Baburin, A.S., Merzlikin, A.M., Baryshev, A.V., Ryzhikov, I.A., Panfilov, Y.V., Rodionov, I.A., Silver-based plasmonics: golden material platform and application challenges [Invited]. Opt. Mater. Express, 9(2), Feb. 2019, 611, 10.1364/OME.9.000611.
Loiseau, A., Asila, V., Boitel-Aullen, G., Lam, M., Salmain, M., Boujday, S., Silver-based plasmonic nanoparticles for and their use in biosensing. Biosensors, 9(2), Jun. 2019, 2, 10.3390/bios9020078.
Wang, F., Shen, Y.R., General properties of local plasmons in metal nanostructures. Phys. Rev. Lett., 97(20), Nov. 2006, 206806, 10.1103/PhysRevLett.97.206806.
Yue, W., Gao, S., Lee, S.-S., Kim, E.-S., Choi, D.-Y., Highly reflective subtractive color filters capitalizing on a silicon metasurface integrated with nanostructured aluminum mirrors. Laser Photon. Rev., 11(3), 2017, 1600285, 10.1002/lpor.201600285.
Song, M., et al. Color display and encryption with a plasmonic polarizing metamirror. Nanophotonics 7:1 (Jan. 2018), 323–331, 10.1515/nanoph-2017-0062.
Chen, Y., et al. Rapid focused ion beam milling based fabrication of plasmonic nanoparticles and assemblies via ‘Sketch and Peel’ strategy. ACS Nano 10:12 (Dec. 2016), 11228–11236, 10.1021/acsnano.6b06290.
Mascaretti, L., et al. Controlling the plasmonic properties of titanium nitride thin films by radiofrequency substrate biasing in magnetron sputtering. Appl. Surf. Sci., 554, 2021, 10.1016/j.apsusc.2021.149543.
Rodrigues, M.S., Borges, J., Lopes, C., Pereira, R.M.S., Vasilevskiy, M.I., Vaz, F., Gas sensors based on localized surface plasmon resonances: synthesis of oxide films with embedded metal nanoparticles, theory and simulation, and sensitivity enhancement strategies. Appl. Sci., 11(12), Jan. 2021, 10.3390/app11125388 12.
Nanda, B.P., Rani, P., Paul, P., Aman, G.Subrahmanya S., Bhatia, R., Recent trends and impact of localized surface plasmon resonance (LSPR) and surface-enhanced raman spectroscopy (SERS) in modern analysis. J. Pharm. Anal., Feb. 2024, 10.1016/j.jpha.2024.02.013.
Kozioł, R., et al. Evolution of Ag nanostructures created from thin films: UV–vis absorption and its theoretical predictions. Beilstein J. Nanotechnol. 11:1 (Mar. 2020), 494–507, 10.3762/bjnano.11.40.
Yalcin, R.A., Haratoka, C., Babonneau, D., Camelio, S., Joulain, K., Drévillon, J., The effect of size and shape-dependent optical properties on colored radiative cooling in metal island films. J. Quant. Spectrosc. Radiat. Transf., 312, Jan. 2024, 108797, 10.1016/j.jqsrt.2023.108797.
Greczynski, G., Hultman, L., X-ray photoelectron spectroscopy: towards reliable binding energy referencing. Prog. Mater. Sci., 107, Jan. 2020, 100591, 10.1016/j.pmatsci.2019.100591.
Greczynski, G., Hultman, L., Compromising science by ignorant instrument calibration—need to revisit half a century of published XPS data. Angew. Chem. Int. Ed. 59:13 (2020), 5002–5006, 10.1002/anie.201916000.
Pinder, J.W., et al. Avoiding common errors in X-ray photoelectron spectroscopy data collection and analysis, and properly reporting instrument parameters. Appl. Surf. Sci. Adv., 19, Feb. 2024, 100534, 10.1016/j.apsadv.2023.100534.
Linford, M.R., et al. Proliferation of faulty materials data analysis in the literature. Microsc. Microanal. 26:1 (Feb. 2020), 1–2, 10.1017/S1431927619015332.
Baer, D.R., et al. Practical guides for x-ray photoelectron spectroscopy: first steps in planning, conducting, and reporting XPS measurements. J. Vac. Sci. Technol. A, 37(3), Apr. 2019, 031401, 10.1116/1.5065501.
L. Rassinfosse, J. Müller, O. Deparis, S. Smeets, and S. Lucas, “Convergence and Accuracy of FDTD Modelling for Periodic Plasmonic Systems”.
Thorsten, W., ParticleSizer. [Online] https://doi.org/10.5281/zenodo.268882, Feb. 06, 2017.
Ciesielski, A., Skowronski, L., Trzcinski, M., Szoplik, T., Controlling the optical parameters of self-assembled silver films with wetting layers and annealing. Appl. Surf. Sci. 421 (Nov. 2017), 349–356, 10.1016/j.apsusc.2017.01.039.
Ekpe, S.D., Dew, S.K., Theoretical and experimental determination of the energy flux during magnetron sputter deposition onto an unbiased substrate. J. Vac. Sci. Technol. Vac. Surf. Films 21:2 (Mar. 2003), 476–483, 10.1116/1.1554971.
Greene, J.E., Thin film nucleation, growth, and microstructural evolution. Handbook of Deposition Technologies for Films and Coatings, 2010, Elsevier, 554–620, 10.1016/B978-0-8155-2031-3.00012-0.
Sarakinos, K., et al. Unravelling the effect of nitrogen on the morphological evolution of thin silver films on weakly-interacting substrates. Appl. Surf. Sci., 649, Mar. 2024, 159209, 10.1016/j.apsusc.2023.159209.
Zapata, R., Balestrieri, M., Gozhyk, I., Montigaud, H., Lazzari, R., Does N 2 gas behave as a surfactant during Ag thin-film sputtering deposition? Insights from in vacuo and real-time measurements. Appl. Surf. Sci., 654, May 2024, 159546, 10.1016/j.apsusc.2024.159546.
Li, C., Huang, J., Li, Z., A relation for nanodroplet diffusion on smooth surfaces. Sci. Rep., 6(1), May 2016, 26488, 10.1038/srep26488.
Toudert, J., et al. Morphology and surface-plasmon resonance of silver nanoparticles sandwiched between Si3N4 and BN layers. J. Appl. Phys., 98(11), Dec. 2005, 114316, 10.1063/1.2139828.
Deng, Z.-W., Souda, R., XPS studies on silicon carbonitride films prepared by sequential implantation of nitrogen and carbon into silicon. Diam. Relat. Mater. 11:9 (Sep. 2002), 1676–1682, 10.1016/S0925-9635(02)00143-7.
Viard, J., Beche, E., Perarnau, D., Berjoan, R., Durand, J., XPS and FTIR study of silicon oxynitride thin films. J. Eur. Ceram. Soc. 17:15–16 (Jan. 1997), 2025–2028, 10.1016/S0955-2219(97)00051-4.
Kaushik, V.K., XPS core level spectra and auger parameters for some silver compounds. J. Electron. Spectrosc. Relat. Phenom. 56:3 (Jun. 1991), 273–277, 10.1016/0368-2048(91)85008-H.
Pejova, B., Premcheska, S., Sherif Miftar, E., From self-affine Ag to mounded Ag@Ag2O core–shell nanoplasmonic surfaces by sonochemistry. J. Phys. Chem. C 127:23 (Jun. 2023), 11204–11217, 10.1021/acs.jpcc.3c01267.