Doan, B.-T.; Meme, S.; Beloeil, J.-C. In The Chemistry of Contrast Agents in Medical Magnetic Resonance Imaging, 2 nd ed.; Merbach, A., Helm, L.; Toth, E., Eds.; John Wiley and Sons: Chichester, 2013; p 1.
Wahsner, J.; Gale, E. M.; Rodriguez-Rodriguez, A.; Caravan, P. Chemistry of MRI contrast agents: current challenges and new frontiers. Chem. Rev. 2019, 119, 957-1057, 10.1021/acs.chemrev.8b00363
Yang, C.-T.; Chuang, K.-H. Gd(III) chelates for MRI contrast agents: from high relaxivity to "smart", from blood pool to blood-brain barrier permeable. MedChemComm 2012, 3, 552-565, 10.1039/c2md00279e
Port, M.; Idée, J. M.; Medina, C.; Robic, C.; Sabatou, M.; Corot, C. Efficiency, thermodynamic and kinetic stability of marketed gadolinium chelates and their possible clinical consequences: a critical review. BioMetals 2008, 21, 469-490, 10.1007/s10534-008-9135-x
Idée, J. M.; Port, M.; Medina, C.; Lancelot, E.; Fayoux, E.; Ballet, S.; Corot, C. Possible involvement of gadolinium chelates in the pathophysiology of nephrogenic systemic fibrosis: a critical review. Toxicology 2008, 248, 77, 10.1016/j.tox.2008.03.012
Botta, M.; Tei, L. Relaxivity Enhancement in Macromolecular and Nanosized Gd III-Based MRI Contrast Agents. Eur. J. Inorg. Chem. 2012, 2012, 1945-1960, 10.1002/ejic.201101305
Bryson, J. M.; Reineke, J. W.; Reineke, T. M. Macromolecular imaging agents containing lanthanides: Can conceptual promise lead to clinical potential?. Macromolecules 2012, 45, 8939-8952, 10.1021/ma301568u
Zhou, Z.; Qutaish, M.; Han, Z.; Schur, R. M.; Liu, Y.; Wilson, D. L.; Lu, Z.-R. MRI detection of breast cancer micrometastases with a fibronectin-targeting contrast agent. Nat. Commun. 2015, 6, 7984, 10.1038/ncomms8984
Villaraza, A. J.; Bumb, A.; Brechbiel, M. W. Macromolecules, dendrimers, and nanomaterials in magnetic resonance imaging: the interplay between size, function, and pharmacokinetics. Chem. Rev. 2010, 110, 2921-2959, 10.1021/cr900232t
Mc Mahon, M.; Bulte, J. W. M. Two decades of dendrimers as versatile MRI agents: a tale with and without metals. WIREs Nanomed. Nanobiotechnol. 2018, 10, e1496 10.1002/wnan.1496
Bryant, L. H.; Brechbiel, M. W.; Wu, C.; Bulte, J. W. M.; Herynek, V.; Frank, J. A. Synthesis and relaxometry of high-generation (G5, 7, 9, and 10) PAMAM dendrimer-DOTA-gadolinium chelates. J. Magn. Reson. Imaging 1999, 9, 348-352, 10.1002/(SICI)1522-2586(199902)9:2<348:AID-JMRI30>3.0.CO;2-J
Laus, S.; Sour, A.; Ruloff, A.; Toth, E.; Merbach, A. E. Rotational dynamics Account for pH-dependent relaxivities of PAMAM dendrimeric, Gd-based potential MRI contrast agents. Chem.-Eur. J. 2005, 11, 3064-3076, 10.1002/chem.200401326
Lebduskova, P.; Sour, A.; Helm, L.; Toth, E.; Kotek, J.; Lukes, I.; Merbach, A. E. Phosphinic derivative of DTPA conjugated to a G5 PAMAM dendrimer: an 17O and 1H relaxation study of its Gd(III) complex. Dalton Trans. 2006, 3399-3406, 10.1039/B517847A
Jaszberenyi, Z.; Moriggi, L.; Schmidt, P.; Weidensteiner, C.; Kneuer, R.; Merbach, A. E.; Helm, L.; Toth, E. Physicochemical and MRI characterization of Gd3+-loaded polyamidoamine and hyperbranched dendrimers. JBIC, J. Biol. Inorg. Chem. 2007, 12, 406-420, 10.1007/s00775-006-0197-3
Nwe, K.; Bernardo, M.; Regino, C. A. S.; Williams, M.; Brechbiel, M. W. Comparison of MRI properties between derivatized DTPA and DOTA gadolinium-dendrimer conjugates. Bioorg. Med. Chem. 2010, 18, 5925-5931, 10.1016/j.bmc.2010.06.086
Gugliotta, G.; Botta, M.; Tei, L. AAZTA-based bifunctional chelating agents for the synthesis of multimeric/dendrimeric MRI contrast agents. Org. Biomol. Chem. 2010, 8, 4569-4574, 10.1039/c0ob00096e
Floyd, W. C.; Klemm, P. J.; Smiles, D. E.; Kohlgruber, A. C.; Pierre, V. C.; Mynar, J. L.; Frechet, J. M. J.; Raymond, K. N. Conjugation effects of various linkers on Gd(III) MRI contrast agents with dendrimers: optimizing the hydroxypyridinonate (HOPO) ligands with nontoxic, degradable esteramide (EA) dendrimers for high relaxivity. J. Am. Chem. Soc. 2011, 133, 2390-2393, 10.1021/ja110582e
Tei, L.; Gugliotta, G.; Gambino, G.; Fekete, M.; Botta, M. Developing high field MRI contrast agents by tuning the rotational dynamics: bisaqua GdAAZTA-based dendrimers. Isr. J. Chem. 2017, 57, 887-895, 10.1002/ijch.201700041
Jin, M.; Zhang, Y.; Gao, G.; Xi, Q.; Yang, Y.; Yan, L.; Zhou, H.; Zhao, Y.; Wu, C.; Wang, L.; Lei, Y.; Yang, W.; Xu, J. MRI Contrast agents based on conjugated polyelectrolytes and dendritic polymers. Macromol. Rapid Commun. 2018, 39, 1800258, 10.1002/marc.201800258
Fischer, D.; Li, Y.; Barbara Ahlemeyer, B.; Krieglstein, J.; Kissel, T. In vitro cytotoxicity testing of polycations: influence of polymer structure on cell viability and hemolysis. Biomaterials 2003, 24, 1121-1131, 10.1016/S0142-9612(02)00445-3
Verwilst, P.; Park, S.; Yoon, B.; Kim, J. S. Recent advances in Gd-chelate based bimodal optical/MRI contrast agents. Chem. Soc. Rev. 2015, 44, 1791-1806, 10.1039/C4CS00336E
Chilla, S. N. M.; Henoumont, C.; Vander Elst, L.; Muller, R. N.; Laurent, S. Importance of DOTA derivatives in bimodal imaging. Isr. J. Chem. 2017, 57, 800-808, 10.1002/ijch.201700024
Wu, M.; Shu, J. Multimodal molecular imaging: current status and future directions. Contrast Media Mol. Imaging 2018, 1 10.1155/2018/1382183.
Barge, A.; Cravotto, G.; Gianolio, E.; Fedeli, F. How to determine free Gd and free ligand in solution of Gd chelates. A technical note. Contrast Media Mol. Imaging 2006, 1, 184-188, 10.1002/cmmi.110
Laurent, S.; Vander Elst, L.; Muller, R. N. Comparative study of the physicochemical properties of six clinical low molecular weight gadolinium contrast agents. Contrast Media Mol. Imaging 2006, 1, 128-137, 10.1002/cmmi.100
Vander Elst, L.; Sessoye, A.; Laurent, S.; Muller, R. N. Is the theoretical fitting of the proton nuclear magnetic relaxation dispersion (NMRD) curves of paramagnetic complexes improved by independent measurement of their self-diffusion coefficients?. Helv. Chim. Acta 2005, 88, 574-587, 10.1002/hlca.200590040
Laurent, S.; Vander Elst, L.; Houze, S.; Guerit, N.; Muller, R. N. Synthesis and characterization of various benzyl diethylenetriaminepentaacetic acids (dtpa) and their paramagnetic complexes, potential contrast agents for magnetic resonance imaging. Helv. Chim. Acta 2000, 83, 394-406, 10.1002/(SICI)1522-2675(20000216)83:2<394:AID-HLCA394>3.0.CO;2-B
Sahinturk, V.; Kacar, S.; Vejselova, D.; Kutlu, H. M. Synthesis and characterization of various benzyl diethylenetriaminepentaacetic acids (dtpa) and their paramagnetic complexes, potential contrast agents for magnetic resonance imaging. Toxicol. Ind. Health 2018, 34, 481-489, 10.1177/0748233718769806
Farcal, L.; Torres Andón, F.; Di Cristo, L.; Rotoli, B. M.; Bussolati, O.; Bergamaschi, E.; Mech, A.; Hartmann, N. B.; Rasmussen, K.; Juan Riego-Sintes, J.; Ponti, J.; Kinsner Ovaskainen, A.; Rossi, F.; Oomen, A.; Bos, P.; Chen, R.; Bai, R.; Chen, C.; Rocks, L.; Fulton, N.; Ross, B.; Hutchison, G.; Tran, L.; Mues, S.; Ossig, R.; Schnekenburger, J.; Campagnolo, L.; Vecchione, L.; Pietroiusti, A.; Fadeel, B. Comprehensive in vitro toxicity testing of a panel of representative oxide nanomaterials: first steps towards an intelligent testing strategy. PLoS One 2015, 10, e0127174 10.1371/journal.pone.0127174
Sambale, F.; Stahl, F.; Rüdinger, F.; Seliktar, D.; Kasper, C.; Bahnemann, D.; Scheper, T. Iterative cellular screening system for nanoparticle safety testing. J. Nanomater. 2015, Article ID 691069 10.1155/2015/691069.
Zanini, D.; Roy, R. Novel dendritic N-sialosides: synthesis of glycodendrimers based on a 3,3′-iminobis(propylamine) core. J. Org. Chem. 1996, 61, 7348-7354, 10.1021/jo961047z
Zanini, D.; Roy, R. Synthesis of new S-thiosialodendrimers and their binding properties to the sialic acid specific lectin from Limax flavus. J. Am. Chem. Soc. 1997, 117, 2088-2095, 10.1021/ja963874n
Ghatnekar, J.; Hägerlöf, M.; Oredsson, S.; Alm, K.; Elmroth, S. K. C.; Persson, T. Construction of polyamine-modified uridine and adenosine derivatives-evaluation of DNA binding capacity and cytotoxicity in vitro. Bioorg. Med. Chem. 2007, 15, 7426-7344, 10.1016/j.bmc.2007.07.030
Raghunand, N.; Guntle, G. P.; Gokhale, V.; Nichol, G. S.; Mash, E. A.; Jagadish, B. Design, Synthesis, and evaluation of 1,4,7,10-tetraazacyclododecane-1,4,7-triacetic acid derived, redox-sensitive contrast agents for magnetic resonance imaging. J. Med. Chem. 2010, 53, 6747-6757, 10.1021/jm100592u
Henderson, B. J.; Carper, D. J.; González-Cestari, T. F.; Yi, B.; Mahasenan, K.; Pavlovicz, R. E.; Dalefield, M. L.; Coleman, R. S.; Li, C.; McKay, D. B. Structure-activity relationship studies of sulfonylpiperazine analogues as novel negative allosteric modulators of human neuronal nicotinic receptors. J. Med. Chem. 2011, 54, 8681-8692, 10.1021/jm201294r
Moreau, J.; Guillon, E.; Pierrard, J.-C.; Rimbault, J.; Port, M.; Aplincourt, M. Complexing mechanism of the lanthanide cations Eu3+, Gd3+, and Tb3+ with 1,4,7,10-Tetrakis(carboxymethyl)-1,4,7,10-tetraazacyclododecane (dota)-Characterization of three successive complexing phases: study of the thermodynamic and structural properties of the complexes by potentiometry, luminescence spectroscopy, and EXAFS. Chem.-Eur. J. 2004, 10, 5218-5232, 10.1002/chem.200400006
Granato, L.; Laurent, S.; Vander Elst, L.; Djanasvili, K.; Peters, J. A.; Muller, R. N. The Gd3+ complex of 1,4,7,10 tetraazacyclododecane 1,4,7,10 tetraacetic acid mono(p isothiocyanatoanilide) conjugated to inulin: a potential stable macromolecular contrast agent for MRI. Contrast Media Mol. Imaging 2011, 6, 482-491, 10.1002/cmmi.448
Aime, S.; Barge, A.; Bruce, J. I.; Botta, M.; Howard, J. A. K.; Moloney, J. M.; Parker, D.; de Sousa, A. S.; Woods, M. NMR, relaxometric, and structural studies of the hydration and exchange dynamics of cationic lanthanide complexes of macrocyclic tetraamide ligands. J. Am. Chem. Soc. 1999, 121, 5762-5771, 10.1021/ja990225d
Laurent, S.; Vander Elst, L.; Henoumont, C.; Muller, R. N. How to measure the transmetallation of a gadolinium complex. Contrast Media Mol. Imaging 2010, 5, 305-308, 10.1002/cmmi.388