfish (Marthasterias glacialis) footprints using atomic force microscopy. In: Santos, R., Aldred, N., Gorb, S., & Flammang, P., (eds.), Biological and Biomimetic Adhesives: Challenges and Opportunities (pp. 26-37). RSC Publishing: Cambridge.
Holland, N., & Nealson, K., (1978). The fine structure of the echinoderm cuticle and subcuticular bacteria of echinoderms. Acta Zool., 59, 169-185.
Jacinto, D., & Cruz, T., (2012). Parcentrotus lividus (Echinodermata: Echinoidea) attachment force and burrowing behavior in rocky shores of SW Portugal. Zoosymposia, 7, 231-240.
Kamino, K., (2010). Molecular design of barnacle cement in comparison with those of mussel and tubeworm. J. Adhesion, 86, 96-110.
Kang, V., Lengerer, B., Wattiez, R., & Flammang, P., (2020). Molecular insights into the powerful mucus-based adhesion of limpets (Patella vulgata L.). Open Biol., 10, 200019.
Kim, C. H., Go, H. J., Oh, H. Y., Jo, Y. H., Elphick, M. R., & Park, N. G., (2018). Transcriptomics reveals tissue/organ-specific differences in gene expression in the starfish Patiria pectinifera. Mar. Genomics, 37, 92-96.
Lang, T., Hansson, G. C., & Samuelsson, T., (2007). Gel-forming mucins appeared early in metazoan evolution. Proc. Natl. Acad. Sci. USA, 104, 16209-16214.
Lawrence, J. M., (1987). A Functional Biology of Echinoderms. London: Croom Helm.
Lebesgue, N., Da Costa, G., Ribeiro, R. M., Ribeiro-Silva, C., Martins, G. G., Matranga, V., Scholten, A., et al., (2016). Deciphering the molecular mechanisms underlying sea urchin reversible adhesion: A quantitative proteomics approach. J. Proteomics, 138, 61-71.
Leddy, H. A., & Johnson, A. S., (2000). Walking versus breathing: Mechanical differentiation of sea urchin podia corresponds to functional specialization. Biol. Bull., 198, 88-93.
Lefevre, M., Ederth, T., Masai, T., Wattiez, R., Leclère, P., Flammang, P., & Hennebert, E., (2021a). Disentangling the roles of functional domains in the aggregation and adsorption of the multimodular sea star adhesive protein Sfp1. Mar. Biotechnol., 23, 724-735.
Lefevre, M., Flammang, P., Aranko, A. S., Linder, M. B., Scheibel, T., Humenik, M., Leclercq, M., et al., (2020). Sea star-inspired recombinant adhesive proteins self-assemble and adsorb on surfaces in aqueous environments to form cytocompatible coatings. Acta Biomater., 112, 62-74.
Lefevre, M., Tran, T. Q., De Muijlder, T., Pittenger, B., Flammang, P., Hennebert, E., & Leclère, P., (2021b). On the nanomechanical and viscoelastic properties of coatings made of recombinant sea star adhesive proteins. Front. Mech. Eng., 7, 667491.
Lengerer, B., & Ladurner, P., (2018). Properties of temporary adhesion systems of marine and freshwater organisms. J. Exp. Biol., 221, jeb182717.
Lengerer, B., Algrain, M., Lefevre, M., Delroisse, J., Hennebert, E., & Flammang, P., (2019). Interspecies comparison of sea star adhesive proteins. Phil. Trans. R. Soc. B, 374, 20190195.
Lengerer, B., Bonneel, M., Lefevre, M., Hennebert, E., Leclère, P., Gosselin, E., Ladurner, P., & Flammang, P., (2018). The structural and chemical basis of temporary adhesion in the sea star Asterina gibbosa. Beilstein J. Nanotechnol., 9, 2071-2086.
Märkel, K., & Titschack, H., (1965). Das festhaltevermögen von seeigeln und die reißfestigkeit ihrer ambulacralfüßchen. Sond. Zeit. Naturw., 10, 268.
Matranga, V., Di Ferro, D., Zito, F., Cervello, M., & Nakano, E., (1992). A new extracellular matrix protein of the sea urchin embryo with properties of a substrate adhesion molecule. Roux’s Arch. Dev. Biol., 201, 173-178.
McKenzie, J. D., (1988). The ultrastructure of tube foot epidermal cells and secretions: Their relationship to the duo-glandular hypothesis and the phylogeny of the echinoderm classes. In: Paul, C. R. C., & Smith, A. B., (eds.), Echinoderm Phylogeny and Evolutionary Biology (pp. 287-298). Clarendon Press: Oxford.
Narvaez, C. A., Padovani, A. M., Stark, A. Y., & Russell, M. P., (2020). Plasticity in the purple sea urchin (Strongylocentrotus purpuratus): Tube feet regeneration and adhesive performance. J. Exp. Mar. Biol. Ecol., 528, 151381.
Nichols, D., (1966). Functional morphology of the water vascular system. In: Boolootian, R. A., (ed.), Physiology of Echinodermata (pp. 219-244). Interscience Publishers: New York.
Ocampo-Jiménez, J., Muñoz-Meléndez, A., & Rodríguez-Gómez, G., (2014). Extending a spherical robot for dealing with irregular surfaces: A sea urchin-like robot. Adv. Robot., 28, 1475-1485.
Paine, V. L., (1926). Adhesion of the tube feet in starfishes. J. Exp. Zool., 45, 361-366.
Paschal, T., Bell, M. A., Sperry, J., Sieniewicz, S., Wood, R. J., & Weaver, J. C., (2019). Design, fabrication, and characterization of an untethered amphibious sea urchin-inspired robot. IEEE Robot. Autom. Lett., 4, 3348-3354.
Perpeet, C., & Jangoux, M., (1973). Contribution à l’étude des pieds et des ampoules ambulacraires d’Asterias rubens (Echinodermata, Asteroides). Forma et Functio, 6, 191-209.
Pjeta, R., Lindner, H., Kremser, L., Salvenmoser, W., Sobral, D., Ladurner, P., & Santos, R., (2020). Integrative transcriptome and proteome analysis of the tube foot and adhesive secretions of the sea urchin Paracentrotus lividus. Int. J. Mol. Sci., 21, 946.
Pjeta, R., Wunderer, J., Bertemes, P., Hofer, T., Salvenmoser, W., Lengerer, B., Coassin, S., et al., (2019). Temporary adhesion of the proseriate flatworm Minona ileanae. Philos. Trans. R. Soc. Lond. B, 374, 20190194.
Prihastono, P., Wicaksono, H., Anam, K., Effendi, R., Adji, I., Kuswadi, S., Jazidie, A., & Sampei, M., (2009). Autonomous five legs robot navigation in cluttered environment using fuzzy q-learning and hybrid coordination node. In: Proceedings of the IEEE Conference on 2009 ICCAS-SICE (pp. 2871-2874). Fukuoka, Japan.
Rocha, M., Antas, P., Castro, L. F. C., Campos, A., Vasconcelos, V., Pereira, F., & Cunha, I., (2019). Comparative analysis of the adhesive proteins of the adult stalked goose barnacle Pollicipes pollicipes (Cirripedia: Pedunculata). Mar. Biotechnol., 21, 38-51.
Sadeghi, A., Beccai, L., & Mazzolai, B., (2012). Design and development of innovative adhesive suckers inspired by the tube feet of sea urchins. In: Proceedings of the IEEE Conference on Biomedical Robotics and Biomechatronics (BioRob) (pp. 617-622). Rome, Italy.
Santonocito, R., Venturella, F., Dal Piaz, F., Morando, M. A., Provenzano, A., Rao, E., Costa, M. A., et al., (2019). Recombinant mussel protein Pvfp-5β: A potential tissue bioadhesive. J. Biol. Chem., 294, 12826-12835.
Santos, R., & Flammang, P., (2006). Morphology and tenacity of tube foot disc of three common European sea urchin species: A comparative study. Biofouling, 22, 187-200.
Santos, R., & Flammang, P., (2008). Estimation of the attachment strength of the shingle sea urchin, Colobocentrotus atratus, and comparison with three sympatric echinoids. Mar. Biol., 154, 37-49.
Santos, R., & Flammang, P., (2012). Is the adhesive material secreted by sea urchin tube feet species-specific? J. Morphol., 273, 40-48.
Santos, R., Barreto, A., Franco, C., & Coelho, A. V., (2013). Mapping sea urchins tube feet proteome - a unique hydraulic mechano-sensory adhesive organ. J. Proteomics, 79, 100-113.
Santos, R., Da Costa, G., Franco, C., Gomes-Alves, P., Flammang, P., & Coelho, A. V., (2009b). First insights into the biochemistry of tube foot adhesive from the sea urchin Paracentrotus lividus (Echinoidea, Echinodermata). Mar. Biotechnol., 11, 686-698.
Santos, R., Gorb, S., Jamar, V., & Flammang, P., (2005a). Adhesion of echinoderm tube feet to rough surfaces. J. Exp. Biol., 208, 2555-2567.
Santos, R., Haesaerts, D., Jangoux, M., & Flammang, P., (2005b). Comparative histological and immunohistochemical study of sea star tube feet (Echinodermata, Asteroidea). J. Morphol., 263, 259-269.
Santos, R., Hennebert, E., Coelho, A. V., & Flammang, P., (2009a). The echinoderm tube foot and its involvement in temporary underwater adhesion. In: Gorb, S., (ed.), Functional Surfaces in Biology (Vol. 2, pp. 9-41). Springer: Netherlands.
Sharp, D. T., & Gray, I. E., (1962). Studies on factors affecting the local distribution of two sea urchins, Arbacia punctulata and Lytechinus variegatus. Ecology, 43, 309-313.
Shimek, R. L., (1988). The functional morphology of scaphopod captacula. Veliger, 30, 213-221.
Siddon, C. E., & Witman, J. D., (2003). Influence of chronic, low-level hydrodynamic forces on subtidal community structure. Mar. Ecol. Prog. Ser., 261, 91-110.
Simão, M., Moço, M., Marques, L., & Santos, R., (2020). Characterization of the glycans involved in sea urchin Paracentrotus lividus reversible adhesion. Mar. Biol., 167, 125.
Smith, A.B., (1978). A functional classification of the coronal pores of echinoids. Palaeontology, 21, 759-789.
Smith, A. M., Quick, T. J., & St. Peter, R. L., (1999). Differences in the composition of adhesive and non-adhesive mucus from the limpet Lottia limatula. Biol. Bull., 196, 34-44.
Souza, S. H., Silva, S. W., (1968). Morphological and histochemical studies on the secretory glands of starfish tube feet. Acta Anatomica, 69, 41-51.
Stark, A. Y., Narvaez, C. A., & Russell, M. P., (2020). Adhesive plasticity among populations of purple sea urchin (Strongylocentrotus purpuratus). J. Exp. Biol., 223, jeb228544.
Stevens, M. J., Steren, R. E., Vlamidir, H., & Stewart, R. J., (2007). Multiscale structure of the underwater adhesive of Phragmatopoma californica: A nanostructured latex with a steepmicroporosity gradient. Langmuir, 20, 5045-5049.
Stewart, R.J., (2011). Protein-based under water adhesives and the prospects for their biotechnological production. Appl. Microbiol. Biotechnol., 89, 27-33.
Stewart, R. J., Ransom, T. C., & Hlady, V., (2011). Natural underwater adhesives. J. Polym. Sci. B Polym. Phys., 49, 757-711.
Stiefel, K. M., & Barrett, G. A., (2018). Sea urchins as an inspiration for robotic designs. J. Mar. Sci. Eng., 6, 112.
Tatham, A. S., & Shewry, P. R., (2000). Elastomeric proteins: Biological roles, structures and mechanisms. Trends Biochem. Sci., 25, 567-571.
Thomas, L. A., & Hermans, C. O., (1985). Adhesive interactions between the tube feet of a starfish, Leptasterias hexactis, and substrata. Biol. Bull., 169, 675-688.
Tilbury, M. A., McCarthy, S., Domagalska, M., Ederth, T., Power, A. M., & Gerard, W. J., (2019). The expression and characterization of recombinant cp19k barnacle cement protein from sPollicipes pollicipes. Phil. Trans. R. Soc. B, 374, 20190205.
Toubarro, D., Gouveia, A., Ribeiro, R. M., Simões, N., Da Costa, G., Cordeiro, C., & Santos, R., (2016). Cloning, characterization and expression levels of the Nectin gene from the tube feet of the sea urchin Paracentrotus lividus. Mar. Biotechnol., 18, 372-383.
Tuya, F., Cisneros-Aguirre, J., Ortega, L., & Haroun, R. J., (2007). Bathymetric segregation of sea urchins on reefs of the Canarian Archipelago: Role of flow-induced forces. Estuar. Coast. Shelf Sci., 73, 481-488.
Tyler, S., (1988). The role of function in determination of homology and convergence - examples from invertebrates adhesive organs. Fortsch. Zool., 36, 331-347.
Viana, A. S., & Santos, R., (2018). Nanoscale characterization of the temporary adhesive of the sea urchin Paracentrotus lividus. Beilstein J. Nanotechnol., 9, 2277-2286.
Vogel, S., (2013). Comparative Biomechanics - Life’s Physical World (2nd edn.). Princeton University Press: Princeton.
Waite, J. H., (1987). Nature’s underwater adhesive specialist. Int. J. Adhesion Adhesives, 7, 9-14.
Watanabe, W., Suzuki, S., Kano, T., & Ishiguro, A., (2011). Moving right arm in the right place: Ophiuroid-inspired omnidirectional robot driven by coupled dynamical systems. In: Proceedings of the IEEE/REJ Conference on Intelligent Robots and Systems (pp. 1895-1900). San Francisco, CA, USA.
Whittington, I. D., & Cribb, B. W., (2001). Adhesive secretions in the Platyhelminthes. Adv. Parasitol., 48, 101-224.
Yamasaki, S., Nashimoto, K., Yamamoto, K., & Hiraishi, T., (1993). Fluid forces on short- spined sea urchin and northern sea urchin. Nippon Suisan Gakkaishi, 59, 1139-1146.
Zhou, X., Wang, H., Cui, J., Qiu, X., Chang, Y., & Wang, X., (2016). Transcriptome analysis of tube foot and large scale marker discovery in sea cucumber, Apostichopus japonicus. Comp. Biochem. Physiol. D, 20, 41-49.
Zito, F., Burke, R. D., & Matranga, V., (2010). Pl-nectin, a discoidin family member, is a ligand for betaC integrins in the sea urchin embryo. Matrix Biol., 29, 341-345.