Shinde, S.; Sartucci, J. L.; Jones, D. K.; Gavvalapalli, N. Dynamic π-Conjugated Polymer Ionic Networks. Macromolecules 2017, 50 (19), 7577-7583, 10.1021/acs.macromol.7b01896
Liu, J.; Liu, Y.; Wang, Y.; Zhu, J.; Yu, J.; Hu, Z. Disulfide bonds and metal-ligand co-crosslinked network with improved mechanical and self-healing properties. Materials Today Communications 2017, 13, 282-289, 10.1016/j.mtcomm.2017.10.013
Bose, R. K.; Hohlbein, N.; Garcia, S. J.; Schmidt, A. M.; van der Zwaag, S. Connecting supramolecular bond lifetime and network mobility for scratch healing in poly(butyl acrylate) ionomers containing sodium, zinc and cobalt. Phys. Chem. Chem. Phys. 2015, 17 (3), 1697-1704, 10.1039/C4CP04015E
Hui, Y.; Wen, Z.-B.; Pilate, F.; Xie, H.; Fan, C.-J.; Du, L.; Liu, D.; Yang, K.-K.; Wang, Y.-Z. A facile strategy to fabricate highly-stretchable self-healing poly(vinyl alcohol) hybrid hydrogels based on metal-ligand interactions and hydrogen bonding. Polym. Chem. 2016, 7 (47), 7269-7277, 10.1039/C6PY01752E
Su, E.; Okay, O. Polyampholyte hydrogels formed via electrostatic and hydrophobic interactions. Eur. Polym. J. 2017, 88, 191-204, 10.1016/j.eurpolymj.2017.01.029
Pluth, M. D.; Raymond, K. N. Reversible guest exchange mechanisms in supramolecular host-guest assemblies. Chem. Soc. Rev. 2007, 36 (2), 161-171, 10.1039/B603168B
Chen, Q.; Yan, X.; Zhu, L.; Chen, H.; Jiang, B.; Wei, D.; Huang, L.; Yang, J.; Liu, B.; Zheng, J. Improvement of Mechanical Strength and Fatigue Resistance of Double Network Hydrogels by Ionic Coordination Interactions. Chem. Mater. 2016, 28 (16), 5710-5720, 10.1021/acs.chemmater.6b01920
Comí, M.; Lligadas, G.; Ronda, J. C.; Galià, M.; Cádiz, V. Adaptive bio-based polyurethane elastomers engineered by ionic hydrogen bonding interactions. Eur. Polym. J. 2017, 91, 408-419, 10.1016/j.eurpolymj.2017.04.026
Keplinger, C.; Sun, J. Y.; Foo, C. C.; Rothemund, P.; Whitesides, G. M.; Suo, Z. Stretchable, Transparent, Ionic Conductors. Science 2013, 341 (6149), 984-987, 10.1126/science.1240228
Potaufeux, J.-E.; Odent, J.; Notta-Cuvier, D.; Lauro, F.; Raquez, J.-M. A comprehensive review of the structures and properties of ionic polymeric materials. Polym. Chem. 2020, 11 (37), 5914-5936, 10.1039/D0PY00770F
Capek, I. Nature and properties of ionomer assemblies. II. Adv. Colloid Interface Sci. 2005, 118 (1-3), 73-112, 10.1016/j.cis.2005.06.005
Blackman, L. D.; Gunatillake, P. A.; Cass, P.; Locock, K. E. S. An introduction to zwitterionic polymer behavior and applications in solution and at surfaces. Chem. Soc. Rev. 2019, 48 (3), 757-770, 10.1039/C8CS00508G
Mayumi, K.; Marcellan, A.; Ducouret, G.; Creton, C.; Narita, T. Stress-Strain Relationship of Highly Stretchable Dual Cross-Link Gels: Separability of Strain and Time Effect. ACS Macro Lett. 2013, 2 (12), 1065-1068, 10.1021/mz4005106
Morovati, V.; Dargazany, R. Micro-mechanical modeling of the stress softening in double-network hydrogels. Int. J. Solids Struct. 2019, 164, 1-11, 10.1016/j.ijsolstr.2019.01.002
Lu, H.; Wang, X.; Shi, X.; Yu, K.; Fu, Y. Q. A phenomenological model for dynamic response of double-network hydrogel composite undergoing transient transition. Composites, Part B 2018, 151, 148-153, 10.1016/j.compositesb.2018.06.011
Hui, C.-Y.; Long, R. A constitutive model for the large deformation of a self-healing gel. Soft Matter 2012, 8 (31), 8209, 10.1039/c2sm25367d
Long, R.; Mayumi, K.; Creton, C.; Narita, T.; Hui, C.-Y. Time Dependent Behavior of a Dual Cross-Link Self-Healing Gel: Theory and Experiments. Macromolecules 2014, 47 (20), 7243-7250, 10.1021/ma501290h
Mao, Y.; Lin, S.; Zhao, X.; Anand, L. A large deformation viscoelastic model for double-network hydrogels. J. Mech. Phys. Solids 2017, 100, 103-130, 10.1016/j.jmps.2016.12.011
Külcü, İ. D. Characterization of stress softening and self-healing in a double network hydrogel. Results Phys. 2019, 12, 1826-1833, 10.1016/j.rinp.2019.01.078
Bacca, M.; Creton, C.; McMeeking, R. M. A Model for the Mullins Effect in Multinetwork Elastomers. J. Appl. Mech. 2017, 84 (12), 121009, 10.1115/1.4037881
Odent, J.; Raquez, J. M.; Dubois, P.; Giannelis, E. P. Ultra-stretchable ionic nanocomposites: from dynamic bonding to multi-responsive behavior. J. Mater. Chem. A 2017, 5 (26), 13357-13363, 10.1039/C7TA04101B
Odent, J.; Raquez, J.-M.; Samuel, C.; Barrau, S.; Enotiadis, A.; Dubois, P.; Giannelis, E. P. Shape-Memory Behavior of Polylactide/Silica Ionic Hybrids. Macromolecules 2017, 50 (7), 2896-2905, 10.1021/acs.macromol.7b00195
Li, G.; Wang, A. Cold, warm, and hot programming of shape memory polymers. J. Polym. Sci., Part B: Polym. Phys. 2016, 54 (14), 1319-1339, 10.1002/polb.24041
Liu, C.-Y.; He, J.; Keunings, R.; Bailly, C. New Linearized Relation for the Universal Viscosity-Temperature Behavior of Polymer Melts. Macromolecules 2006, 39 (25), 8867-8869, 10.1021/ma061969w
Williams, M. L.; Landel, R. F.; Ferry, J. D. The Temperature Dependence of Relaxation Mechanisms in Amorphous Polymers and Other Glass-forming Liquids. J. Am. Chem. Soc. 1955, 77 (14), 3701-3707, 10.1021/ja01619a008
Li, Z.; Wu, Z.; Mo, G.; Xing, X.; Liu, P. A Small-Angle X-Ray Scattering Station At Beijing Synchrotron Radiation Facility. Instrum. Sci. Technol. 2014, 42 (2), 128-141, 10.1080/10739149.2013.845845
Menon, S. V. G.; Manohar, C.; Rao, K. S. A new interpretation of the sticky hard sphere model. J. Chem. Phys. 1991, 95 (12), 9186-9190, 10.1063/1.461199
Sutton, M. A.; Orteu, J.-J.; Schreier, H. W. Image correlation for shape, motion and deformation measurements: basic concepts, theory and applications; Springer: New York, 2009; Vol. 1, pp 1-322.
Block, C.; Watzeels, N.; Rahier, H.; Van Mele, B.; Van Assche, G. Rheology of nanocomposites: Modelling and interpretation of nanofiller influence. J. Therm. Anal. Calorim. 2011, 105 (2), 731-736, 10.1007/s10973-011-1417-9
Van Gurp, M.; Palmen, J. Time-temperature superposition for polymeric blends. Rheol. Bull. 1998, 67, 5-8
Bohn, M. A. The Connection Between the Parameters of WLF Equation and of Arrhenius Equation. Propellants, Explos., Pyrotech. 2019, 44 (6), 696-705, 10.1002/prep.201800329
Suarez-Martinez, P. C.; Batys, P.; Sammalkorpi, M.; Lutkenhaus, J. L. Time-Temperature and Time-Water Superposition Principles Applied to Poly(allylamine)/Poly(acrylic acid) Complexes. Macromolecules 2019, 52 (8), 3066-3074, 10.1021/acs.macromol.8b02512
Kudlik, A.; Benkhof, S.; Blochowicz, T.; Tschirwitz, C.; Rössler, E. The dielectric response of simple organic glass formers. J. Mol. Struct. 1999, 479 (2-3), 201-218, 10.1016/S0022-2860(98)00871-0
Körber, T.; Mohamed, F.; Hofmann, M.; Lichtinger, A.; Willner, L.; Rössler, E. A. The Nature of Secondary Relaxations: The Case of Poly(ethylene-alt-propylene) Studied by Dielectric and Deuteron NMR Spectroscopy. Macromolecules 2017, 50 (4), 1554-1568, 10.1021/acs.macromol.6b02536
Ding, Y.; Pawlus, S.; Sokolov, A. P.; Douglas, J. F.; Karim, A.; Soles, C. L. Dielectric Spectroscopy Investigation of Relaxation in C 60-Polyisoprene Nanocomposites. Macromolecules 2009, 42 (8), 3201-3206, 10.1021/ma8024333
Mohamed, F.; Hameed, T. A.; Abdelghany, A. M.; Turky, G. Structure-dynamic properties relationships in poly(ethylene oxide)/silicon dioxide nanocomposites: dielectric relaxation study. Polym. Bull. 2021, 78, 5205-5223, 10.1007/s00289-020-03368-0
Se, K.; Adachi, K.; Kotaka, T. Dielectric Relaxations in Poly(ethylene oxide): Dependence on Molecular Weight. Polym. J. 1981, 13 (11), 1009-1017, 10.1295/polymj.13.1009
Jimenez, A. M.; Krauskopf, A. A.; Pérez-Camargo, R. A.; Zhao, D.; Pribyl, J.; Jestin, J.; Benicewicz, B. C.; Müller, A. J.; Kumar, S. K. Effects of Hairy Nanoparticles on Polymer Crystallization Kinetics. Macromolecules 2019, 52 (23), 9186-9198, 10.1021/acs.macromol.9b01380
Zhao, W.; Su, Y.; Gao, X.; Xu, J.; Wang, D. Interfacial effect on confined crystallization of poly(ethylene oxide)/silica composites. J. Polym. Sci., Part B: Polym. Phys. 2016, 54 (3), 414-423, 10.1002/polb.23915
Guerre, M.; Taplan, C.; Winne, J. M.; Du Prez, F. E. Vitrimers: directing chemical reactivity to control material properties. Chemical Science 2020, 11 (19), 4855-4870, 10.1039/D0SC01069C
Lamers, B. A. G.; Ślȩczkowski, M. L.; Wouters, F.; Engels, T. A. P.; Meijer, E. W.; Palmans, A. R. A. Tuning polymer properties of non-covalent crosslinked PDMS by varying supramolecular interaction strength. Polym. Chem. 2020, 11 (16), 2847-2854, 10.1039/D0PY00139B
Sun, T. L.; Kurokawa, T.; Kuroda, S.; Ihsan, A. B.; Akasaki, T.; Sato, K.; Haque, M. A.; Nakajima, T.; Gong, J. P. Physical hydrogels composed of polyampholytes demonstrate high toughness and viscoelasticity. Nat. Mater. 2013, 12 (10), 932-937, 10.1038/nmat3713
Deschanel, S.; Greviskes, B. P.; Bertoldi, K.; Sarva, S. S.; Chen, W.; Samuels, S. L.; Cohen, R. E.; Boyce, M. C. Rate dependent finite deformation stress-strain behavior of an ethylene methacrylic acid copolymer and an ethylene methacrylic acid butyl acrylate copolymer. Polymer 2009, 50 (1), 227-235, 10.1016/j.polymer.2008.10.049
Cui, K.; Sun, T. L.; Kurokawa, T.; Nakajima, T.; Nonoyama, T.; Chen, L.; Gong, J. P. Stretching-induced ion complexation in physical polyampholyte hydrogels. Soft Matter 2016, 12 (43), 8833-8840, 10.1039/C6SM01833E
Drozdov, A. D.; deClaville Christiansen, J. Double-network gels with dynamic bonds under multi-cycle deformation. Journal of the Mechanical Behavior of Biomedical Materials 2018, 88, 58-68, 10.1016/j.jmbbm.2018.08.001
Shah, D.; Maiti, P.; Jiang, D. D.; Batt, C. A.; Giannelis, E. P. Effect of Nanoparticle Mobility on Toughness of Polymer Nanocomposites. Adv. Mater. 2005, 17 (5), 525-528, 10.1002/adma.200400984
Gersappe, D. Molecular Mechanisms of Failure in Polymer Nanocomposites. Phys. Rev. Lett. 2002, 89 (5), 058301, 10.1103/PhysRevLett.89.058301