Article (Scientific journals)
Zero-one law of orbital limit points for weighted shifts
Bonilla, Antonio; Cardeccia, Rodrigo; Grosse-Erdmann, Karl et al.
2025In Proceedings of the Edinburgh Mathematical Society, 68 (3), p. 945 - 978
Peer Reviewed verified by ORBi
 

Files


Full Text
2025OrbitalLimits.pdf
Publisher postprint (705.52 kB)
Request a copy

All documents in ORBi UMONS are protected by a user license.

Send to



Details



Keywords :
adjoint multiplication operator; hypercyclic operator; orbital limit point; recurrent operator; weighted shift operator; Mathematics (all); Mathematics - Functional Analysis
Abstract :
[en] Chan and Seceleanu have shown that if a weighted shift operator on (Formula presented), (Formula presented), admits an orbit with a non-zero limit point then it is hypercyclic. We present a new proof of this result that allows to extend it to very general sequence spaces. In a similar vein, we show that, in many sequence spaces, a weighted shift with a non-zero weakly sequentially recurrent vector has a dense set of such vectors, but an example on (Formula presented) shows that such an operator is not necessarily hypercyclic. On the other hand, we obtain that weakly sequentially hypercyclic weighted shifts are hypercyclic. Chan and Seceleanu have, moreover, shown that if an adjoint multiplication operator on a Bergman space admits an orbit with a non-zero limit point then it is hypercyclic. We extend this result to very general spaces of analytic functions, including the Hardy spaces.
Research center :
CREMMI - Modélisation mathématique et informatique
Disciplines :
Mathematics
Author, co-author :
Bonilla, Antonio ;  Departamento de Análisis Matemático, Instituto de Matemáticas y Aplicaciones (IMAULL), Universidad de La Laguna, La Laguna, Spain
Cardeccia, Rodrigo ;  Departamento de Matemática, Instituto Balseiro, Universidad Nacional de Cuyo, C.N.E.A. and CONICET, San Carlos de Bariloche, Argentina
Grosse-Erdmann, Karl   ;  Université de Mons - UMONS > Faculté des Sciences > Service d'Analyse fonctionnelle
Muro, Santiago ;  FCEIA, Universidad Nacional de Rosario and CIFASIS, CONICET, Rosario, Argentina
 These authors have contributed equally to this work.
Language :
English
Title :
Zero-one law of orbital limit points for weighted shifts
Publication date :
August 2025
Journal title :
Proceedings of the Edinburgh Mathematical Society
ISSN :
0013-0915
eISSN :
1464-3839
Publisher :
Cambridge University Press
Volume :
68
Issue :
3
Pages :
945 - 978
Peer reviewed :
Peer Reviewed verified by ORBi
Research unit :
Mathematical Analysis
Research institute :
Complexys
Funders :
F.R.S.-FNRS - Fonds de la Recherche Scientifique
Funding number :
CDR J.0078.21
Funding text :
This publication is part of the project PID2022-139449NB-I00, funded by MCIN/AEI/10.13039/501100011033/FEDER, UE; the third author was supported by the Fonds de la Recherche Scientifique - FNRS under Grant n CDR J.0078.21; the second and fourth authors were supported by PICT 2018-4250 and CONICET.
Available on ORBi UMONS :
since 17 December 2025

Statistics


Number of views
5 (2 by UMONS)
Number of downloads
1 (1 by UMONS)

Scopus citations®
 
0
Scopus citations®
without self-citations
0
OpenCitations
 
0
OpenAlex citations
 
0

Bibliography


Similar publications



Contact ORBi UMONS