[en] Marine plastispheres represent dynamic microhabitats where microorganisms colonise plastic debris and interact. Metaproteomics has provided novel insights into the metabolic processes within these communities; however, the early metabolic interactions driving the plastisphere formation remain unclear. This study utilised metaproteomic and metagenomic approaches to explore early plastisphere formation on low-density polyethylene (LDPE) over 3 (D3) and 7 (D7) days, focusing on microbial diversity, activity and biofilm development. In total, 2948 proteins were analysed, revealing dominant proteomes from Pseudomonas and Marinomonas, with near-complete metagenome-assembled genomes (MAGs). Pseudomonas dominated at D3, whilst at D7, Marinomonas, along with Acinetobacter, Vibrio and other genera became more prevalent. Pseudomonas and Marinomonas showed high expression of reactive oxygen species (ROS) suppression proteins, associated with oxidative stress regulation, whilst granule formation, and alternative carbon utilisation enzymes, also indicated nutrient limitations. Interestingly, 13 alkanes and other xenobiotic degradation enzymes were expressed by five genera. The expression of toxins, several type VI secretion system (TVISS) proteins, and biofilm formation proteins by Pseudomonas indicated their competitive advantage against other taxa. Upregulated metabolic pathways relating to substrate transport also suggested enhanced nutrient cross-feeding within the more diverse biofilm community. These insights enhance our understanding of plastisphere ecology and its potential for biotechnological applications.
Lee, Charlotte E; Division of Biological and Environmental Sciences, Faculty of Natural Sciences, University of Stirling, Stirling, Scotland, UK
Messer, Lauren F; Division of Biological and Environmental Sciences, Faculty of Natural Sciences, University of Stirling, Stirling, Scotland, UK
Wattiez, Ruddy ; Université de Mons - UMONS > Faculté des Sciences > Service de Protéomie et Microbiologie
Matallana-Surget, Sabine ; Division of Biological and Environmental Sciences, Faculty of Natural Sciences, University of Stirling, Stirling, Scotland, UK
Language :
English
Title :
Decoding Microbial Plastic Colonisation: Multi-Omic Insights Into the Fast-Evolving Dynamics of Early-Stage Biofilms.
Publication date :
06 January 2025
Journal title :
Proteomics
ISSN :
1615-9853
eISSN :
1615-9861
Publisher :
Wiley, Germany
Pages :
e202400208
Peer reviewed :
Peer Reviewed verified by ORBi
Development Goals :
14. Life below water 6. Clean water and sanitation
PlasticsEurope. Plastic the Fast Fact, 2023, https://plasticseurope.org/knowledge-hub/plastics-the-fast-facts-2023/.
S. B. Borrelle, J. Ringma, K. L. Law, et al., “Predicted Growth in Plastic Waste Exceeds Efforts to Mitigate Plastic Pollution,” Science 369 (2020): 1515–1518.
L. Henderson and C. Green, “Making Sense of Microplastics? Making Sense of Microplastics? Public Understandings of Plastic Pollution,” Marine Pollution Bulletin 152 (2020): 110908.
M. Bergmann, L. Gutow, and M. Klages, Marine Anthropogenic Litter (Cham, Switzerland: Springer Nature, 2015).
F. Azam and F. Malfatti, “Microbial Structuring of Marine Ecosystems,” Nature Reviews Microbiology 5 (2007): 782–791.
C. E. Lee, L. F. Messer, S. I. Holland, T. Gutierrez, R. S. Quilliam, and S. Matallana-Surget, “The Primary Molecular Influences of Marine Plastisphere Formation and Function: Novel Insights Into Organism -Organism and -Co-Pollutant Interactions,” Critical Reviews in Environmental Science and Technology 54 (2024): 138–161.
E. R. Zettler, T. J. Mincer, and L. A. Amaral-Zettler, “Life in the “Plastisphere”: Microbial Communities on Plastic Marine Debris,” Environmental Science & Technology 47 (2013): 7137–7146.
A. Delacuvellerie, A. Géron, S. Gobert, and R. Wattiez, “New Insights Into the Functioning and Structure of the PE and PP Plastispheres From the Mediterranean Sea,” Environmental Pollution 295 (2022): 118678.
L. F. Messer, R. Wattiez, and S. Matallana-Surget, “A Closer Look at Plastic Colonisation: Prokaryotic Dynamics in Established Versus Newly Synthesised Marine Plastispheres and Their Planktonic state,” Environmental Pollution 358 (2024): 124479.
M. Latva, C. J. Dedman, R. J. Wright, M. Polin, and J. A. Christie-Oleza, “Microbial Pioneers of Plastic Colonisation in Coastal Seawaters,” Marine Pollution Bulletin 179 (2022): 113701.
G. Erni-Cassola, R. J. Wright, M. I. Gibson, and J. A. Christie-Oleza, “Early Colonization of Weathered Polyethylene by Distinct Bacteria in Marine Coastal Seawater,” Microbial Ecology 79 (2020): 517–526.
J. P. Harrison, M. Schratzberger, M. Sapp, and A. M. Osborn, “Rapid Bacterial Colonization of Low-Density Polyethylene Microplastics in Coastal Sediment Microcosms,” BMC Microbiology 14 (2014): 232.
C. Lemonnier, M. Chalopin, A. Huvet, et al., “Time-Series Incubations in a Coastal Environment Illuminates the Importance of Early Colonizers and the Complexity of Bacterial Biofilm Dynamics on Marine Plastics,” Environmental Pollution 312 (2022): 119994.
R. Guillonneau, C. Baraquet, A. Bazire, and M. Molmeret, “Multispecies Biofilm Development of Marine Bacteria Implies Complex Relationships through Competition and Synergy and Modification of Matrix Components,” Frontiers in Microbiology 9 (2018): 1960.
J. Herschend, Z. B. V. Damholt, A. M. Marquard, et al., “A Meta-Proteomics Approach to Study the Interspecies Interactions Affecting Microbial Biofilm Development in a Model Community,” Scientific Reports 7 (2017): 16483.
L. F. Messer, C. E. Lee, R. Wattiez, and S. Matallana-Surget, “Novel Functional Insights Into the Microbiome Inhabiting Marine Plastic Debris: Critical Considerations to Counteract the Challenges of Thin Biofilms Using Multi-Omics and Comparative Metaproteomics,” Microbiome 12 (2024): 36.
S. Oberbeckmann, D. Bartosik, S. Huang, et al., “Genomic and Proteomic Profiles of Biofilms on Microplastics Are Decoupled From Artificial Surface Properties,” Environmental Microbiology 23 (2021): 3099–3115.
M. Eguchi, T. Nishikawa, K. Macdonald, R. Cavicchioli, J. C. Gottschal, and S. Kjelleberg, “Responses to Stress and Nutrient Availability by the Marine Ultramicrobacterium Sphingomonas Sp. strain RB2256,” Applied and Environmental Microbiology 62 (1996): 1287–1294.
A. L. Andrady and N. Rajapakse, “Additives and Chemicals in Plastics,” in Hazardous Chemicals Associated With Plastics in the Marine Environment, eds. H. Takada and H. K. Karapanagioti (Cham: Springer International Publishing, 2019), 1–17.
L. D. Bushnell and H. F. Haas, “The Utilization of Certain Hydrocarbons by Microorganisms,” Journal of Bacteriology 41 (1941): 653–673.
L. C. M. Omeyer, E. M. Duncan, K. Aiemsomboon, et al., “Priorities to Inform Research on Marine Plastic Pollution in Southeast Asia,” Science of The Total Environment 841 (2022): 156704.
Q. De Meur, A. Deutschbauer, M. Koch, R. Wattiez, and B. Leroy, “Genetic Plasticity and Ethylmalonyl Coenzyme A Pathway During Acetate Assimilation in Rhodospirillum Rubrum S1H Under Photoheterotrophic Conditions,” Applied and Environmental Microbiology 84 (2018): e02038–e02117.
P. Menzel, K. L. Ng, and A. Krogh, “Fast and Sensitive Taxonomic Classification for Metagenomics With Kaiju,” Nature Communications 7 (2016): 11257.
M. Kolmogorov, D. M. Bickhart, B. Behsaz, et al., “metaFlye: Scalable Long-Read Metagenome Assembly Using Repeat Graphs,” Nature Methods 17 (2020): 1103–1110.
V. Gambarini, O. Pantos, J. M. Kingsbury, L. Weaver, K. M. Handley, and G. Lear, “PlasticDB: A Database of Microorganisms and Proteins Linked to Plastic Biodegradation,” Database 2022 (2022): baac008.
B. O. Liu, D. Zheng, Q. I. Jin, L. Chen, and J. Yang, “VFDB 2019: A Comparative Pathogenomic Platform With an Interactive Web Interface,” Nucleic Acids Research 47 (2019): D687–D692.
B. P. Alcock, A. R. Raphenya, T. T. Lau, et al., “CARD 2020: Antibiotic Resistome Surveillance With the Comprehensive Antibiotic Resistance Database,” Nucleic Acids Research 48 (2020): D517–D525.
J. Werner, A. Géron, J. Kerssemakers, and S. Matallana-Surget, “mPies: A Novel Metaproteomics Tool for the Creation of Relevant Protein Databases and Automatized Protein Annotation,” Biology Direct 14 (2019): 21.
V. C. Shruti, G. Kutralam-Muniasamy, and F. Pérez-Guevara, “Diagnostic Toolbox for Plastisphere Studies: A Review,” TrAC Trends in Analytical Chemistry 181 (2024): 117996.
R. J. Wright, R. Bosch, M. G. I. Langille, M. I. Gibson, and J. A. Christie-Oleza, “A Multi-OMIC Characterisation of Biodegradation and Microbial Community Succession Within the PET Plastisphere,” Microbiome 9 (2021): 141.
C. Dussud, C. Hudec, M. George, et al., “Colonization of Non-Biodegradable and Biodegradable Plastics by Marine Microorganisms,” Frontiers in Microbiology 9 (2018): 1571.
A. Peix, M.-H. Ramírez-Bahena, and E. Velázquez, “The Current Status on the Taxonomy of Pseudomonas Revisited: An Update,” Infection, Genetics and Evolution 57 (2018): 106–116.
E. E. Mann and D. J. Wozniak, “Pseudomonas Biofilm Matrix Composition and Niche Biology,” FEMS Microbiology Reviews 36 (2012): 893–916.
I. V. Kirstein, A. Wichels, E. Gullans, G. Krohne, and G. Gerdts, “The Plastisphere—Uncovering Tightly Attached Plastic “Specific” Microorganisms,” PLoS ONE 14 (2019): e0215859.
S. Matallana-Surget, L. M. Nigro, L. A. Waidner, et al., “Clarifying the Murk: Unveiling Bacterial Dynamics in Response to Crude Oil Pollution, Corexit-Dispersant, and Natural Sunlight in the Gulf of Mexico,” Frontiers in Marine Science 10 (2024): 1337886.
R. L. Mugge, J. L. Salerno, and L. J. Hamdan, “Microbial Functional Responses in Marine Biofilms Exposed to Deepwater Horizon Spill Contaminants,” Frontiers in Microbiology 12 (2021): 636054.
C. A. Molina-Cárdenas and M. D. P. Sánchez-Saavedra, “Inhibitory Effect of Benthic Diatom Species on Three Aquaculture Pathogenic Vibrios,” Algal Research 27 (2017): 131–139.
S. B. Primrose and S. R. Primrose, Microbiology of Infectious Disease: Integrating Genomics With Natural History (Oxford, United Kingdom: Oxford University Press, 2022).
R. Nassar, M. Hachim, M. Nassar, et al., “Microbial Metabolic Genes Crucial for S. aureus Biofilms: An Insight from Re-Analysis of Publicly Available Microarray Datasets,” Frontiers in Microbiology 11 (2021): 607002.
T. Pisithkul, J. W. Schroeder, E. A. Trujillo, et al., “Metabolic Remodeling During Biofilm Development of Bacillus Subtilis,” mBio 10 (2019): e00619–e00623, https://doi.org/10.1128/mbio.
T. R. D. Costa, C. Felisberto-Rodrigues, A. Meir, et al., “Secretion Systems in Gram-Negative Bacteria: Structural and Mechanistic Insights,” Nature Reviews Microbiology 13 (2015): 343–359.
M. Bouteiller, C. Dupont, Y. Bourigault, et al., “Pseudomonas Flagella: Generalities and Specificities,” International Journal of Molecular Sciences 22 (2021): 3337.
P. Klemm and M. A. Schembri, “Bacterial Adhesins: Function and Structure,” International Journal of Medical Microbiology 290 (2000): 27–35.
V. G. Preda and O. Sandulescu, “Communication Is the Key: Biofilms, Quorum Sensing, Formation and Prevention,” Discoveries (Craiova) 7 (2019): e10.
K. Forchhammer, “Glutamine Signalling in Bacteria,” Frontiers in Bioscience-Landmark 12 (2007): 358–370.
S. E. Barnett, N. D. Youngblut, C. N. Koechli, and D. H. Buckley, “Multisubstrate DNA Stable Isotope Probing Reveals Guild Structure of Bacteria That Mediate Soil Carbon Cycling,” Proceedings of the National Academy of Sciences 118 (2021): e2115292118.
A. Prindle, J. Liu, M. Asally, S. Ly, J. Garcia-Ojalvo, and G. M. Süel, “Ion Channels Enable Electrical Communication in Bacterial Communities,” Nature 527 (2015): 59–63.
E. Cabiscol Català, J. Tamarit Sumalla, and J. Ros Salvador, “Oxidative Stress in Bacteria and Protein Damage by Reactive Oxygen Species,” International Microbiology 3, no. 1 (2000): 3–8.
G. Ji and S. Silver, “Bacterial Resistance Mechanisms for Heavy Metals of Environmental Concern,” Journal of Industrial Microbiology 14 (1995): 61–75.
S. Liu, W. Huang, J. Yang, et al., “Formation of Environmentally Persistent Free Radicals on Microplastics Under UV Irradiations,” Journal of Hazardous Materials 453 (2023): 131277.
Z. Yao, H. J. Seong, and Y.-S. Jang, “Environmental Toxicity and Decomposition of Polyethylene,” Ecotoxicology and Environmental Safety 242 (2022): 113933.
A. Chaudhary, P. K. Chaurasia, S. Kushwaha, P. Chauhan, A. Chawade, and A. Mani, “Correlating Multi-Functional Role of Cold Shock Domain Proteins With Intrinsically Disordered Regions,” International Journal of Biological Macromolecules 220 (2022): 743–753.
A. Prieto, I. F. Escapa, V. Martínez, et al., “A Holistic View of Polyhydroxyalkanoate Metabolism in Pseudomonas putida,” Environmental Microbiology 18 (2016): 341–357.
D. J. Dwyer, P. A. Belenky, J. H. Yang, et al., “Antibiotics Induce Redox-Related Physiological Alterations as Part of Their Lethality,” Proceedings of the National Academy of Sciences 111 (2014): E2100–E2109.
S. G. Van Creveld, S. Rosenwasser, D. Schatz, I. Koren, and A. Vardi, “Early Perturbation in Mitochondria Redox Homeostasis in Response to Environmental Stress Predicts Cell Fate in Diatoms,” ISME Journal 9 (2014): 385–395.
T. E. Wood, S. A. Howard, A. Förster, et al., “The Pseudomonas aeruginosa T6SS Delivers a Periplasmic Toxin That Disrupts Bacterial Cell Morphology,” Cell Reports 29 (2019): 187–201.e187.
F. Vandenesch, G. Lina, and T. Henry, “Staphylococcus aureus Hemolysins, Bi-Component Leukocidins, and Cytolytic Peptides: A Redundant Arsenal of Membrane-Damaging Virulence Factors?” Frontiers in Cellular and Infection Microbiology 2 (2012): 12.
R. Metcalf, D. M. Oliver, V. Moresco, and R. S. Quilliam, “Quantifying the Importance of Plastic Pollution for the Dissemination of Human Pathogens: The Challenges of Choosing an Appropriate ‘Control’ Material,” Science of The Total Environment 810 (2022): 152292.
A. B. Russell, S. B. Peterson, and J. D. Mougous, “Type VI Secretion System Effectors: Poisons With a Purpose,” Nature Reviews Microbiology 12 (2014): 137–148.
M. A. Alford, S. Mann, N. Akhoundsadegh, and R. E. W. Hancock, “Competition Between Pseudomonas aeruginosa and Staphylococcus aureus Is Dependent on Intercellular Signaling and Regulated by the NtrBC Two-Component System,” Scientific Reports 12 (2022): 9027.
L. Yang, Y. Liu, H. Wu, N. Høiby, S. Molin, and Z.-J. Song, “Current Understanding of Multi-Species Biofilms,” International Journal of Oral Science 3 (2011): 74–81.
B.-L. Tang, J. Yang, X.-L. Chen, et al., “A Predator-Prey Interaction Between a Marine Pseudoalteromonas Sp. and Gram-Positive Bacteria,” Nature Communications 11 (2020): 285.
A. Santos-López, J. Rodríguez-Beltrán, and Á. San Millán, “The Bacterial Capsule Is a Gatekeeper for Mobile DNA,” Plos Biology 19 (2021): e3001308.
X. Tao, H. Ouyang, A. Zhou, et al., “Polyethylene Degradation by a Rhodococcous Strain Isolated From Naturally Weathered Plastic Waste Enrichment,” Environmental Science & Technology 57 (2023): 13901–13911.
B. M. Kyaw, R. Champakalakshmi, M. K. Sakharkar, C. S. Lim, and K. R. Sakharkar, “Biodegradation of Low Density Polythene (LDPE) by Pseudomonas Species,” Indian Journal of Microbiology 52 (2012): 411–419.
S. Nanda, S. Sahu, and J. Abraham, “Studies on the Biodegradation of Natural and Synthetic Polyethylene by Pseudomonas spp,” Journal of Applied Sciences and Environmental Management 14 (2010): 57–60.
M. G. Yoon, H. J. Jeon, and M. N. Kim, “Biodegradation of Polyethylene by a Soil Bacterium and AlkB Cloned Recombinant Cell,” Journal of Bioremediation & Biodegradation 3 (2012): 1–8.
H. M. Alvarez, “Relationship Between β-Oxidation Pathway and the Hydrocarbon-Degrading Profile in Actinomycetes Bacteria,” International Biodeterioration & Biodegradation 52 (2003): 35–42.
P. Arora and H. Bae, “Bacterial Degradation of Chlorophenols and Their Derivatives,” Microbial Cell Factories 13 (2014): 31.
B. Setlhare, A. Kumar, O. A. Aregbesola, M. P. Mokoena, and A. O. Olaniran, “2,4-Dichlorophenol Degradation by Indigenous Pseudomonas sp. PKZNSA and Klebsiella Pneumoniae KpKZNSA: Kinetics, Enzyme Activity and Catabolic Gene Detection,” Applied Biochemistry and Microbiology 57 (2021): 656–665.
S. L. Dhali, D. Parida, B. Kumar, and K. Bala, “Recent Trends in Microbial and Enzymatic Plastic Degradation: A Solution for Plastic Pollution Predicaments,” Biotechnology for Sustainable Materials 1 (2024): 11.
T. Chen, J. Ma, Y. Liu, et al., “iProX in 2021: Connecting Proteomics Data Sharing With Big Data,” Nucleic Acids Research 50 (2021): D1522–D1527.
J. Ma, T. Chen, S. Wu, et al., “iProX: An Integrated Proteome Resource,” Nucleic Acids Research 47 (2019): D1211–D1217.