[en] Chan and Seceleanu have shown that if a weighted shift operator on (Formula presented), (Formula presented), admits an orbit with a non-zero limit point then it is hypercyclic. We present a new proof of this result that allows to extend it to very general sequence spaces. In a similar vein, we show that, in many sequence spaces, a weighted shift with a non-zero weakly sequentially recurrent vector has a dense set of such vectors, but an example on (Formula presented) shows that such an operator is not necessarily hypercyclic. On the other hand, we obtain that weakly sequentially hypercyclic weighted shifts are hypercyclic. Chan and Seceleanu have, moreover, shown that if an adjoint multiplication operator on a Bergman space admits an orbit with a non-zero limit point then it is hypercyclic. We extend this result to very general spaces of analytic functions, including the Hardy spaces.
Research center :
CREMMI - Modélisation mathématique et informatique
Disciplines :
Mathematics
Author, co-author :
Bonilla, Antonio ✱; Departamento de Análisis Matemático, Instituto de Matemáticas y Aplicaciones (IMAULL), Universidad de La Laguna, La Laguna, Spain
Cardeccia, Rodrigo ✱; Departamento de Matemática, Instituto Balseiro, Universidad Nacional de Cuyo, C.N.E.A. and CONICET, San Carlos de Bariloche, Argentina
Grosse-Erdmann, Karl ✱; Université de Mons - UMONS > Faculté des Sciences > Service d'Analyse fonctionnelle
Muro, Santiago ✱; FCEIA, Universidad Nacional de Rosario and CIFASIS, CONICET, Rosario, Argentina
✱ These authors have contributed equally to this work.
Language :
English
Title :
Zero-one law of orbital limit points for weighted shifts
This publication is part of the project PID2022-139449NB-I00, funded by MCIN/AEI/10.13039/501100011033/FEDER, UE; the third author was supported by the Fonds de la Recherche Scientifique - FNRS under Grant n CDR J.0078.21; the second and fourth authors were supported by PICT 2018-4250 and CONICET.
E. Abakumov, and A. Abbar, Orbits of the backward shifts with limit points, J. Math. Anal. Appl. 537( 2): (2024), Paper No. 128293,21.
F. Albiac and N. J. Kalton, Topics in Banach Space Theory ( Springer, New York, 2006).
M. Amouch, A. Bachir, O. Benchiheb, and S. Mecheri, Weakly recurrent operators, Mediterr. J. Math. 20( 3): ( 2023), Paper No. 169,16.
S. I. Ansari, and P. S. Bourdon, Some properties of cyclic operators, Acta Sci. Math. 63( 1-2): ( 1997), 195- 207.
F. Bayart, and É. Matheron, Dynamics of Linear Operators ( Cambridge University Press, Cambridge, 2009).
N. C. Bernardes, A. Bonilla, V. Müller, and A. Peris, Li-Yorke chaos in linear dynamics, Ergod. Theory Dyn. Syst. 35( 6): ( 2015), 1723- 1745.
J. Bès, K. C. Chan, and R. Sanders, Every weakly sequentially hypercyclic shift is norm hypercyclic, Math. Proc. R. Ir. Acad. 105A( 2): ( 2005), 79- 85.
A. Bonilla, K.-G. Grosse-Erdmann, A. López-Martínez, and A. Peris, Frequently recurrent operators, J. Funct. Anal. 283( 12): ( 2022), Paper No. 109713,36.
P. S. Bourdon, and N. S. Feldman, Somewhere dense orbits are everywhere dense, Indiana Univ. Math. J. 52( 3): ( 2003), 811- 819.
R. Cardeccia, and S. Muro, Multiple recurrence and hypercyclicity, Math. Scand. 128( 3): ( 2022), 589- 610.
R. Cardeccia, and S. Muro, Frequently recurrence properties and block families. To appear in: Rev. R. Acad. Cienc. Exactas Fís. Nat. Ser. A Mat. RACSAM. arXiv:2204.13542, 2022.
K. C. Chan, The testing ground of weighted shift operators for hypercyclicity. Topological Dynamics and Topological Data Analysis ( R. L. Devaney, K. C. Chan, P. B. Vinod Kumar ),137-145 ( Springer, Singapore, 2021).
K. C. Chan, and R. Sanders, A weakly hypercyclic operator that is not norm hypercyclic, J. Operator Theory 52( 1): ( 2004), 39- 59.
K. C. Chan, and I. Seceleanu, Orbital limit points and hypercyclicity of operators on analytic function spaces, Math. Proc. R. Ir. Acad. 110A( 1): ( 2010), 99- 109.
K. Chan, and I. Seceleanu, Hypercyclicity of shifts as a zero-one law of orbital limit points, J. Operator Theory 67( 1): ( 2012), 257- 277.
K. Chan, and I. Seceleanu, Cyclicity of vectors with orbital limit points for backward shifts, Integral Equations Operator Theory 78( 2): ( 2014), 225- 232.
G. Costakis, A. Manoussos, and I. Parissis, Recurrent linear operators, Complex Anal. Oper. Theory 8( 8): ( 2014), 1601- 1643.
G. Costakis, and I. Parissis, Szemerédi’s theorem, frequent hypercyclicity and multiple recurrence, Math. Scand. 110( 2): ( 2012), 251- 272.
G. Godefroy, and J. H. Shapiro, Operators with dense, invariant, cyclic vector manifolds, J. Funct. Anal. 98( 2): ( 1991), 229- 269.
S. Grivaux and A. López-Martínez, Recurrence properties for linear dynamical systems: an approach via invariant measures, J. Math. Pures Appl. 169 ( 2023), 155- 188.
S. Grivaux, A. López-Martínez, and A. Peris, Questions in linear recurrence I: The $T\oplus T$ -problem, Anal. Math. Phys. 15( 1): (2025) Paper No. 1,26.
K.-G. Grosse-Erdmann, Hypercyclic and chaotic weighted shifts, Studia Math. 139( 1): ( 2000), 47- 68.
K.-G. Grosse-Erdmann and A. Peris Manguillot, Linear Chaos ( Springer, London, 2011).
S. He, Y. Huang, and Z. Yin, J $^\mathcal{F}$ -class weighted backward shifts, Int. J. Bifur. Chaos Appl. Sci. Engrg. 28( 6): ( 2018), Paper No. 1850076,11.
N. J. Kalton, N. T. Peck and J. W. Roberts, An F-Space Sampler ( Cambridge University Press, Cambridge, 1984).
R. Meise and D. Vogt, Introduction to Functional Analysis ( The Clarendon Press, Oxford University Press, New York, 1997).
Z. Rong, The dynamic behavior of conjugate multipliers on some reflexive Banach spaces of analytic functions, Contemp. Math. 5( 1): ( 2024), 519- 526.
I. Seceleanu, Hypercyclic operators and their orbital limit points. PhD Thesis, Bowling Green State University, 2010.
S. Shkarin, Non-sequential weak supercyclicity and hypercyclicity, J. Funct. Anal. 242( 1): ( 2007), 37- 77.
S. Shkarin, Orbits of coanalytic Toeplitz operators and weak hypercyclicity. arXiv:1210.3191, 2012.
I. Singer, Bases in Banach Spaces. I ( Springer, New York-Berlin, 1970).