[en] Iron phthalocyanine (FePc), with its well-defined FeN4 active site, has attracted significant interest as a promising nonprecious catalyst in the oxygen reduction reaction (ORR). However, its rigid square-planar geometry hinders O═O bond activation and cleavage of the O═O bond, resulting in sluggish ORR kinetics. Herein, we introduce nitrogen-doped, defect-rich carbon nano-onions (CNO) (with positive Gaussian curvature) as a support to induce geometric distortion in FePc for enhancing the ORR activity. Magnetic measurements and theoretical calculations reveal that the introduction of CNO effectively promotes a spin state transition of Fe ions from low-spin (LS, t2g6 eg0) to intermediate-spin (IS, t2g5 eg1), which enables electron filling of the π* orbitals (via d-p orbital coupling), subsequently weakening the overadsorption of oxygenated intermediates on the FeN4 sites. The as-fabricated FePc/CNO electrocatalyst exhibits exceptional ORR performance in alkaline media. Furthermore, a configured FePc/CNO-based Zn-air battery exhibits excellent performance, as well, demonstrating its potential for practical energy applications.
Disciplines :
Chemistry
Author, co-author :
Li, Linfeng; School of Integrated Circuits, State Key Laboratory of New Textile Materials and Advanced Processing, Huazhong University of Science and Technology, Wuhan 430074, P.R. China
Liu, Yuxiao; School of Integrated Circuits, State Key Laboratory of New Textile Materials and Advanced Processing, Huazhong University of Science and Technology, Wuhan 430074, P.R. China
Zhang, Xia; School of Integrated Circuits, State Key Laboratory of New Textile Materials and Advanced Processing, Huazhong University of Science and Technology, Wuhan 430074, P.R. China
Humayun, Muhammad ; Energy, Water, and Environment Lab, College of Sciences and Humanities, Prince Sultan University, Riyadh 11586, Saudi Arabia
Yang, Haowei; School of Materials Science and Engineering, Central South University, Changsha 410083, P.R. China
Zeng, Jianrong; Shanghai Synchrotron Radiation Facility, Shanghai Advanced Research Institute, Chinese Academy of Sciences, Shanghai 201204, P.R. China
Younus, Hussein A ; Nanotechnology Research Centre, Sultan Qaboos University, Muscat 123, Oman
Pang, Yuanjie ; School of Optical and Electronic Information, Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology, Wuhan 430074, P.R. China
Wang, Deli ; School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Wuhan 430074, P.R. China
Snyders, Rony ; Université de Mons - UMONS > Faculté des Sciences > Service de Chimie des Interactions Plasma-Surface ; Materia Nova Research Center, Mons B-7000, Belgium
Wang, Chundong ; School of Integrated Circuits, State Key Laboratory of New Textile Materials and Advanced Processing, Huazhong University of Science and Technology, Wuhan 430074, P.R. China ; Energy, Water, and Environment Lab, College of Sciences and Humanities, Prince Sultan University, Riyadh 11586, Saudi Arabia
Language :
English
Title :
Curvature Strain-Induced Electron Spin Leveraging in d Orbitals toward Oxygen Reduction for Zn-Air Batteries.
R400 - Institut de Recherche en Science et Ingénierie des Matériaux
Funders :
Prince Sultan University Fonds Wetenschappelijk Onderzoek F.R.S.-FNRS - Fonds de la Recherche Scientifique National Natural Science Foundation of China
Funding text :
The study has been financially supported by the National Natural Science Foundation of China (Grants 52272202 and W2421027). R.S. acknowledges the Excellence of Science FWO-FNRS project (PLASyntH2, FNRS Grant O.0023.22, EOS ID 40007511). The authors acknowledge the assistance of SUSTech Core Research Facilities and the help of Dr. Yang Qiu at the Pico Center for the AC STEM Measurement. The computation was completed in the HPC Platform of Huazhong University of Science and Technology. We thank the BL13SSW beamline at the Shanghai Synchrotron Radiation Facility (https://cstr.cn/31124.02.SSRF.BL13SSW) for the XAFS. M.H. and C.W. acknowledge Prince Sultan University.
Kodama, K.; Nagai, T.; Kuwaki, A.; Jinnouchi, R.; Morimoto, Y. Challenges in Applying Highly Active Pt-Based Nanostructured Catalysts for Oxygen Reduction Reactions to Fuel Cell Vehicles. Nat. Nanotechnol. 2021, 16, 140–147, 10.1038/s41565-020-00824-w
Yang, X.; Song, W.; Zhang, T.; Huang, Z.; Zhang, J.; Ding, J.; Hu, W. Review of Emerging Atomically Precise Composite Site-Based Electrocatalysts. Adv. Energy Mater. 2023, 13, 2301737, 10.1002/aenm.202301737
Song, W.; Xiao, C.; Ding, J.; Huang, Z.; Yang, X.; Zhang, T.; Mitlin, D.; Hu, W. Review of Carbon Support Coordination Environments for Single Metal Atom Electrocatalysts (Sacs). Adv. Mater. 2024, 36, 2301477, 10.1002/adma.202301477
Jin, Z.; Chen, Y.; Sun, J.; Zhang, S.; Zhang, J. Perceptions of Metal-Nitrogen-Carbon Catalysts for Oxygen Reduction Reaction. Materials Science and Engineering: R: Reports 2025, 165, 101027, 10.1016/j.mser.2025.101027
Jing, H.; Zhu, P.; Zheng, X.; Zhang, Z.; Wang, D.; Li, Y. Theory-Oriented Screening and Discovery of Advanced Energy Transformation Materials in Electrocatalysis. Adv. Powder Mater. 2022, 1, 100013, 10.1016/j.apmate.2021.10.004
Liu, K.; Fu, J.; Lin, Y.; Luo, T.; Ni, G.; Li, H.; Lin, Z.; Liu, M. Insights into the Activity of Single-Atom Fe-N-C Catalysts for Oxygen Reduction Reaction. Nat. Commun. 2022, 13, 2075, 10.1038/s41467-022-29797-1
Sun, Y.; Sun, S.; Yang, H.; Xi, S.; Gracia, J.; Xu, Z. J. Spin-Related Electron Transfer and Orbital Interactions in Oxygen Electrocatalysis. Adv. Mater. 2020, 32, e2003297 10.1002/adma.202003297
Li, X.; Cheng, Z.; Wang, X. Understanding the Mechanism of the Oxygen Evolution Reaction with Consideration of Spin. Electrochem. Energy Rev. 2021, 4, 136–145, 10.1007/s41918-020-00084-1
Sun, Y.; Sun, S.; Yang, H.; Xi, S.; Gracia, J.; Xu, Z. J. Spin-Related Electron Transfer and Orbital Interactions in Oxygen Electrocatalysis. Adv. Mater. 2020, 32, 2003297, 10.1002/adma.202003297
Wei, C.; Feng, Z.; Scherer, G. G.; Barber, J.; Shao-Horn, Y.; Xu, Z. J. Cations in Octahedral Sites: A Descriptor for Oxygen Electrocatalysis on Transition-Metal Spinels. Adv. Mater. 2017, 29, 1606800, 10.1002/adma.201606800
Zhang, Z.; Ma, P.; Luo, L.; Ding, X.; Zhou, S.; Zeng, J. Regulating Spin States in Oxygen Electrocatalysis. Angew. Chem., Int. Ed. 2023, 62, e202216837 10.1002/anie.202216837
Zhang, Y.; Wu, Q.; Seow, J. Z. Y.; Jia, Y.; Ren, X.; Xu, Z. J. Spin States of Metal Centers in Electrocatalysis. Chem. Soc. Rev. 2024, 53, 8123–8136, 10.1039/D3CS00913K
Peng, L.; Yang, J.; Yang, Y.; Qian, F.; Wang, Q.; Sun-Waterhouse, D.; Shang, L.; Zhang, T.; Waterhouse, G. I. N. Mesopore-Rich Fe-N-C Catalyst with Fen4-O-Nc Single-Atom Sites Delivers Remarkable Oxygen Reduction Reaction Performance in Alkaline Media. Adv. Mater. 2022, 34, 2202544, 10.1002/adma.202202544
Wan, W.; Zhao, Y.; Wei, S.; Triana, C. A.; Li, J.; Arcifa, A.; Allen, C. S.; Cao, R.; Patzke, G. R. Mechanistic Insight into the Active Centers of Single/Dual-Atom Ni/Fe-Based Oxygen Electrocatalysts. Nat. Commun. 2021, 12, 5589, 10.1038/s41467-021-25811-0
Qiao, J.; Lu, C.; Kong, L.; Zhang, J.; Lin, Q.; Huang, H.; Li, C.; He, W.; Zhou, M.; Sun, Z. Spin Engineering of Fe–N–C by Axial Ligand Modulation for Enhanced Bifunctional Oxygen Catalysis. Adv. Funct. Mater. 2024, 34, 2409794, 10.1002/adfm.202409794
Su, J.; Musgrave, C. B.; Song, Y.; Huang, L.; Liu, Y.; Li, G.; Xin, Y.; Xiong, P.; Li, M. M.-J.; Wu, H.; Zhu, M.; Chen, H. M.; Zhang, J.; Shen, H.; Tang, B. Z.; Robert, M.; Goddard, W. A.; Ye, R. Strain Enhances the Activity of Molecular Electrocatalysts Via Carbon Nanotube Supports. Nat. Catal. 2023, 6, 818–828, 10.1038/s41929-023-01005-3
Chen, G.; Lu, R.; Li, C.; Yu, J.; Li, X.; Ni, L.; Zhang, Q.; Zhu, G.; Liu, S.; Zhang, J.; Kramm, U. I.; Zhao, Y.; Wu, G.; Xie, J.; Feng, X. Hierarchically Porous Carbons with Highly Curved Surfaces for Hosting Single Metal Fen(4) Sites as Outstanding Oxygen Reduction Catalysts. Adv. Mater. 2023, 35, e2300907 10.1002/adma.202300907
Xu, Z.; Xiao, T.; Li, Y.; Pan, Y.; Li, C.; Liu, P.; Xu, Q.; Tian, F.; Wu, L.; Xu, F.; Mai, Y. Assessing the Effect of a Schwarz P Surface on the Oxygen Electroreduction Performance of Porous Single-Atom Catalysts. Adv. Mater. 2025, 37, 2416204, 10.1002/adma.202416204
Tang, B.; Ji, Q.; Zhang, X.; Shi, R.; Ma, J.; Zhuang, Z.; Sun, M.; Wang, H.; Liu, R.; Liu, H.; Wang, C.; Guo, Z.; Lu, L.; Jiang, P.; Wang, D.; Yan, W. Symmetry Breaking of Fen(4) Moiety Via Edge Defects for Acidic Oxygen Reduction Reaction. Angew. Chem., Int. Ed. 2025, 64, e202424135 10.1002/anie.202424135
Guo, K.; He, Z.; Lu, S.; Zhang, P.; Li, N.; Bao, L.; Yu, Z.; Song, L.; Lu, X. A Fullerene Seeded Strategy for Facile Construction of Nitrogen-Doped Carbon Nano-Onions as Robust Electrocatalysts. Adv. Funct. Mater. 2023, 33, 2302100, 10.1002/adfm.202302100
Zeiger, M.; Jäckel, N.; Mochalin, V. N.; Presser, V. Review: Carbon Onions for Electrochemical Energy Storage. J. Mater. Chem. A 2016, 4, 3172–3196, 10.1039/C5TA08295A
Yang, J.; Wang, Z.; Huang, C.-X.; Zhang, Y.; Zhang, Q.; Chen, C.; Du, J.; Zhou, X.; Zhang, Y.; Zhou, H.; Wang, L.; Zheng, X.; Gu, L.; Yang, L.-M.; Wu, Y. Compressive Strain Modulation of Single Iron Sites on Helical Carbon Support Boosts Electrocatalytic Oxygen Reduction. Angew. Chem., Int. Ed. 2021, 60, 22722–22728, 10.1002/anie.202109058
Palmgren, P.; Nilson, K.; Yu, S.; Hennies, F.; Angot, T.; Niebedim, C. I.; Layet, J.-M.; Le Lay, G.; Göthelid, M. Strong Interactions in Dye-Sensitized Interfaces. J. Phys. Chem. C 2008, 112, 5972–5977, 10.1021/jp711311s
Palmisano, G.; Gutiérrez, M. C.; Ferrer, M. L.; Gil-Luna, M. D.; Augugliaro, V.; Yurdakal, S.; Pagliaro, M. Tio2/Ormosil Thin Films Doped with Phthalocyanine Dyes: New Photocatalytic Devices Activated by Solar Light. J. Phys. Chem. C 2008, 112, 2667–2670, 10.1021/jp709853e
Wang, Q.; Li, H.; Yang, J.-H.; Sun, Q.; Li, Q.; Yang, J. Iron Phthalocyanine-Graphene Donor-Acceptor Hybrids for Visible-Light-Assisted Degradation of Phenol in the Presence of H2o2. Appl. Catal. B Environ. 2016, 192, 182–192, 10.1016/j.apcatb.2016.03.047
Westre, T. E.; Kennepohl, P.; DeWitt, J. G.; Hedman, B.; Hodgson, K. O.; Solomon, E. I. A Multiplet Analysis of Fe K-Edge 1s → 3d Pre-Edge Features of Iron Complexes. J. Am. Chem. Soc. 1997, 119, 6297–6314, 10.1021/ja964352a
Wan, W.; Triana, C. A.; Lan, J.; Li, J.; Allen, C. S.; Zhao, Y.; Iannuzzi, M.; Patzke, G. R. Bifunctional Single Atom Electrocatalysts: Coordination-Performance Correlations and Reaction Pathways. ACS Nano 2020, 14, 13279–13293, 10.1021/acsnano.0c05088
Haider, R.; Ding, S.; Wei, W.; Wan, Y.; Huang, Y.; Li, R.; Wu, L.; Muzammil, A.; Fan, Y.; Yuan, X. Boosting the Oxygen Reduction Reaction Using High Surface Area Graphitic-N Dominant Nitrogen Doped Carbon. J. Mater. Chem. A 2023, 11, 18387–18397, 10.1039/D3TA03934J
Peng, Y.; Bian, Z.; Zhang, W.; Wang, H. Identifying the Key N Species for Electrocatalytic Oxygen Reduction Reaction on N-Doped Graphene. Nano Res. 2023, 16, 6642–6651, 10.1007/s12274-023-5421-0
Medford, A. J.; Vojvodic, A.; Hummelshøj, J. S.; Voss, J.; Abild-Pedersen, F.; Studt, F.; Bligaard, T.; Nilsson, A.; Nørskov, J. K. From the Sabatier Principle to a Predictive Theory of Transition-Metal Heterogeneous Catalysis. J. Catal. 2015, 328, 36–42, 10.1016/j.jcat.2014.12.033