Mahmoudi M, Hosseinkhani H, Hosseinkhani M, et al. Magnetic resonance imaging tracking of stem cells in vivo using iron oxide nanoparticles as a tool for the advancement of clinical regenerative medicine. Chem. Rev. 111(2), 253-280 (2010
Mahmoudi M, Sant S, Wang B, Laurent S, Sen T. Superparamagnetic iron oxide nanoparticles (SPIONS): development, surface modification and applications in chemotherapy. Adv. Drug Deliv. Rev. 63(1), 24-46 (2011
Hajipour MJ, Fromm KM, Akbar Ashkarran A, et al. Antibacterial properties of nanoparticles. Trends Biotechnol. 30(10), 499-511 (2012
Krol S, Macrez R, Docagne F, et al. Therapeutic benefits from nanoparticles: the potential significance of nanoscience in diseases with compromise to the blood brain barrier. Chem. Rev. 113(3), 1877-1903 (2012
Kumar M. Nano and microparticles as controlled drug delivery devices. J. Pharm. Pharm. Sci. 3(2), 234-258 (2000
Mitra S, Gaur U, Ghosh P, Maitra A. Tumour targeted delivery of encapsulated dextran-doxorubicin conjugate using chitosan nanoparticles as carrier. J. Control. Release 74(1), 317-323 (2001
Mccarthy JR, Weissleder R. Multifunctional magnetic nanoparticles for targeted imaging and therapy. Adv. Drug Deliv. Rev. 60(11), 1241-1251 (2008
Na HB, Song IC, Hyeon T. Inorganic nanoparticles for mri contrast agents. Adv. Mater. 21(21), 2133-2148 (2009
Slowing II, Vivero-Escoto JL, Wu C-W, Lin VS-Y. Mesoporous silica nanoparticles as controlled release drug delivery and gene transfection carriers. Adv. Drug Deliv. Rev. 60(11), 1278-1288 (2008
Jordan A, Scholz R, Wust P, Fähling H, Felix R. Magnetic fluid hyperthermia (MFH): cancer treatment with AC magnetic field induced excitation of biocompatible superparamagnetic nanoparticles. J. Magn. Magn. Mater. 201(1), 413-419 (1999
Maynard AD. Nanotechnology: the next big thing, or much ado about nothing?. Ann. Occup. Hyg. 51(1), 1-12 (2007
Nel AE, Mädler L, Velegol D, et al. Understanding biophysicochemical interactions at the nano-bio interface. Nature Mater. 8(7), 543-557 (2009
Kim ST, Saha K, Kim C, Rotello VM. The role of surface functionality in determining nanoparticle cytotoxicity. Acc. Chem. Res. 46(3), 681-691 (2013
Deng ZJ, Liang M, Monteiro M, Toth I, Minchin RF. Nanoparticle-induced unfolding of fibrinogen promotes Mac-1 receptor activation and inflammation. Nat. Nanotechnol. 6(1), 39-44 (2011
Bramini M, Ye D, Hallerbach A, et al. Imaging approach to mechanistic study of nanoparticle interactions with the blood-brain barrier. ACS Nano 8(5), 4304-4312 (2014
Jiang W, Kim BY, Rutka JT, Chan WC. Nanoparticlemediated cellular response is size-dependent. Nat. Nanotechnol. 3(3), 145-150 (2008
Chithrani BD, Ghazani AA, Chan WC Determining the size and shape dependence of gold nanoparticle uptake into mammalian cells. Nano Lett. 6(4), 662-668 (2006
Ghosh PS, Kim C-K, Han G, Forbes NS, Rotello VM. Efficient gene delivery vectors by tuning the surface charge density of amino acid-functionalized gold nanoparticles. ACS Nano 2(11), 2213-2218 (2008
Moyano DF, Saha K, Prakash G, et al. Fabrication of corona-free nanoparticles with tunable hydrophobicity. ACS Nano 8(7), 6748-6755 (2014
Verma A, Stellacci F. Effect of surface properties on nanoparticle-cell interactions. Small 6(1), 12-21 (2010
Stark WJ. Nanoparticles in biological systems. Angew. Chem. Int. Ed. Engl. 50(6), 1242-1258 (2011
Krug HF, Wick P. Nanotoxicology: an interdisciplinary challenge. Angew. Chem. Int. Ed. Engl. 50(6), 1260-1278 (2011
Nel A, Xia T, Mädler L, Li N. Toxic potential of materials at the nanolevel. Science 311(5761), 622-627 (2006
Xia X-R, Monteiro-Riviere NA, Riviere JE. An index for characterization of nanomaterials in biological systems. Nat. Nanotechnol. 5(9), 671-675 (2010
Pelaz B, Charron G, Pfeiffer C, et al. Interfacing engineered nanoparticles with biological systems: Anticipating adverse nano-bio interactions. Small 9(9-10), 1573-1584 (2013
Roiter Y, Ornatska M, Rammohan AR, Balakrishnan J, Heine DR, Minko S Interaction of nanoparticles with lipid membrane. Nano Lett. 8(3), 941-944 (2008
Hu M, Chen J, Li Z-Y, et al. Gold nanostructures: engineering their plasmonic properties for biomedical applications. Chem. Soc. Rev. 35(11), 1084-1094 (2006
Kroll A, Pillukat MH, Hahn D, Schnekenburger J. Current in vitro methods in nanoparticle risk assessment: limitations and challenges. Eur. J. Pharm. Biopharm. 72(2), 370-377 (2009
Marquis BJ, Love SA, Braun KL, Haynes CL. Analytical methods to assess nanoparticle toxicity. Analyst 134(3), 425-439 (2009
Lynch I, Salvati A, Dawson KA. Protein-nanoparticle interactions: what does the cell see?. Nat. Nanotechnol. 4(9), 546-547 (2009
Jeng HA, Swanson J. Toxicity of metal oxide nanoparticles in mammalian cells. J. Environ. Sci. Health 41(12), 2699-2711 (2006
Mahmoudi M, Laurent S, Shokrgozar MA, Hosseinkhani M. Toxicity evaluations of superparamagnetic iron oxide nanoparticles: cell vision versus physicochemical properties of nanoparticles. ACS Nano 5(9), 7263-7276 (2011
Mahmoudi M, Lohse SE, Murphy CJ, Fathizadeh A, Montazeri A, Suslick KS Variation of protein corona composition of gold nanoparticles following plasmonic heating. Nano Lett. 14(1), 6-12 (2014
Serpooshan V, Zhao M, Metzler SA, et al. The effect of bioengineered acellular collagen patch on cardiac remodeling and ventricular function post myocardial infarction. Biomaterials 34(36), 9048-9055 (2013
Park MV, Lankveld DP, Van Loveren H, De Jong WH. The status of in vitro toxicity studies in the risk assessment of nanomaterials. Nanomedicine 4(6), 669-685 (2009
Joris F, Manshian BB, Peynshaert K, De Smedt SC, Braeckmans K, Soenen SJ. Assessing nanoparticle toxicity in cell-based assays: influence of cell culture parameters and optimized models for bridging the in vitro-in vivo gap. Chem. Soc. Rev. 42(21), 8339-8359 (2013
Connor EE, Mwamuka J, Gole A, Murphy CJ, Wyatt MD. Gold nanoparticles are taken up by human cells but do not cause acute cytotoxicity. Small 1(3), 325-327 (2005
Zhu Y, Ran T, Li Y, Guo J, Li W. Dependence of the cytotoxicity of multi-walled carbon nanotubes on the culture medium. Nanotechnology 17(18), 4668 (2006
Sun X, Rossin R, Turner JL, et al. An assessment of the effects of shell cross-linked nanoparticle size, core composition, and surface pegylation on in vivo biodistribution. Biomacromolecules 6(5), 2541-2554 (2005
Smith MT. The mechanism of benzene-induced leukemia: a hypothesis and speculations on the causes of leukemia. Environ. Health Perspec. 104(Suppl. 6), 1219 (1996
Rauch J, Kolch W, Laurent S, Mahmoudi M. Big signals from small particles: regulation of cell signaling pathways by nanoparticles. Chem. Rev. 113(5), 3391-3406 (2013
Rauch J, Kolch W, Mahmoudi M. Cell type-specific activation of Akt and Erk signaling pathways by small negatively-charged magnetic nanoparticles. Sci. Rep. doi: 10.1038/srep00868 (2012
Singh N, Manshian B, Jenkins GJ, et al. Nanogenotoxicology: the DNA damaging potential of engineered nanomaterials. Biomaterials 30(23-24), 3891-3914 (2009
Gupta AK, Curtis AS. Lactoferrin and ceruloplasmin derivatized superparamagnetic iron oxide nanoparticles for targeting cell surface receptors. Biomaterials 25(15), 3029-3040 (2004
Powers KW, Brown SC, Krishna VB, Wasdo SC, Moudgil BM, Roberts SM. Research strategies for safety evaluation of nanomaterials. Part vi. Characterization of nanoscale particles for toxicological evaluation. Toxicol. Sci. 90(2), 296-303 (2006
Oberdorster G, Maynard A, Donaldson K, et al. Principles for characterizing the potential human health effects from exposure to nanomaterials: elements of a screening strategy. Part. Fibre Toxicol. 2, 8 (2005
Tsuji JS, Maynard AD, Howard PC, et al. Research strategies for safety evaluation of nanomaterials, part iv: risk assessment of nanoparticles. Tox. Sci. 89(1), 42-50 (2006
Holsapple MP, Farland WH, Landry TD, et al. Research strategies for safety evaluation of nanomaterials, part ii: toxicological and safety evaluation of nanomaterials, current challenges and data needs. Tox. Sci. 88(1), 12-17 (2005
Powers KW, Palazuelos M, Moudgil BM, Roberts SM. Characterization of the size, shape, and state of dispersion of nanoparticles for toxicological studies. Nanotoxicology 1(1), 42-51 (2007
Coccini T, Roda E, Sarigiannis D, et al. Effects of watersoluble functionalized multi-walled carbon nanotubes examined by different cytotoxicity methods in human astrocyte D384 and lung A549 cells. Toxicology 269(1), 41-53 (2010
Hoshino A, Fujioka K, Oku T, et al Physicochemical properties and cellular toxicity of nanocrystal quantum dots depend on their surface modification. Nano Lett. 4(11), 2163-2169 (2004
Balshaw DM, Philbert M, Suk WA. Research strategies for safety evaluation of nanomaterials, part III: nanoscale technologies for assessing risk and improving public health. Tox. Sci. 88(2), 298-306 (2005
Borm P, Klaessig FC, Landry TD, et al. Research strategies for safety evaluation of nanomaterials, part V: role of dissolution in biological fate and effects of nanoscale particles. Tox. Sci. 90(1), 23-32 (2006
Holsapple MP, Lehman-Mckeeman LD. Forum series: research strategies for safety evaluation of nanomaterials. Tox. Sci. 87(2), 315 (2005
Thomas T, Thomas K, Sadrieh N, Savage N, Adair P, Bronaugh R. Research strategies for safety evaluation of nanomaterials, part VII: evaluating consumer exposure to nanoscale materials. Tox. Sci. 91(1), 14-19 (2006
FDA. www.fda.gov/Drugs
Alkilany AM, Nagaria PK, Hexel CR, Shaw TJ, Murphy CJ, Wyatt MD. Cellular uptake and cytotoxicity of gold nanorods: molecular origin of cytotoxicity and surface effects. Small 5(6), 701-708 (2009
Vigderman L, Manna P, Zubarev ER. Quantitative replacement of cetyl trimethylammonium bromide by cationic thiol ligands on the surface of gold nanorods and their extremely large uptake by cancer cells. Angew. Chem. Int. Ed. Engl. 124(3), 660-665 (2012
Brunner TJ, Wick P, Manser P, et al. In vitro cytotoxicity of oxide nanoparticles: comparison to asbestos, silica, and the effect of particle solubility. Environ. Sci. Tech. 40(14), 4374-4381 (2006
Lewinski N, Colvin V, Drezek R. Cytotoxicity of nanoparticles. Small 4(1), 26-49 (2008
Nan A, Bai X, Son SJ, Lee SB, Ghandehari H Cellular uptake and cytotoxicity of silica nanotubes. Nano Lett. 8(8), 2150-2154 (2008
Cho EC, Zhang Q, Xia Y. The effect of sedimentation and diffusion on cellular uptake of gold nanoparticles. Nat. Nanotechnol. 6(6), 385-391 (2011
Kong B, Seog JH, Graham LM, Lee SB. Experimental considerations on the cytotoxicity of nanoparticles. Nanomedicine 6(5), 929-941 (2011
Cho EC, Xie J, Wurm PA, Xia Y Understanding the role of surface charges in cellular adsorption versus internalization by selectively removing gold nanoparticles on the cell surface with a I2/kI etchant. Nano Lett. 9(3), 1080-1084 (2009
Donaldson K, Borm PJA, Oberdorster G, Pinkerton KE, Stone V, Tran CL. Concordance between in vitro and in vivo dosimetry in the proinflammatory effects of low-Toxicity, low-solubility particles: the key role of the proximal alveolar region. Inhal. Toxicol. 20(1), 53-62 (2008
Stone V, Johnston H, Schins RP. Development of in vitro systems for nanotoxicology: Methodological considerations. Crit. Rev. Toxicol. 39(7), 613-626 (2009
Sakhtianchi R, Minchin RF, Lee K-B, Alkilany AM, Serpooshan V, Mahmoudi M. Exocytosis of nanoparticles from cells: role in cellular retention and toxicity. Adv. Colloid Interf. Sci. 201, 18-29 (2013
Huh D, Hamilton GA, Ingber DE. From 3D cell culture to organs-on-chips. Trends Cell Biol. 21(12), 745-754 (2011
Bissell MJ, Rizki A, Mian IS. Tissue architecture: the ultimate regulator of breast epithelial function-commentary. Curr. Opin. Cell Biol. 15(6), 753-762 (2003
Griffith LG, Swartz MA. Capturing complex 3D tissue physiology in vitro. Nat. Rev. Mol. Cell Biol. 7(3), 211-224 (2006
Lee J, Lilly GD, Doty RC, Podsiadlo P, Kotov NA. In vitro toxicity testing of nanoparticles in 3D cell culture. Small 5(10), 1213-1221 (2009
Movia D, Prina-Mello A, Bazou D, Volkov Y, Giordani S. Screening the cytotoxicity of single-walled carbon nanotubes using novel 3D tissue-mimetic models. ACS Nano 5(11), 9278-9290 (2011
Monopoli MP, Åberg C, Salvati A, Dawson KA. Biomolecular coronas provide the biological identity of nanosized materials. Nat. Nanotechnol. 7(12), 779-786 (2012
Fischer D, Bieber T, Li YX, Elsasser HP, Kissel T. A novel non-viral vector for DNA delivery based on low molecular weight, branched polyethylenimine: effect of molecular weight on transfection efficiency and cytotoxicity. Pharmaceut. Res. 16(8), 1273-1279 (1999
Jones CF, Grainger DW. In vitro assessments of nanomaterial toxicity. Adv. Drug Deliv. Rev. 61(6), 438-456 (2009
Mirshafiee V, Mahmoudi M, Lou K, Cheng J, Kraft ML. Protein corona significantly reduces active targeting yield. Chem. Commun.49, 2557-2559 (2013
Salvati A, Pitek AS, Monopoli MP, et al. Transferrinfunctionalized nanoparticles lose their targeting capabilities when a biomolecule corona adsorbs on the surface. Nat. Nanotechnol. 8(2), 137-143 (2013
Lesniak A, Fenaroli F, Monopoli MP, Åberg C, Dawson KA, Salvati A. Effects of the presence or absence of a protein corona on silica nanoparticle uptake and impact on cells. ACS Nano 6(7), 5845-5857 (2012
Lesniak A, Salvati A, Santos-Martinez MJ, Radomski MW, Dawson KA, Åberg C. Nanoparticle adhesion to the cell membrane and its effect on nanoparticle uptake efficiency. J. Am. Chem. Soc. 135(4), 1438-1444 (2013
Liu Y, Li W, Lao F, et al. Intracellular dynamics of cationic and anionic polystyrene nanoparticles without direct interaction with mitotic spindle and chromosomes. Biomaterials 32(32), 8291-8303 (2011
Prapainop K, Witter DP, Wentworth P Jr. A chemical approach for cell-specific targeting of nanomaterials: Small-molecule-initiated misfolding of nanoparticle corona proteins. J. Am. Chem. Soc. 134(9), 4100-4103 (2012
Fleischer CC, Payne CK. Secondary structure of corona proteins determines the cell surface receptors used by nanoparticles. J. Phys. Chem. B 118(49), 14017-14026 (2014
Mahmoudi M, Shokrgozar MA, Sardari S, et al. Irreversible changes in protein conformation due to interaction with superparamagnetic iron oxide nanoparticles. Nanoscale 3(3), 1127-1138 (2011
Wan S, Kelly PM, Mahon E, et al. The sweet side of the protein corona: effects of glycosylation on nanoparticle-cell interactions. ACS Nano 9(2), 2157-2166 (2015
Kelly PM, Åberg C, Polo E, et al. Mapping protein binding sites on the biomolecular corona of nanoparticles. Nature Nanotechnol. 10, 472-479 (2015
Murase K, Assanai P, Takata H, Matsumoto N, Saito S, Nishiura M. Kinetic analysis of superparamagnetic iron oxide nanoparticles in the liver of body-Temperaturecontrolled mice using dynamic susceptibility contrast magnetic resonance imaging and an empirical mathematical model. Magn. Res. Imag. 33(5), 600-610 (2015
Hasday JD, Singh IS. Fever and the heat shock response: distinct, partially overlapping processes. Cell Stress Chaperones 5(5), 471 (2000
Stefanadis C, Chrysochoou C, Markou D, et al. Increased temperature of malignant urinary bladder tumors in vivo: the application of a new method based on a catheter technique. J. Clin. Oncol. 19(3), 676-681 (2001
Mahmoudi M, Shokrgozar MA, Behzadi S. Slight temperature changes affect protein affinity and cellular uptake/toxicity of nanoparticles. Nanoscale 5, 3240-3244 (2013
Monopoli MP, Walczyk D, Campbell A, et al. Physical?chemical aspects of protein corona: relevance to in vitro and in vivo biological impacts of nanoparticles. J. Am. Chem. Soc. 133(8), 2525-2534 (2011
Ghavami M, Saffar S, Emamy BA, et al. Plasma concentration gradient influences the protein corona decoration on nanoparticles. RSC Adv. 3(4), 1119-1126 (2013
Woodard H, White D. The composition of body tissues. Br. J. Radiol. 59(708), 1209-1218 (1986
Mitchell H, Hamilton T, Steggerda F, Bean H. The chemical composition of the adult human body and its bearing on the biochemistry of growth. J. Biol. Chem. 158(3), 625-637 (1945
Laurent S, Burtea C, Thirifays C, Rezaee F, Mahmoudi M. Significance of cell observer and protein source in nanobiosciences. J. Colloid Interf. Sci. 392, 431-445 (2013
Hurwitz N, Wade O. Intensive hospital monitoring of adverse reactions to drugs. Br. Med. J. 1(5643), 531 (1969
Hamburg MA, Collins FS. The path to personalized medicine. N. Engl. J. Med. 363(4), 301-304 (2010
Vizirianakis IS. Nanomedicine and personalized medicine toward the application of pharmacotyping in clinical practice to improve drug-delivery outcomes. Nanomedicine 7(1), 11-17 (2011
Fujita Y, Kakino A, Harada-Shiba M, et al. C-reactive protein uptake by macrophage cell line via class-A scavenger receptor. Clin. Chem. 56(3), 478-481 (2010
Albanese A, Walkey CD, Olsen JB, Guo H, Emili A, Chan WC. Secreted biomolecules alter the biological identity and cellular interactions of nanoparticles. ACS Nano 8(6), 5515-5526 (2014
Hajipour MJ, Raheb J, Akhavan O, et al. Personalized diseasespecific protein corona influences the therapeutic impact of graphene oxide. Nanoscale 7(19), 8978-8994 (2015
Hajipour MJ, Laurent S, Aghaie A, Rezaee F, Mahmoudi M. Personalized protein coronas: a key factor at the nanobiointerface. Biomaterials Sci. 2, 1210-1221 (2014
Laurent S, Burtea C, Thirifays C, Häfeli UO, Mahmoudi M. Crucial ignored parameters on nanotoxicology: the importance of toxicity assay modifications and cell vision. PLoS ONE 7(1), e29997 (2012
Mahmoudi M, Saeedi-Eslami SN, Shokrgozar MA, et al. Cell vision: complementary factor of protein corona in nanotoxicology. Nanoscale 4(17), 5461-5468 (2012
Chuang S-M, Lee Y-H, Liang R-Y, et al. Extensive evaluations of the cytotoxic effects of gold nanoparticles. Biochim. Biophys. Acta 1830(10), 4960-4973 (2013
Flattery-OBrien JA, Dawes IW. Hydrogen peroxide causes RAD9-dependent cell cycle arrest in G2 in saccharomyces cerevisiae whereas menadione causes G1 arrest independent of RAD9 function. J. Biol. Chem. 273(15), 8564-8571 (1998
Thorpe GW, Fong CS, Alic N, Higgins VJ, Dawes IW. Cells have distinct mechanisms to maintain protection against different reactive oxygen species: oxidative-stress-response genes. Proc. Natl Acad. Sci. USA 101(17), 6564-6569 (2004
Gupte A, Mumper RJ. Elevated copper and oxidative stress in cancer cells as a target for cancer treatment. Cancer Treat. Rev. 35(1), 32-46 (2009
Ostrovsky S, Kazimirsky G, Gedanken A, Brodie C. Selective cytotoxic effect of ZnO nanoparticles on glioma cells. Nano Res. 2(11), 882-890 (2009
Fiorillo M, Verre AF, Iliut M, et al Graphene oxide selectively targets cancer stem cells, across multiple tumor types: implications for non-Toxic cancer treatment, viadifferentiation-based nano-Therapy. Oncotarget 6(6), 3553 (2015
Sohaebuddin SK, Thevenot PT, Baker D, Eaton JW, Tang L. Nanomaterial cytotoxicity is composition, size, and cell type dependent. Part. Fibre Toxicol. 7(1), 22 (2010
He Q, Zhang Z, Gao F, Li Y, Shi J. In vivo biodistribution and urinary excretion of mesoporous silica nanoparticles: effects of particle size and pegylation. Small 7(2), 271-280 (2011
Kim I-Y, Joachim E, Choi H, Kim K. Toxicity of silica nanoparticles depends on size, dose, and cell type. Nanomedicine 11(6), 1407-1416 (2015
Chang J-S, Chang KLB, Hwang D-F, Kong Z-L. In vitro cytotoxicitiy of silica nanoparticles at high concentrations strongly depends on the metabolic activity type of the cell line. Environ. Sci. Technol. 41(6), 2064-2068 (2007
Asharani PV, Low Kah Mun G, Hande MP, Valiyaveettil S. Cytotoxicity and genotoxicity of silver nanoparticles in human cells. ACS Nano 3(2), 279-290 (2009
Lin J, Zhang H, Chen Z, Zheng Y. Penetration of lipid membranes by gold nanoparticles: insights into cellular uptake, cytotoxicity, and their relationship. ACS Nano 4(9), 5421-5429 (2010
Prats-Mateu B, Ertl P, Toca-Herrera JL. Influence of Hepg2 cell shape on nanoparticle uptake. Microsc. Res. Tech. 77(8), 560-565 (2014
Mashinchian O, Bonakdar S, Taghinejad H, et al. Cellimprinted substrates act as an artificial niche for skin regeneration. ACS Appl. Mater. Interfaces 6(15), 13280-13292 (2014
Mahmoudi M, Bonakdar S, Shokrgozar MA, et al. Cellimprinted substrates direct the fate of stem cells. ACS Nano 7(10), 8379-8384 (2013
Conner SD, Schmid SL. Regulated portals of entry into the cell. Nature 422(6927), 37-44 (2003
Alkilany A, Murphy C. Toxicity and cellular uptake of gold nanoparticles: what we have learned so far?. J Nanopart. Res. 12(7), 2313-2333 (2010
Parton RG, Simons K. The multiple faces of caveolae. Nat. Rev. Mol. Cell Biol. 8(3), 185-194 (2007
Chavanpatil MD, Khdair A, Panyam J. Nanoparticles for cellular drug delivery: mechanisms and factors influencing delivery. J. Nanosci. Nanotechnol. 6(9-10), 2651-2663 (2006
Fröhlich E. The role of surface charge in cellular uptake and cytotoxicity of medical nanoparticles. Int. J. Nanomedicine 7, 5577 (2012
Albanese A, Chan WC. Effect of gold nanoparticle aggregation on cell uptake and toxicity. ACS Nano 5(7), 5478-5489 (2011
Kim CS, Le NDB, Xing Y, et al. The role of surface functionality in nanoparticle exocytosis. Adv. Healthcare Mater. 3(8), 1200-1202 (2014
Chithrani BD, Chan WC Elucidating the mechanism of cellular uptake and removal of protein-coated gold nanoparticles of different sizes and shapes. Nano Lett. 7(6), 1542-1550 (2007
Stayton I, Winiarz J, Shannon K, Ma Y. Study of uptake and loss of silica nanoparticles in living human lung epithelial cells at single cell level. Anal. Bioanal. Chem. 394(6), 1595-1608 (2009
Panyam J, Labhasetwar V. Dynamics of endocytosis and exocytosis of poly (D, L-lactide-co-glycolide) nanoparticles in vascular smooth muscle cells. Pharm. Res. 20(2), 212-220 (2003
Ohta S, Inasawa S, Yamaguchi Y. Real time observation and kinetic modeling of the cellular uptake and removal of silicon quantum dots. Biomaterials 33(18), 4639-4645 (2012
Wu L-C, Chu L-W, Lo L-W, Liao Y-C, Wang Y-C, Yang C-S. Programmable cellular retention of nanoparticles by replacing the synergistic anion of transferrin. ACS Nano 7(1), 365-375 (2012
Chen R, Huang G, Ke PC. Calcium-enhanced exocytosis of gold nanoparticles. Appl. Phys. Lett. 97(9), 093706-093706-093703 (2010
Yanes RE, Tarn D, Hwang AA, et al. Involvement of lysosomal exocytosis in the excretion of mesoporous silica nanoparticles and enhancement of the drug delivery effect by exocytosis inhibition. Small 9(5), 697-704 (2012
Veiseh O, Sun C, Fang C, et al. Specific targeting of brain tumors with an optical/magnetic resonance imaging nanoprobe across the blood-brain barrier. Cancer Res. 69(15), 6200-6207 (2009
Göppert T, Müller R. Adsorption kinetics of plasma proteins on solid lipid nanoparticles for drug targeting. Int. J. Pharm. 302(1), 172-186 (2005
Camner P, Lundborg M, Låstbom L, Gerde P, Gross N, Jarstrand C. Experimental and calculated parameters on particle phagocytosis by alveolar macrophages. J. Appl. Physiol. 92(6), 2608-2616 (2002
Leroux J-C, De Jaeghere F, Anner B, Doelker E, Gurny R. An investigation on the role of plasma and serum opsonins on the evternalization of biodegradable poly (D, L-lactic acid) nanoparticles by human monocytes. Life Sci. 57(7), 695-703 (1995
Moghimi S, Muir I, Illum L, Davis S, Kolb-Bachofen V. Coating particles with a block co-polymer (poloxamine-908) suppresses opsonization but permits the activity of dysopsonins in the serum. Biochim. Biophys. Acta 1179(2), 157-165 (1993
Ogawara K-I, Furumoto K, Nagayama S, et al. Pre-coating with serum albumin reduces receptor-mediated hepatic disposition of polystyrene nanosphere: implications for rational design of nanoparticles. J. Control. Release 100(3), 451-455 (2004
Fischer HC, Chan WCW. Nanotoxicity: the growing need for in vivo study. Curr. Opin. Biotechnol. 18(6), 565-571 (2007
Sayes CM, Reed KL, Warheit DB. Assessing toxicity of fine and nanoparticles: comparing in vitro measurements to in vivo pulmonary toxicity profiles. Tox. Sci. 97(1), 163-180 (2007
Mahmoudi M, Simchi A, Imani M, et al. A new approach for the in vitro identification of the cytotoxicity of superparamagnetic iron oxide nanoparticles. Colloids Surf. B 75(1), 300-309 (2010
Mahmoudi M, Simchi A, Imani M, Milani AS, Stroeve P. An in vitro study of bare and poly (ethylene glycol)-co-fumaratecoated superparamagnetic iron oxide nanoparticles: a new toxicity identification procedure. Nanotechnology 20(22), 225104 (2009
Casey A, Herzog E, Davoren M, Lyng F, Byrne H, Chambers G. Spectroscopic analysis confirms the interactions between single walled carbon nanotubes and various dyes commonly used to assess cytotoxicity. Carbon 45(7), 1425-1432 (2007
Han X, Gelein R, Corson N, et al. Validation of an ldh assay for assessing nanoparticle toxicity. Toxicology 287(1), 99-104 (2011
Suska F, Gretzer C, Esposito M, Tengvall P, Thomsen P. Monocyte viability on titanium and copper coated titanium. Biomaterials 26(30), 5942-5950 (2005
Shukla S, Priscilla A, Banerjee M, et al. Porous gold nanospheres by controlled transmetalation reaction: a novel material for application in cell imaging. Chem. Mater. 17(20), 5000-5005 (2005
Trotter PJ, Orchard MA, Walker JH. Ca2+ concentration during binding determines the manner in which annexin v binds to membranes. Biochem. J. 308, 591-598 (1995
Meulenkamp EA. Size dependence of the dissolution of ZnO nanoparticles. J. Phys. Chem. B 102(40), 7764-7769 (1998
Hillegass JM, Shukla A, Lathrop SA, Macpherson MB, Fukagawa NK, Mossman BT. Assessing nanotoxicity in cells in vitro. WIREs Nanomed. Nanobiotechnol. 2(3), 219-231 (2010
Granchi D, Ciapetti G, Savarino L, Cavedagna D, Donati ME, Pizzoferrato A. Assessment of metal extract toxicity on human lymphocytes cultured in vitro. J. Biomed. Mater. Res. 31(2), 183-191 (1996
Laaksonen T, Santos H, Vihola H, et al. Failure of MTT as a toxicity testing agent for mesoporous silicon microparticles. Chem. Res. Toxicol. 20(12), 1913-1918 (2007
Low SP, Williams KA, Canham LT, Voelcker NH. Evaluation of mammalian cell adhesion on surface-modified porous silicon. Biomaterials 27(26), 4538-4546 (2006
Casey A, Herzog E, Lyng F, Byrne H, Chambers G, Davoren M. Single walled carbon nanotubes induce indirect cytotoxicity by medium depletion in A549 lung cells. Toxicol. Lett. 179(2), 78-84 (2008
Monteiro-Riviere NA, Inman AO. Challenges for assessing carbon nanomaterial toxicity to the skin. Carbon 44(6), 1070-1078 (2006
Puck TT, Marcus PI. Action of x-rays on mammalian cells. J. Experim. Med. 103(5), 653-666 (1956
Rajapakse K, Drobne D, Kastelec D, Marinsek-Logar R. Experimental evidence of false-positive comet test results due to TiO2 particle-Assay interactions. Nanotoxicology (0), 1-9 (2012
Halliwell B, Whiteman M. Measuring reactive species and oxidative damage in vivo and in cell culture: how should you do it and what do the results mean?. Br. J. Pharm. 142(2), 231-255 (2004
Lawrence A, Jones CM, Wardman P, Burkitt MJ. Evidence for the role of a peroxidase compound i-Type intermediate in the oxidation of glutathione, nadh, ascorbate, and dichlorofluorescin by cytochrome c/H2O2 implications for oxidative stress during apoptosis. J. Biol. Chem. 278(32), 29410-29419 (2003
Aam BB, Fonnum F. Carbon black particles increase reactive oxygen species formation in rat alveolar macrophages in vitro. Arch. Toxicol. 81(6), 441-446 (2007
Pulskamp K, Diabaté S, Krug HF. Carbon nanotubes show no sign of acute toxicity but induce intracellular reactive oxygen species in dependence on contaminants. Toxicol. Lett. 168(1), 58-74 (2007
Sharma CS, Sarkar S, Periyakaruppan A, et al. Single-walled carbon nanotubes induces oxidative stress in rat lung epithelial cells. J. Nanosci. Nanotechnol. 7(7), 2466 (2007
Sun Y, Oberley LW, Li Y. A simple method for clinical assay of superoxide dismutase. Clin. Chem. 34(3), 497-500 (1988
Gilmour PS, Brown DM, Beswick PH, Macnee W, Rahman I, Donaldson K. Free radical activity of industrial fibers: role of iron in oxidative stress and activation of transcription factors. Environ. Health Perspect. 105 (Suppl. 5), 1313 (1997
Stone V, Johnston H, Clift MJ. Air pollution, ultrafine and nanoparticle toxicology: cellular and molecular interactions. NanoBiosc., IEEE Transact. 6(4), 331-340 (2007
Sayes CM, Gobin AM, Ausman KD, Mendez J, West JL, Colvin VL. Nano-c60 cytotoxicity is due to lipid peroxidation. Biomaterials 26(36), 7587-7595 (2005
Veranth JM, Kaser EG, Veranth MM, Koch M, Yost GS. Cytokine responses of human lung cells (beas-2b) treated with micron-sized and nanoparticles of metal oxides compared with soil dusts. Part. Fibre Toxicol. 4(2), (2007
Ahamed M, Akhtar MJ, Siddiqui MA, et al. Oxidative stress mediated apoptosis induced by nickel ferrite nanoparticles in cultured A549 cells. Toxicology 283(2), 101-108 (2011
Xia T, Meng H, George S, et al. Strategy for toxicity screening of nanomaterials. Mater. Biomed. Appl. 5(3), 81 (2010
Combes RD. In silico methods for toxicity prediction. In: New Technologies For Toxicity Testing. Balls M, Combes RD, Bhogal N (Eds). Springer, NY, USA, 96-116 (2012
Damoiseaux R, George S, Li M, et al. No time to lose-high throughput screening to assess nanomaterial safety. Nanoscale 3(4), 1345-1360 (2011
Zhang H, Ji Z, Xia T, et al. Use of metal oxide nanoparticle band gap to develop a predictive paradigm for oxidative stress and acute pulmonary inflammation. ACS Nano 6(5), 4349-4368 (2012
Sayes C, Ivanov I. Comparative study of predictive computational models for nanoparticle-induced cytotoxicity. Risk Anal. 30(11), 1723-1734 (2010
Puzyn T, Rasulev B, Gajewicz A, et al. Using nano-qsar to predict the cytotoxicity of metal oxide nanoparticles. Nat. Nanotechnol. 6(3), 175-178 (2011
Huh D, Matthews BD, Mammoto A, Montoya-Zavala M, Hsin HY, Ingber DE. Reconstituting organ-level lung functions on a chip. Aerosol 328(5986), 1662-1668 (2010