[en] The masses of two-gluon glueballs are studied with a semirelativistic potential model whose interaction is a scalar linear confinement supplemented by a one-gluon exchange mechanism. The gluon is massless but the leading corrections of the dominant part of the Hamiltonian are expressed in terms of a state-dependent constituent gluon mass. The Hamiltonian depends only on three parameters: the strong coupling constant, the string tension, and a gluon size, which removes all singularities in the leading corrections of the potential. Accurate numerical calculations are performed with a Lagrange mesh method. The masses predicted are in rather good agreement with lattice results and with some experimental glueball candidates.
J.M. Cornwall and A. Soni, Phys. Lett. 120B, 431 (1983).
W.S. Hou and G.G. Wong, Phys. Rev. D 67, 034003 (2003).
F. Brau and C. Semay, Comment on "Glueball spectrum from a potential model."
Yu.A. Simonov, Phys. Lett. B 515, 137 (2001).
W.S. Hou and A. Soni, Phys. Rev. D 29, 101 (1984).
Yu. A. Simonov, in Proceedings of the XVII Autumn School Lisboa, Portugal, edited by L. Ferreira, P. Nogueira, and J. I. Silva-Marco (World Scientific, Singapore, 2000), p. 60; hep-ph/9911237.
W. Lucha, F.F. Schöberl, and D. Gromes, Phys. Rep. 200, 127 (1991).
W.S. Hou, C.S. Luo, and G.G. Wong, Phys. Rev. D 64, 014028 (2001).
F. Brau and C. Semay, Phys. Rev. D 58, 034015 (1998).
F. Brau, C. Semay, and B. Silvestre-Brac, Phys. Rev. C 66, 055202 (2002).
B. Silvestre-Brac, E Brau, and C. Semay, J. Phys. G 29, 2685 (2003).
F. Brau, Thesis, Université de Mons-Hainaut, 2001.
C. Semay and B. Silvestre-Brac, Phys. Rev. D 46, 5177 (1992).
L.P. Fulcher, Phys. Rev. D 50, 447 (1994).
D. Baye and P.-H. Heenen, J. Phys. A 19, 2041 (1986); D. Baye, J. Phys. B 28, 4399 (1995).
D. Baye and P.-H. Heenen, J. Phys. A 19, 2041 (1986); D. Baye, J. Phys. B 28, 4399 (1995).
C. Semay, D. Baye, M. Hesse, and B. Silvestre-Brac, Phys. Rev. E 64, 016703 (2001).
C.J. Morningstar and M.J. Peardon, Phys. Rev. D 60, 034509 (1999).
A.P. Szczepaniak and E.S. Swanson, Phys. Lett. B 577, 61 (2003).
B.S. Zou, Nucl. Phys. A655, 41 (1999).
D.V. Bugg, M.J. Peardon, and B.S. Zou, Phys. Lett. B 486, 49 (2000).
S. Godfrey and N. Isgur, Phys. Rev. D 32, 189 (1985).
V.L. Morgunov, A.V. Nefediev, and Yu.A. Simonov, Phys. Lett. B 459, 653 (1999).
C. Semay, B. Silvestre-Brac, and I.M. Narodetskii, Phys. Rev. D 69, 014003 (2004).
Yu.A. Simonov, Phys. Lett. B 226, 151 (1989).
I.M. Narodetskii and M.A. Trusov, Yad. Fiz. 65, 949 (2002); Phys. At. Nucl. 65, 917 (2002); hep-ph/0307131.
I.M. Narodetskii and M.A. Trusov, Yad. Fiz. 65, 949 (2002); Phys. At. Nucl. 65, 917 (2002); hep-ph/0307131.
T.T. Takahashi, H. Matsufuru, Y. Nemoto, and H. Suganuma, Phys. Rev. Lett. 86, 18 (2001); Phys. Rev. D 65, 114509 (2002).
T.T. Takahashi, H. Matsufuru, Y. Nemoto, and H. Suganuma, Phys. Rev. Lett. 86, 18 (2001); Phys. Rev. D 65, 114509 (2002).
D. A. Varshalovich, A. N. Moskalev, and V. K. Khersonskii, Quantum Theory of Angular Momentum (World Scientific, Singapore, 1988).