Laurent S, Forge D, Port M et al. Magnetic iron oxide nanoparticles: synthesis, stabilization, vectorization, physico-chemical characterizations and biological applications. Chem. Rev. 108 (6), 2064-2110 (2008).
Jain TK, Morales MA, Sahoo SK, Leslie-Pelecky DL, Labhasetwar V. Iron oxide nanoparticles for sustained delivery of anticancer agents. Mol. Pharm. 2(3), 194-205 (2005).
Modo MMJ, Bulte JWM. Molecular and cellular MR imaging. CRC Press, London, UK (2007).
Willard MA, Kurihara LK, Carpenter EE, Calvin S, Harris VG. Chemically prepared magnetic nanoparticles. In: Encyclopedia of Science and Nanotechnology. Nalwa HS (Ed.). 1, 815-848 (2004).
Tartaj P, Morales MP, VeintemillasVerdaguer S, Gonzalez-Carreno T, Serna, CJ. Synthesis, properties and biomedical applications of magnetic nanoparticles. In: Handbook of Magnetic Materials. Buschow KHJ (Ed.). Elsevier, Amsterdam, The Netherlands 16(5), 403-482 (2006).
Gaviria JP, Bohé A, Pasquevich A, Pasquevich DM. Hematite to magnetite reduction monitored by Mössbauer spectroscopy and x-ray diffraction. Physica B. 389, 198-201 (2007).
Sugimoto T, Matijevic E. Formation of uniform spherical magnetite particles by crystallization from, ferrous hydroxide gels. J. Colloid Interface Sci. 74, 227-243 (1980).
Massart, R. Preparation of aqueous magnetic liquids in alkaline and acidic media. IEEE Trans. Magn. 17, 1247-1248 (1980).
Martinez-Mera I, Espinosa ME, PérezHernandez R, Arenas-Alatorre J. Synthesis of magnetite (Fe3O4) nanoparticles without surfactants at room temperature. Mater. Lett. 61, 4447-4451 (2007).
Hong RY, Pan TT, Han YP, Li HZ, Ding J, Han S. Magnetic field synthesis of Fe304 nanoparticles used as a precursor of ferrofluids. J. Magn. Magn. Mater. 310, 37-47 (2007).
Wu J-H, Ko SP, Liu H-L, Kim S, Ju JS, Kim YK. Sub 5 nm magnetite nanoparticles: synthesis, microstructure, and magnetic properties. Mater. Lett. 61, 3124-3129 (2007).
Kim DK, Zhang Y, Voit W, Rao KV, Muhammed M. Synthesis and characterization of surfactant coated superparamagnetic monodispersed iron oxide nanoparticles. J. Magn. Magn. Mater. 225, 30-36 (2001).
Gupta AK, Gupta M. Synthesis and surface engineering of iron oxide nanoparticles for biomedical applications. Biomaterials 26 (18), 3995-4021 (2005).
Husein MM, Nassar NN. Nanoparticle preparation using the single microemulsions scheme. Curr. Nanosci. 4(4), 370-380 (2008).
Hong RY, Feng B, Liu G et al. Preparation and characterization of Fe 3O4/polystyrene composite particles via inverse emulsion polymerization. J. Alloys Comp. 476(1-2), 612-618 (2009).
López-Quintela MA, Tojo C, Blanco MC, García Rio L, Leis JR. Microemulsion dynamics and reactions in microemulsions. Curr. Op. Colloid Interface Sei. 9(3-4), 264-278 (2004).
Pileni MP, Ngo AT. Mesoscopic structures of maghemite nanocrystals: fabrication, magnetic properties, and. uses. ChemPhysChem. 6(6), 1027-1034 (2005).
Lee Y, Lee J, Bae CJ et al. Large-scale synthesis of uniform and crystalline magnetite nanoparticles using reverse micelles as nanoreactors under reflux conditions. Adv. Funct. Mater. 3, 503-509 (2005).
Capek I. Preparation of metal nanoparticles in water-in-oil (w/o) microemulsions. Adv. Colloid Interface Sci. 110, 49-74 (2004).
Takami S, Sato T, Mousavand T, Ohara S, Umetsu M, Adschiri T. Hydrothermal synthesis of surface-modified iron oxide nanoparticles. Mater. Lett. 61, 4769-4772 (2007).
Simeonidis K, Mourdikoudis S, Moulla M etal. Controlled synthesis and phase characterization of Fe-based nanoparticles obtained by thermal decomposition. J. Magn. Magn. Mater. 316(2), E1-E4 (2007).
Mao B, Kang Z, Wang E et al. Synthesis of magnetite octahedrons from iron powders through a mild hydrothermal method. Mater. Res. Bull. 41, 2226-2231 (2006).
Tavakoli A, Sohrabi M, Kargari K. A review of methods for synthesis of nanostructured metals with emphasis on iron compounds. Chem. Pap. 61, 151-170 (2007).
Xu C, Teja AS. Continuous hydrothermal synthesis of iron oxide and PVA-protected iron oxide nanoparticles.J Supercrit. Fluids 44, 85-91 (2008).
Tang Y, Chen Q. A. simple and practical method for the preparation of magnetite nanowires. Chem. Lett. 36, 840-841 (2007).
Sun S, Zeng H, Robinson DB et al. Monodisperse MFe2O 4 (M = Fe, Co, Mn) nanoparticles. J. Am. Chem. Soc. 126, 273-279 (2004).
Lee JS, Choi SC. Crystallization behavior of nano ceria powders by hydrothermal synthesis using a mixture OfH2O2 and NH 4OH. Mater. Lett. 58,390-393 (2004).
Xu J, Yang H, Fu W et al. Preparation and magnetic properties of magnetite nanoparticles by sol-gel method. J. Magn. Magn. Mater. 309, 307-311 (2007).
Clapsaddle BJ, Gash AE, Satcher JH, Simpson RL. Silicon oxide in an iron (III) oxide matrix: the sol-.gel synthesis and characterization of Fe-Si. mixed oxide nanocomposites that contain iron oxide as the major phase. J. Non-Cryst. Solids 331, 190-201 (2003).
Nagineni VS, Zhao SH, Potluri A et al. Microreactors for syngas conversion to higher alkanes. characterization of sol-gel encapsulated nanoscale Fe-Co catalysts in the microchannels. Ind. Eng. Chem. Res. 44, 5602-5607 (2005).
Jitianu. A, Raileanu M, Crisan M et al. Fe1O 4-SiO2 nanocomposites obtained, via alkoxide and colloidal route. J. Sol-Gel Sci. Techn. 40, 317-323 (2006).
Dong J, Xu ZH, Wang F. Engineering and. characterization of mesoporous silica-coated magnetic particles for mercury removal from industrial effluents. Appl. Surf Sci. 254, 3522-3530 (2008).
Park ME, Chang JH. High throughput human DNA purification with aminosilanes tailored silica-coated magnetic nanoparticles. Mater. Sci. Eng. C 27,1232-1235(2007).
Stöber W, Fink A, Bohn E. Controlled growth of monodisperse silica spheres in the micron size range. J. ColloidInterf Sci. 26, 62-69 (1968).
Vasquez Mi, Luna C, Morales MiP, Sanz R, Serna CJ, Mijangos C. Magnetic nanoparticles: synthesis, ordering and. properties. Physica B. 354, 71-79 (2004).
Liu HL, Ko SP, Wu JH et al. One-pot polyol synthesis of monosize PVP-coated sub-5 nm Fe3O4 nanoparticles for biomedical applications. J. Magn. Magn. Mater. 310, E815-E817 (2007).
Caruntu D, Caruntu G, Chen Y, O'Connor CJ, Goloverda G, Kolesnichenko VL. Synthesis of variable-sized nariocrystals Of Fe3O4 with high surface reactivity. Chem. Mater. 16, 5527-5534 (2004).
Cai W, Wan J. Facile synthesis of superparamagnetic magnetite nanoparticles in liquid polyols. J. Colloid Interface Sci. 305, 366-370 (2007).
Varadwaj KS, Ghose J. Synthesis and characterisation of polyol-capped transition metal oxide nanoparticles. J. Nanosci. Nanotechnol. 5(4), 627-634 (2005).
Kim EH, Ahn Y, Lee HS. Biomedical applications of superparamagnetic iron oxide nanoparticles encapsulated within chitosan. J Alloys Compd. 434, 633-636 (2007).
Pinkas J, Reichlova V. Zbořil R, Moravec Z, Bezdicka P, Matějkova J. Sonochemical synthesis of amorphous nanoscopic iron (III) oxide from Fe(acac)3. Ultrason. Sonochem. 15, 257-264 (2008).
Haas I, Gedanken A. Sonoelectrochemistry of Cu++ in the presence of CTAB: obtaining instead of copper. Chem. Mater. 18, 1184-1189 (2006).
Morel AL, Nikiten ko SI, Gionnet K et al. Sonochemical approach to the synthesis of Fe:3O4@SiO2 core-shell nanoparticles with tunable properties. ACS Nano. 2(5), 847-856 (2008).
Abu-Much R, Meridor U, Frydman A, Gedanken A. The formation of a 3D microstructure Of Fe3O4-PVA composite by evaporating the hydrosol under a magnetic field. J. Phys. Chem. B 110, 8194-8203 (2006).
Kim EH, Lee HS, Kwak BK, Kirn BK. Synthesis of ferrofluid with magnetic nanoparticles by sonochemical method for MRI contrast agent.J. Magn. Magn. Mater. 289, 328-330 (2005).
Khalil H, Mahajan D, Rafailovich M, Geifer M, Pandya K. Synthesis of nanophase metal particles stabilized with polyethylene glycol. Langmuir 20, 6896-6903 (2004).
David B, PizurovaN, Schneeweiss O, Bezdicka P, Miorjan I, Alexandrescu R. Preparation of iron/graphite core-shell structured, nanoparticles. J. Alloys Compd 378, 112-116(2004).
Jana NR, Chen YF, Peng XG. Size- and. shape-controlled magnetic (Cr, Mn, Fe, Co and Ni) oxide rianocrystals via a simple and general approach. Chem. Mater. 16, 3931-3935 (2004).
Basak S, Chen D-R, Biswas P. Electrospray of ionic precursor solutions to synthesize iron oxide nanoparticles: modified scaling law. Chem. Eng Sci. 62, 1263-1268 (2007).
Bomati- Miguel. O, Morales MP, Tartaj P et al. Fe-based nanoparticulate metallic alloys as contrast agents for magnetic resonance imaging. Biomaterials 26, 5695-5703 (2005).
Tartaj P, Gonzáles-Carreño T, Serna CJ. From hollow to dense spheres: control of dipolar interactions by tailoring the architecture in colloidal aggregates of superparamagnetic iron oxide rianocrystals. Adv. Mater. 16, 529-533 (2004).
Jolivet JP, Cassaignon S, Chanéac C, Chiche D, Tronc E. Design of oxide nanoparticles by aqueous chemistry.J Sol-Gel Sci. Techn. 46(3), 299-305 (2008).
Hu S-H, Liu D-M, Tung W-L, Liao C-F, Chen S-Y'. Surfactant-free, self-assembled PVA-iron oxide/silica core-shell nanocarriers for highly sensitive, magnetically controlled drug release and ultrahigh cancer cell uptake efficiency. Adv. Funct. Mater. 18(19), 2946-2955 (2008).
Jarren BR, Frendo M, Vogari J, Louie AY. Size-controlled synthesis of dextran sulfate coated iron oxide nanoparticles for magnetic resonance imaging. Nanotechnology 18(3), 18-24 (2007).
Gupta AK, Wells S. Surface-modified superparamagnetic nanoparticles for drug delivery: preparation, characterization, and cytotoxicity studies. IEEE Trans. Nanobioscience3, 66-73 (2004).
Albornoz C., Jacobo SE. Preparation of a biocompatible magnetic film from an aqueous ferrofluid. J Magn. Magn. Mater. 305, 12-15 (2006).
Wassel RA, Grady B, Kopke RD, Dormer KJ. Dispersion of super paramagnetic iron oxide nanoparticles in poly(D,L-lactideco-glycolide) microparticles. Colloids Surf. A Physicohem. Eng. Aspects 92, 125-130 (2007).
Mak S, Chen D. Binding and sulfonation of poly(acrylic acid) on iron oxide nanoparticles. Macro-mol. Rapid Comm. 26, 1567-1571 (2005).
Arias JL, Gallardo V, Gomez-Lopera SA, Delgado AV. Loading of 5-fluorouracil to poly(ethyl-2-cyanoacrylate) nanoparticles with a magnetic core. J. Biomed. Nanotech. 1, 214-223 (2005).
Berret JF, Oberdisse J. Electrostatic self-assembly in polyelectrolyte-neutral block copolymers and. oppositely charged surfactant solutions. Physica B 350, 204-206 (2004).
Kumagai M, Imai Y, Nakamura T et al. Iron hydroxide nanoparticles coated, with poly (ethylene glycol)-poly(aspartic acid) block copolymer as novel magnetic resonance contrast agents for in vivo cancer imaging. Colloids Surf. B Biointerfaces 56, 174-181 (2007).
Akcora P, Zhang X, Varughese B, Briber RM, Kofinas P. Structural and magnetic characterization of norbor.nene-deuterated norbornene dicarboxylic acid diblock copolymers doped with iron oxide nanoparticles. Polymer 46, 5194-5201 (2005).
Gamarra LF, Brito GES, Pontuschka WM, Amaro E, Parma AHC, Goya GF. Biocompatible superparamagnetic iron oxide nanoparticles used for contrast agents: a structural and magnetic study. J. Magn. Magn. Mater. 289, 439-441 (2005).
Molday RS, MacKenzie D. Immunospecific ferromagnetic iron-dextran reagents for the labeling and magnetic separation of cells. J. Immunol. Meth. 52, 353-367 (1982).
Laurent S, Nicotra C, Gossuin Y et al. Influence of the length of the coating molecules on the nuclear magnetic relaxivity of superparamagnetic colloids. Phys. Stat. Sol. 12, 3644-3650(2004).
Mejias R, Costo R, Roca AG et al. Cytokine adsorption/release on uniform, magnetic nanoparticles for localized drug delivery. J. Control. Release 130(2), 168-174 (2008).
Li W, Tutton S, Vu AT et al. First-pass contrast-enhanced magnetic resonance angiography in humans using ferumoxytol a novel ultrasmall superparamagnetic iron oxide USPIO-based blood pool, agent. J. Magn. Reson. Imaging 21, 46-52 (2005).
Nishio Y, Yamada A, Ezaki K, Miyashita Y, Furukawa H, Horie K. Preparation and. magnetometric characterization of iron oxide-containing alginate/poly(vinyl alcohol) networks. Polymer 45, 7129-7136 (2004).
Janardhanan SR, Ramasamy I, Nair BU. Synthesis of iron oxide nanoparticles using chitosan and starch templates. Trans. Metal Chem. 33(1), 127-131 (2008).
Yonezawa T, Kamoshita K, Tanaka M, Kinoshita T. Easy preparation of stable iron oxide nanoparticles using gelatin as stabilizing molecules. Jap. J. Appl. Phys. 47(2), 1389-1392 (2008).
Rekha MR, Sharma CP. Pullulan as a promising biomaterial for biomedical applications: a perspective. Trends Biomater. Artif Organs 20(2), 116-121 (2007).
Shultz MD, Calvin S, Fatouros PP, Morrison SA, Carpenter EE. Enhanced ferrite nanoparticles as MRI contrast agents. J. Magn. Magn. Mater. 311, 464-468 (2007).
Wassel RA, Grady B, Kopke RD, Dormer KJ. Dispersion of superparamagnetic iron oxide nanoparticles in poly(D,L-lactide-coglycolide) microparticles. Colloids Surf. A Physicochem. Eng. Aspects 292, 125-130 (2007).
Finotelli PV, Morales MA, Rocha-Leão MH, Baggio-Saitovitch EM, Rossi AM. Magnetic studies of iron (III) nanoparticles in alginate polymer for drug delivery applications. Mater. Sci. Eng. C Biomin. Mater. Sens. Syst. 24, 625-629 (2004).
Iijima M, Yonemochi Y, Tsukada M, Kamiya H. Microstructure control of iron hydroxide nanoparticles using surfactants with different molecular structures. J. Colloid Interf. Sci. 298, 202-208 (2006).
Xu ZZ, Wang CC, Yang WL, Deng YH, Fu SK. Encapsulation of nanosized magnetic iron oxide by Polyacrylamide via inverse miniemulsion polymerization. J. Magn. Magn. Mater. 277(1-2), 136-143 (2004).
Ma Y-H, Wu S-Y, Wu T, Chang Y-J, Hua M-Y, Chen J-P. Magnetically targeted thrombolysis with recombinant tissue plasminogen activator bound to polyacrylic acid-coated nanoparticles. Biomaterials 30(19), 3343-3351 (2009).
Bae S-J, Park J-A, Lee J-J et al. Ultrasmall iron oxide nanoparticles: synthesis, physicochemical, and magnetic properties. Curr. Appl. Phys. 9(Suppl. 1), S19-S21 (2009).
Gomez-Lopera SA, Arias JL, Gallardo V, Delgado AV. Colloidal stability of magnetite/ poly(lactic acid) core/shell nanoparticles. Langmuir, 2816-2821 (2006).
Arias JL, Lopez-Viota M, Ruiz MA, Lopez-Viota J, Delgado AV. Development of carbonyl iron/ethylcellulose core/shell nanoparticles for biomedical applications. Int. J. Pharm. 339, 237-245 (2007).
Flesch C, Bourgeaut-Lami E, Mornet S, Duguet E, Delaite C, Dumas P. Synthesis of colloidal superparamagnetic nanocomposites by grafting poly(s-caprolactone) from the surface of organosilane-modified maghemite nanoparticles. J. Polym. Sci. Part A: Polym. Chem. 43, 3221-3231 (2005).
Corot C, Robert P, Idée J-M, Port M. Recent advances in iron oxide nanocrystal technology for medical imaging. Adv. Drug Del. Rev. 58(14), 1471-1504 (2006).
Huang Z, Tang F. Preparation, structure, and magnetic properties of polystyrene coated by Fe3O4 nanoparticles. J. Colloid Interface Sci. 275, 142-147 (2004).
Aphesteguy JC, Jacobo SE. Composite of polyaniline containing iron oxides. Physica B. 354, 224-227 (2004).
Butter K, Kassapidou K, Vroege GJ, Philipse AP. Preparation and properties of colloidal iron dispersions. J. Colloid Interface Sci. 287, 485-495 (2005).
Zhang L, He R, Gu HC. Oleic acid coating on the monodisperse magnetite nanoparticles. Appl. Surf Sci. 253, 2611-2617 (2006).
Khalafalla SE, Reimers GW. Preparation of dilution-stable aqueous magnetic fluids. IEEE Trans. Magn. 16, 178-183 (1980).
Bonacchi D, Caneschi A, Gatteschi D, Sangregorio C, Sessoli R, Falqui A. Synthesis and characterisation of metal oxides nanoparticles entrapped in cyclodextrin. J. Phys. Chem. Solids 65(4), 719-722 (2004).
Gonzales M, Krishnan KM. Phase transfer of highly monodisperse iron oxide nanocrystals with Pluronic F127 for biomedical applications. J. Magn. Magn. Mater. 311, 59-62 (2007).
Kim EH, Lee HS, Kwak BK, Kim BK. Synthesis of ferrofluid with magnetic nanoparticles by sonochemical method for MRI contrast agent. J. Magn. Magn. Mater. 289, 328-330 (2005).
Sahoo Y, Goodarzi A, Swihart MT et al. Aqueous ferrofluid of magnetite nanoparticles. fluorescence labeling and magnetophoretic control. J. Phys. Chem. B. 109, 3879-3885 (2005).
Taupitz M, Wagner S, Schnorr J et al. Phase I clinical evaluation of citrate-coated monocrystalline very small superparamagnetic iron oxide particles as a new contrast: medium for magnetic resonance imaging. Invest. Radiol. 39, 394-405 (2004).
Daou TJ, Buathong S, Ung D et al. Investigation of the grafting rate of organic molecules on the surface of magnetite nanoparticles as a function of the coupling agent. Sens. Actuators B 126(1), 159-162 (2006).
Roux S, Garcia B, Bridot JL. et al. Synthesis, characterization of dihydrolipoic acid capped gold nanoparticles, and functionalizatiori by the electroluminescent luminol. Langmuir 21, 2526-2536 (2005).
Saini G, Shenoy D, Nagesha DK, Kautz R, Sridhar S, Amiji M. Superparamagnetic iron oxide-gold core-shell nanoparticles for biomedical applications. In: Technical Proceedings of the 2005 NSTI Nanotechnology Conference and Trade Show, Volume 1, BioNano Materials 328-331 (2005).
Choi K-H, Lee S-H, Kim Y-R et al. Magnetic behavior of Fe 3O4 nanostructure fabricated by template method. J. Magn. Magn. Mater. 310, e861-e863 (2007).
Zhang M, Gushing BL, O'Connor CJ. Synthesis and characterization of monodisperse ultra-thin silica-coated magnetic nanoparticles. Nanotechnology 19, 1-5 (2008).
Alcala MD, Real C. Synthesis based on the wet impregnation method and characterization of iron and iron oxide-silica nanocomposites. Solid State Ionics 177, 955-960 (2006).
Ma D, Guan J, Normandin F et al. Multifunctional nano-architecture for biomedical applications. Chem. Mater. 18, 1920-1927 (2006).
Sun Y, Duan L, Guo Z et al. An improved way to prepare superparamagnetic magnetite-silica core-shell nanoparticles for possible biological application. J. Magn. Magn. Mater. 285, 65-70 (2005).
Liu XQ, Xing J, Guan Y, Shan G, Liu HZ. Synthesis of amino-silane modified superparamagnetic silica supports and their use for protein immobilization. Colloids Surf. A: Physicochem. Eng. Aspects 238, 127-131 (2004).
Barnakov YA, Yu MH, Rosenzweig Z. Manipulation of the magnetic properties of magnetite-silica nanocomposite materials by controlled Stober synthesis. Langmuir 21, 7524-7527 (2005).
Nobbmann U, Morfesis A. Light scattering and nanoparticles. Material today 12, 52-54 (2009).
Gossuin Y, Gillis P, Hocq A, Vuong QL, Roch A. MR relaxation properties of superparamagnetic iron oxide particles. Nanomed. Nanobiotechnol. 1, 299-310 (2008).
Roch A, Gossuin Y, Muller R N, Gillis P. Superparamagnetic colloid suspensions: water magnetic relaxation and clustering. J. Magn. Magn. Mater. 293, 532-539 (2005).
Laurent S, Vander Eist L, Muller RN. Contrast agents for MRI: recent advances. In: Encyclopedia of Magnetic Resonance. Harris RK, Wasylishen R (Eds). John Wiley, Chichester, UK (2009).
Provides a comparison between Gd complexes and nanoparticles as MRI contrast agents.
Freed JH. Dynamic effects of pair correlation functions on spin relaxation by translational diffusion in liquids. J. Chem. Phys. 68, 4034-4037 (1978).
Roch A, Muller RN, Gillis P. Water relaxation by SPM particles: neglecting the magnetic anisotropy? A caveat. J. Magn. Reson. Imaging 14, 94-96 (2001).
Roch A, Muller RN, Gillis P. Theory of proton relaxation induced by superparamagnetic particles. J. Chem. Phys. 110, 5403-5411 (1999).
Roch A, Gillis P, Ouakssim A, Muller RN. Proton relaxation in superparamagnetic aqueous colloids: a new tool for the investigation of ferrite crystal anisotropy. J. Magn. Magn. Mater. 201, 77-79 (1999)
Ayant Y, Belorizly E, Alizon J, Gallice J. Calculation of spectral density resulting from random translational movement with relaxation by magnetic dipolar interaction in liquids. J. Phys. 36, 991-1004 (1975).
Bulte JWM, Kraitchman DL. Iron oxide MR contrast agents for molecular and cellular imaging. NMR Biomed. 17, 484-499 (2004).
Thorek DLJ, Chen AK, Czupryna J, Tsourkas A. Superparamagnetic iron oxide nanoparticle probes for molecular imaging. Ann. Biomed. Eng. 34, 23-38 (2006).
Owens DE, Peppas NA. Opsonization, biodistribution, and pharmacokinetics of polymeric nanoparticles. Int. J. Pharm. 307, 93-102 (2006).
Pultrum BB, van der Jagt EJ, van Westreenen HL et al. Detection of lymph node metastases with ultrasmall superparamagnetic iron oxide (USPIO)enhanced magnetic resonance imaging in oesophageal cancer. A. feasibility study. Cancer Imaging 9, 19-28 (2009).
Yoo HJ, Lee J M, Lee MW et al. Hepatocellular carcinoma in cirrhotic liver: double-contrast-enhanced, high-resolution 3.0 T-MR imaging with pathologic correlation. Invest. Radiol. 43(7), 538-546 (2008).
Thorek DL, Tsourkas A. Size, charge and concentration dependent uptake of iron oxide particles by non-phagocytic cells. Biomaterials 29(26), 3583-3590 (2008).
Sun R, Dittrich J, Le-Huu M et al. Physical and biological characterization of superparamagnetic iron oxide- and ultrasmal superparamagnetic iron oxide-labeled cells: a comparison. Invest Radiol. 40(8), 504-513 (2005).
Kohler N, Fryxell GE, Zhang M.A bifunctional poly(ethylene glycol) silane immobilized on metallic oxide-based nanoparticles for conjugation with cell targeting agents. J. Am. Chem. Soc. 126, 7206-7211 (2004).
Mornet S, Vasseur S, Grasset F et al. Magnetic nanoparticle design for medical applications. Progress Solid State Chem. 34(2-4), 237-247 (2006).
Kou G, Wang S, Cheng C et al. Developmen of SM5-1-conjugated ultrasmall superparamagnetic iron oxide nanoparticles for hepatoma detection. Biochem. Biophys. Res. Commun. 374(2), 192-197 (2008).
Burtea C, Laurent S, Vander Elst L, Muller RN. C-MALISA (cellular magnetic-linked immunosorbent assay), a new application of cellular ELISA for MRI. J. Inorg. Biochem. 99(5), 1135-1144 (2005).
Boutry S, Laurent S, Vander Elst L, Muller RN. Specific E-selectin targeting with a superparamagnetic MRI contrast agent. Contrast Med. Mol. Imaging 1(1), 15-22 (2006).
Di Marco M, Sadun C, Port M, Guilbert I, Couvreur P, Duberner C. Physicochemical characterization of ultrasmall superparamagnetic iron oxide particles (USPIO) for biomedical application as MRI contrast agents. Int. J. Nanomedicine 2(4), 609-622 (2007).
Liu W, Frank JA. Detection and quantification of magnetically labeled cells by cellular MRI. Eur. J. Radiol. 70, 258-264 (2009).
Bulte JWM, Kraitchman DL. Iron oxide MR contrast agents for molecular and cellular imaging. NMR Biomed. 17, 484-499 (2004).
Mills PH, Ahrens ET. Enhanced positivecontrast visualization of paramagnetic contrast agents using phase images. Magn. Reson. Med. 62(5), 1349-1355 (2009).
Nelson GN, Roh JD, Mirensky TL et al. Initial evaluation of the use of USPIO cell labeling and noninvasive MR monitoring of human tissue-engineered vascular grafts in vivo. FASEB J 22, 3888-3895 (2008).
Douziech-Eyrolles L, Marchais H, Hervé K et al. Nanovectors for anticancer agents based on superparamagnetic iron oxide nanoparticles. Int. J. Nanomed. 2(4), 541-550 (2007).
Cengelli F, Grzyb JA, Montoro A, Hofmann H, Hanessian S, Juillerat-Jeanneret L., Surface-functionalized ultrasmall superparamagnetic nanoparticles as magnetic delivery vectors for camptothecin. ChemMedChem. 4(6), 988-997 (2009).
Sajja HK, East MP, Mao H, Wang YA, Nie S, Yang L. Development of multifunctional nanoparticles for targeted drug delivery and noninvasive imaging of therapeutic effect. Curr. Drug Discov. Technol. 6(1), 43-51 (2009).
Purushotham S, Chang PE, Rumpel H et al. Thermoresponsive core-shell magnetic nanoparticles for combined modalities of cancer therapy. Nanotechnology 20(30), 5101 (2009).
Renard PE, Buchegger F, Petri-Fink A et al. Local moderate magnetically induced hyperthermia using an implant formed in situ in a mouse tumor model. Int. J. Hyperthermia 25(3), 229-239 (2009).
Wust P, Gneveckow U, Johannsen M et al. Magnetic nanoparticles for interstitial thermotherapy- feasibility, tolerance and achieved temperatures. Int. J. Hyperthermia 22(8), 673-685 (2006).
Fortin JP, Wilhelm C, Servais J, Ménager C, Bacri JC, Gazeau F. Size-sorted anionic iron oxide nanomagnets as colloidal mediators for magnetic hyperthermia. J. Am. Chem. Soc. 129, 2628-2635 (2007).
Rosenweig RE. Heating magnetic fluid with alternating magnetic field. J. Magn. Magn. Mater. 252, 370-374 (2002).
Maier-Hauff K, Rothe R, Scholz R et al. Intracranial thermotherapy using magnetic nanoparticles combined with external beam radiotherapy, results of a feasibility study on patients with glioblastoma multiforme. J. Neurooncol. 81(1), 53-60 (2007).
Szakacs G, Paterson JK, Ludwig JA, Booth-Genthe C, Gottesman MM. Targeting multidrug resistance in cancer, Nat. Rev. Drug Discov.5, 219-234 (2006).
Bulte JW. Intracellular endosomal magnetic labeling of cells. Methods Mol. Med. 124, 419-439 (2006).
Jing Y, Mal N, Williams PS et al. Quantitative intracellular magnetic nanoparticle uptake measured by live cell magneto-phoresis. FASEB J. 22(12), 4239-4247 (2008).
Delcroix GJ, Jacquart M, Lemaire L et al. Mesenchymal and neural stem cells labeled with HEDP-coated SPIO nanoparticles. in vitro characterization and migration potential in rat brain. Brain Res. 1255, 18-31(2009).
Pluchino S, Miartino G. The therapeutic use of stem cells for myelin repair in autoimmune demyelinating disorders. J. Neurol. Sci. 233, 117-119 (2005).
Klabusay M, Scheer P, Doubek M, Rehakova K, Coupek P, Horky D. Retention of nanoparticle-labeled bone marrow mononuclear cells in the isolated ex vivo perfused heart after myocardial infarction in animal model. Exp. Biol. Med. (Maywood). 234(2), 222-231 (2009).
Billotey C, Aspord C, Beuf O et al. T-cell homing to the pancreas in autoimmune mouse models of diabetes. in vivo MR imaging. Radiology 236, 579-587 (2005).
Arbab AS, Liu W, Frank JA. Cellular magnetic resonance imaging. current status and future prospects Expert Rev. of Med. Devices 3, 427-439 (2006).
Chen CB, Chen JY, Lee WC. Fast transfection of mammalian cells using superparamagnetic nanoparticles under strong magnetic field. J. Nanosci. Nanotechnol. 9(4), 2651-2659 (2009).
Wilhelm C, Gazeau F. Magnetic nanoparticles: internal probes and heaters within living cells. J. Magn. Magn. Mater. 321, 671-674 (2009).
Morgul MH, Raschzok N, Schwartlander R et al. Tracking of primary human hepatocytes with clinical MRI: initial results with Tat-peptide modified superparamagnetic iron oxide particles. Int. J. Artif Organs 31(3), 252-257 (2008).
Heyn C, Ronald JA, Mackenzie LT et al. In vivo magnetic resonance imaging of single cells in mouse brain with optical validation. Magn. Reson. Med. 55, 23-29 (2006).
Shapiro EM, Skrtic S, Koretsky AP. Sizing it up. Cellular MRI using micron-sized iron oxide particles. Magn. Reson. Med. 53, 329-338 (2005).
Shapiro EM, Sharer K, Skrtic S, Koretsky AP. In vivo detection of single cells by MRI. Magn. Reson. Med. 55, 242-249 (2006).
Sumner JP, Conroy R, Shapiro EM, Moreland J, Koretsky AP. Delivery of fluorescent probes using iron oxide particles as carriers enables in vivo labeling of migrating neural precursors for magnetic resonance imaging and optical imaging. J. Biomed. Optics 12, 051504-051506 (2007).
Dunn EA, Weaver LC, Dekaban GA, Foster PJ. Cellular imaging of inflammation after experimental spinal cord injury. Mol. Imaging A (1), 53-62 (2005).
Wu YL, Ye Q, Foley LM et al. In situ labeling of immune cells with iron oxide particles. An approach to detect organ rejection by cellular MRI. PNAS, 103, 1852-1857 (2006).
Genove G, DeMarco U, Xu H, Goins WF, Ahrens ET. A new transgene reporter for in vivo magnetic resonance imaging. Nature Med. 11, 450-454 (2005).
Batya C, Hagit D, Gila M, Alon H, Michal N. Ferritin as an endogenous MRI reporter for noninvasive imaging of gene expression in C6 glioma tumors. Neaplasia 7, 109-117 (2005).
Cohen B, Ziv K, Plaks V et al. MRI detection of transcriptional regulation of gene expression in transgenic mice. Nature Med. 13, 498-503 (2007).
Rahmer J, Weizenecker J, Gleich B, Borgert J. Signal encoding in magnetic particle imaging: properties of the system function. BMC Medical Imaging 9 (A), 1-21 (2009).
Weizenecker J, Gleich B, Rahmer J, Dahnke H, Borgert J. Three-dimensional real-time in vivo magnetic particle Imaging Phys. Med. Biol. 54(5), L1-L10 (2009).
Neuwelt EA, Hamilton BE, Varallyay CG, et al. Ultrasmall superparamagnetic iron oxides (USPIOs). a future alternative magnetic resonance (MR) contrast agent for patients at risk for nephrogenic systemic fibrosis (NSF)? Kidney Int. 75(5), 465-474 (2009).
Modo M, Hoehn M, Bulte JW Cellular MR imaging. Mol. Imaging 4, 143-164 (2005).
Weinmann HJ, Ebert W, Misselwitz B, Schmitt-Willich H. Tissue-specific MR contrast agents. Eur. J. Radiol. 46, 33-44 (2003).
Wang YX, Hussain SM, Krestin GP. Superparamagnetic iron oxide contrast agents: physicochemical characteristics and applications in MR imaging. Eur. Radiol. 11, 2319-2331 (2001).
Muldoon LL, Sandor M, Pinkston KE, Neuwelt EA. Imaging, distribution, and toxicity of superparamagnetic iron oxide magnetic resonance nanoparticles in the rat brain and intracerebral tumor. Neurosurgery 57, 785-796 (2005).
Simon GH, von Vopclius-Feldt J, Fu Y et al. Ultras mall supraparamagnetic iron oxide-enhanced magnetic resonance imaging of antigen-induced arthritis. a comparative study between SHU 555 C, ferumoxtran-10, and ferumoxytol. Invest. Radiol. 41, 45-51 (2006).
Sun R, Dittrich J, Le-Huu M et al. Physical and biological characterization of superparamagnetic iron oxide- and ultrasmall superparamagnetic iron oxide-labeled cells. a comparison. Invest. Radiol. 40, 504-513 (2005).
Matuszewski L, Persigehl T, Wall A et al. Cell tagging with clinically approved iron oxides. feasibility and effect of lipofection, particle size, and surface coating on labeling efficiency. Radiology 235, 155-161 (2005).
Wacker FK, Reither K, Ebert W, Wen dt M, Lewin JS, Wolf KJ. MR image-guided endovascular procedures with the ultrasmall superparamagnetic iron oxide SH U 555 C as an intravascular contrast agent: study in pigs. Radiology 226, 459-464 (2003).
Li W, Tutton S, Vu AT et al. Firstpass contrast-enhanced magnetic resonance angiography in humans using ferumoxytol, a novel ultrasmall superparamagnetic iron oxide (USPIO)-based blood pool agent. J. Magn. Reson. Imaging 21, 46-52 (2005).
Artemov D. Molecular magnetic resonance imaging with targeted contrast agents. J. Cell. Biochem. 90, 518-524 (2003).
Artemov D, Bhujwalla ZM, Bulte JW. Magnetic resonance imaging of cell surface receptors using targeted contrast agents. Curr. Pharm. Biotechnol. 5, 485-494 (2004).
Bulte JW, Zhang S, van Gelderen P et al. Neurotransplantation of magnetically labeled oligodendrocyte progenitors: magnetic resonance tracking of cell migration and myelination. Proc. Natl Acad. Sci. USA 96, 15256-15261 (1999).
Remsen LG, McCormick CI, RomanGoldstein S et al. MR of carcinoma-specific monoclonal antibody conjugated to monocrystalline iron oxide nanoparticles. the potential for noninvasive diagnosis. Am. J Neuroradiol. 17, 411-418 (1996).
Weissleder R, Moore A, Mahmood U et al. In vivo magnetic resonance imaging of transgene expression. Nat. Med. 6, 351-355 (2000).
Moore A, Weissleder R, Bogdanov A. Uptake of dextran-coated monocrystalline iron oxides in tumor cells and macrophages. J. Magn. Reson. Imaging 7, 1140-1145 (1997).
Fleige G, Seeberger F, Laux D et al. In vitro characterization of two different ultrasmall iron oxide particles for magnetic resonance cell tracking. Invest. Radiol. 37, 482-488 (2002).
Stroh A, Zimmer C, Gutzeit C et al. Iron oxide particles for molecular magnetic resonance imaging cause transient oxidative stress in rat macrophages. Free Radic. Biol. Med. 36, 976-984 (2004).
Schnorr J, Wagner S, Abramjuk C et al. Comparison of the iron oxide-based blood-pool contrast medium VSOP-C184 with gadopentetate dimeglumine for first-pass magnetic resonance angiography of the aorta and renal arteries in pigs. Invest. Radiol. 39, 546-553 (2004).
Schnorr J, Wagner S, Abramjuk C et al. Focal liver lesions. SPIO-, gadolinium-, and ferucarbotran-enhanced dynamic T1-weighted and delayed
Taupitz M, Schnorr J, Pilgrimm H, Hamm B, Wagner S. CMR 2005: 2.03: VSOP-C184 as contrast agent for MRI of atherosclerotic plaques: experimental results in rabbits. Contrast Media Mol. Imaging 1, 55 (2006).
Achiam MP, Løgager VB, Chabanova E, Eegholm B, Thomsen HS, Rosenberg J. Diagnostic accuracy of MR coloriography with fecal tagging. Abdom. Imaging 34(4), 483-490 (2009).
Perrillo A, Catalano O, Delrio P et al. Post-treatment fistulas in patients with rectal cancer. MRI with rectal superparamagnetic contrast agent. Abdom. Imaging 32(3), 328-331 (2007).
1.85 Blomqvist L, Ohlsén H, Hindmarsh T, Jonsson E, Holm T. Local recurrence of rectal cancer: MR imaging before and after oral superparamagnetic particles vs contrastenhanced computed tomography. Eur. Radiol. 10(9), 1383-1389 (2000).
Frank JA, Miller BR, Arbab AS et al. Clinically applicable labeling of mammalian and stem cells by combining superparamagnetic iron oxides and transection agents. Radiology 228(2), 480-487 (2003).
Mohapatra S, Pramanik P. Synthesis and stability of functionalized iron oxide nanoparticles using organophosphorus coupling agents. Colloids Surfaces A: Physicochem. Eng. Aspects 339 (1-3), 35-42 (2009).
Zhang C, Wangler B, Morgenstern B et al. Silica- and alkoxysilane-coated ultrasmall superparamagnetic iron oxide particles. a promising tool to label cells for magnetic resonance imaging. Langmuir 23(3), 1427-1434 (2007).
Cho S-J, Jarrett BR, Louie AY, Kauzlarich SM. Gold-coated iron nanoparticles: a novel magnetic resonance agent for T1 and T2 weighted imaging. Nanotechnology 17, 640-644 (2006).
Gruell H, Boeve H, Markov D. Clustered magnetic particles as tracers for magnetic particles imaging. Patent no: WO/2009/027937
National Cancer Institute definition of ferumoxytol www.cancer.gov/ Templates/drugdictionary.aspx?CdrID=377345